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Abstract—Experimenting, testing, and debugging robot social

navigation systems is a challenging task. While simulation is

generally well suited for a first level of debugging and evaluation

of robotics controllers and planners, the social navigation field

lacks satisfactory simulators of humans which act, react and

interact rationally and naturally. To facilitate the development

of human-aware navigation systems, we propose a system to

simulate an autonomous human agent that is both reactive and

rational, specifically designed to act and interact with a robot

for navigation problems and potential conflicts. Besides, it also

provides some metrics to partially evaluate such interactions and

data logs for further analysis. We show the limitations of over-

used reactive-only approaches. Then, thanks to two different

human-aware navigation planners, we show how our system can

help answer the lack of intelligent human avatars for tuning and

debugging social navigation systems before their final evaluation

with real humans.

Index Terms—Human-Robot Interaction; Human Simulation;

Social Navigation

I. INTRODUCTION

The development of robots that interact, assist, or work
among humans is an active field of research. However, people
working in this field struggle to test and evaluate their systems.
Real-life tests are slow, hardly repeatable, and expensive. Such
tests are mandatory to verify the final system. However, the
system needs to also be tested before reaching maturity, and
real-life tests become very tiresome for debugging. Simulation
could be an efficient way to achieve these preliminary tests.
Yet, simulating realistic interactions is difficult which makes
simulation unreliable and limited. This is why there is a need
for an “intelligent artificial human” which would challenge the
robot’s interactive and decisional abilities.

The social robot navigation field faces the same issues. Cur-
rently, researchers conduct their preliminary tests in simulation
using reactive models for the human agents. Such models, like
social force or optimal reciprocal collision avoidance (ORCA),
are easy to use and very efficient for crowd simulation. Nev-
ertheless, as individuals, such agents tend to act unnaturally
and to even completely fail in solving conflicts in intricate
scenarios.

Our contribution is an architecture to simulate an intelligent
autonomous human agent that will challenge social navigation

⇤This work has been partially funded by the Agence Nationale de la
Recherche through the ANITI ANR-19-PI3A-0004 grant

of robots in intricate scenarios. Our avatar is able, to a certain
extent, to act, react to robot behavior and interact with the
robot. First, it exhibits a goal-oriented behavior and adapts
to changes in the environment (path blocked, ..) with goal
persistence. Also, we can add some usual human attitudes or
behaviors like a change of mind: stop the current goal and start
achieving a new one. Finally, we can tune the human reaction
to some situations: the cautious human who stops far from
a robot to facilitate its actions, or, on the contrary, a human
who is in a hurry or who assumes that the robot should give
priority to her/him and take the load of solving conflicts. We
also propose a way to visualize logged metrics and execution
data through plots and graphs to help evaluate the interaction.

We use here below the term ‘rational’ to refer to a notion
close to Goal Reasoning [1], [2], i.e. the ability of autonomous
agents which can dynamically reason about and adjust their
goals. Doing so, enables agents to adapt intelligently to
changing conditions and unexpected events, allowing them to
address a wider variety of complex problems.

The paper is structured as follows. Section II briefly dis-
cusses related work. Section III presents the current implemen-
tation of the system and its functionalities. Then, section IV
exposes the results we obtained using different social navi-
gation robot systems. Finally, section V presents conclusions
and future work.

II. RELATED WORKS

Human-aware navigation (or social navigation) has been a
topic of research for a long time [3], [4], but, recently it is
gaining more attention due to the increasing number of robots
navigating in the human environments. Numerous approaches
were proposed [5]–[12] to safely navigate the robot around the
humans. Although most of these methods were largely tested
using simulation during their development, the model of the
human remained very simple and some times unrealistic.

Simulating perfectly natural and realistic human behavior
is currently impossible. But with some efforts and depending
on the context, we can make intelligent enough agents able
to challenge the robotics systems. Many social navigation
works focus on crowd navigation and such contexts can
now be simulated efficiently with reactive models. Works
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like MengeROS [13] or PedSim ROS1 use the social force
model [14] and offer a scalable and efficient way to simulate
crowds of human agents. Other crowd simulators using the
ORCA method can be found like the work in [15]. Reactive-
only methods are clearly useful for crowds but provide very
limited possibilities when trying to simulate individual agents,
particularly in intricate scenarios and narrow environments.
Simulating more intelligent human agents is a novel field
and only a few very recent contributions address this topic.
VirtualHome [16] appears as very interesting but interactions
between agents are still limited. Another recent work [17]
presents a learning-based local planner to generate a natural
pedestrian motion. This ongoing work shows an interesting
navigation behavior like waiting and letting the other agent
pass embedded in iGibson [18]. However, it is not clear if it
is possible to attribute dynamically new goals to the agents
and if they can solve more intricate navigation conflicts. Also,
as of today, it is not publicly available.

III. PRESENTATION OF THE SYSTEM

In this section, we start by presenting the main function-
alities of the system which generate rational behavior. It is
followed by details on the usability of the system. And finally,
a description of the logs and metrics is given. The whole
system is open-source and already publicly available2.

A. Major functionalities

The system has a goal management process that includes
choosing a goal (or waiting for one from the human operator),
generating a plan to achieve the given goal, and supervising the
execution of the plan, step by step, until the goal is reached.
The system is aware of its own goal and it can reason and be
persistent about the goal. The plan execution can be suspended
and later resumed, which is useful to resolve conflicts or for
specific reactions of the avatar.

During the execution of navigation actions, the system can
detect and handle navigation conflicts. Currently, the kind of
navigation conflict handled is path blockage (e.g. another agent
standing in a doorway). To detect such conflict we periodically
compute a path to the current goal position using Dijkstra’s
algorithm. Then, by tracking the length of the computed path,
a significant increase of the path length or no path at all means
that another agent is blocking either the shortest or the only
possible way to the goal. When such situations are detected,
the conflict is resolved by suspending the plan execution to
perform an approach in order to show the agent’s intention.
Eventually, once close enough and still blocked, the agent
stops and actively waits for the path to be cleared.

As navigation planner, the system uses a publicly available
human-aware navigation planner called CoHAN [19]. It has
been slightly modified to remove some conflicting features.
Thus, we benefit from the high-level decision-making of the
system and the enhanced local navigation with trajectory

1https://github.com/srl-freiburg/pedsim ros
2https://github.com/AnthonyFavier/InHuS Social Navigation

Fig. 1. Plots for the CoHAN planner on the robot in the doorway scenario.
The robot blocks the human’s path while crossing, and it makes the human
agent go into the approach and then blocked state. The velocity of the robot
decreases as it approaches the human, and the TTC value does not fall below
a certain value, showing some intended human-aware behavior.

predictions. Thanks to its high tunable property, this planner
also helps to generate different behaviors.

To generate a variety of specific challenging situations, we
created what we call Attitudes. They are modes that affect
both goal decisions and reactions regarding other agents. Some
of the currently implemented Attitudes consist of: randomly
picking a new goal like someone changing its mind, harassing
the robot by constantly going in front of it like a child could
do [20], and stopping the agent close to the robot and making
it look at the robot for a few seconds before resuming its goal
to emulate a curious behavior.

B. Usability

A simple graphical user interface component allows the
human operator to control all the agents by sending goals and
starting scenarios to repeatedly generate the same situations.
All goals and scenarios are predefined in an XML file that
can be easily modified. Specifying a radius for a goal makes
the agent receive a goal randomly picked within the defined
circle. Attitudes and an “endless” mode can also be activated
through this component. The used simulator can be easily
switched to match the one used by the robot controller to
be challenged. Manual velocity commands can be sent to use
scripted trajectories or motion capture to control the human
agent.
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C. Logs and Metrics
As mentioned earlier, the system logs the execution data

and computed metrics that might be useful later to evaluate
the interactions, and thus, the performance of the tested robot
planning system. We provide two kinds of visualizations using
these data. The first visualization, at the bottom of Fig. 1, is the
paths taken by each agent and colored over time according to
a corresponding legend that helps estimate an agent’s position
at a specific moment. The other visualization shown at the top
of Fig. 1 is composed of several plots showing some metrics
over time. The legend for these plots is shown just above
the time-colored paths. These plots help to identify conflicts,
analyze speed variations, and show a metric called time to
collision (TTC). It estimates the time remaining before the
agents collide. We can argue that TTC can correspond to a
“threat feeling” since a low TTC value corresponds to a high
threat of collision. Hence, the social robot navigation planners
can be tuned to maintain a certain TTC value to make humans
more comfortable.

IV. RESULTS

In this section, we first present some results about the limits
of reactive-only agents, and secondly, about the performance
of our system.

A. Limits of reactive-only agents
In order to highlight the limitations of overused reactive-

only approaches, we present results obtained with a Ped-
Sim ROS (or simply PedSim) agent. Pedsim is a pedestrian
simulator that uses the social force model. It is very efficient
for generating crowds to test robot navigation. However, at the
individual level, the simulated agents are purely reactive and
have no decisional abilities like most pedestrian simulators.

Consider the doorway scene shown in the upper part of
Fig. 2. The robot is blocking the way which the human agent
intends to cross. The Pedsim agent approaches the robot and
tries to push itself through, but it fails due to a very high
value of social force. The agent never stops moving and tends
to go right or left along the wall before wiggling again just
in front of the robot. This kind of behavior is confusing and
makes its intentions unclear to the robot planner. The narrow
corridor scenario shown in the lower part of Fig. 2 also exposes
some limits. Here the path is blocked by the static robot, and
the Pedsim agent slowly gets closer and closer to the robot
before squeezing itself between the wall and the robot. For
some reason here the social forces allowed the agent to pass,
unlike the previous example. But it highlights that the Pedsim
agent doesn’t use a defined hitbox or footprint for the agent
and relies only on the repulsive social forces to prevent the
collisions. The lack of properly defined collision shapes makes
the agent temporarily go through walls and other agents. As
a consequence, it breaks many intricate scenarios where a
rational decision should be taken and results in unrealistic
situations like the above.

Based on the above observations, we can infer that such
approaches, despite being efficient for large spaces or crowds,

Fig. 2. In the doorway scenario at the top, the reactive-only (Pedsim) agent
never stops moving and trying to go through the robot even though its path is
blocked. Moreover, sometimes the agent squeezes itself between the wall and
the robot colliding with both, like with the narrow corridor scenario at the
bottom. Not having collisions is a big limitation for Pedsim since it means it
can’t realistically react in intricate conflicts.

could lead to confusing behaviors in narrow environments and
intricate scenarios, where conflict resolution is required.

B. Analysis for a human-aware navigation system
To expose how both the challenging situations created and

the data recorded by our system could help evaluate social
robot navigation, we present detailed results and their interpre-
tation with a robot running the original CoHAN system. In the
doorway scenario, the navigating robot blocks the way before
the human can cross. Since the human agent stops and leaves
enough space for the robot to cross, CoHAN eventually makes
the robot cross and move to the left to clear the way and avoid
the human. The time-colored paths in Fig. 1 illustrate this
execution well. Furthermore, the plots in the same figure give
additional information about the execution. First, we notice
the conflict detection (path length equals zero) that makes
the human switch to the approach and then to the blocked
state. These plots also show that the robot slowed down before
entering the doorway and also when the human-robot distance
decreases while crossing. After a certain value of TTC, the
robot’s speed drops to almost zero, and then it increases
again when the robot changes its direction to continue its
navigation. All these observations can be useful for improving
or evaluating the social robot planner’s performance: finding
ways to decrease the blocked state time for the human,
maintaining a particular threshold for TTC, or waiting for the
human to cross the door without blocking.

C. Different planning systems and metrics
We chose three robot navigation planners. The first planner

is called SMB, which stands for Simple Move Base. It uses
teb local planner and the ROS navigation stack with almost
every default parameter and an additional process to consider
the human agent as a static obstacle to avoid it. Thus, it is not a
human-aware planner. The second one is a human-aware robot
navigation planner from Kollmitz et. al. [10]. It is referred to
here as TDP. The third one is the already mentioned CoHAN
planner. TABLE I presents some metrics calculated from three
runs with the doorway scenario. It shows the human’s time
to reach the goal, minimum TTC, the duration for which the
human is blocked, and the time spent by the robot at a distance
less than 2m from the human. Note that these metrics are
not automatically computed but can be easily extracted from
the log data. Thus, other metrics can be added without any
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Time to goal (hu-
man)

Min
TTC

Time
blocked

Time
below 2m

SMB 23.6 1.5 1.1 3.1
TDP 27.5 2.4 7.1 5.8
CoHAN 22.9 1.6 2.3 3.0

TABLE I
DIFFERENT METRICS COMPUTED FROM LOG DATA CORRESPONDING TO

RUNS OF DIFFERENT ROBOT PLANNERS IN THE DOORWAY SCENARIO.

Fig. 3. Behaviors obtained by activating the Harass and StopAndLook
Attitudes. With Harass (top), the human always goes in front of the robot. By
observing the colors, one can that the human is always ahead of the robot.
With StopAndLook (bottom), the human stops to look at the robot for a few
seconds when close to it. This can be seen in the plot as a sudden change of
color from green to dark blue in the human’s path.

modifications as long as they are based on the data shown in
the plots. Then, more data can be logged to be able to compute
even more metrics. The interpretation of the results in TABLE
I depends on how the corresponding system has been designed
to behave and on what needs to be improved.

D. Generating different behaviors
Our system is capable of generating different agent behav-

iors in order to diversify situations and conflicts to decently
challenge the robot system. One way to do this is by tuning
parameters about the navigation conflicts and the ones related
to the geometric planner. Changing the velocity and path
planning of the agent has a lot of influence on the produced
behavior. Besides parameter tuning, activating Attitudes pro-
duces complex behaviors and reactions. The execution of the
mentioned Harass and StopAndLook Attitudes can be seen
in Fig. 3 which shows the time-colored paths of the agents.
Concerning the Harass Attitude, by paying attention to the
colors, we see that the human is always in front of the robot
that continuously tries to avoid the harassing agent causing
erratic movements. In the same figure, at the bottom, we
see thanks to the color discontinuity how the StopAndLook
Attitude makes the human suspend its goal to stop and briefly
stare at the robot before moving again.

E. Long runs and scenarios
Finally, the system is capable of conducting long runs,

thanks to the Boss interface that autonomously sends goals
to the agents. Such a feature is interesting because it helps to
test the challenged system’s stability and robustness. More-
over, when randomness is added to the goals of the long
run, unexpected situations and conflicts of interest might be

Fig. 4. Execution of the long run scenario using the TDP planner and our
system. We see the complete set of time-colored paths on the left. On the
right, the same path is cut around the moment when the robot got stuck in
the wall. Long runs help to debug such unexpected issues.

generated. For instance, Fig. 4 depicts a long run executed
with our system and the TDP planner. The agents were made
to endlessly loop over four goal positions (each with a 1m
radius) but in reverse order to create as many conflicts as
possible. After 3 minutes, the robot got stuck in the wall of
the doorway, indefinitely blocking the path for the human,
which could be an issue of interest. In addition to highlighting
problematic situations where the robot doesn’t act as expected,
long runs can expose low-level issues like unexpected crashes
or memory leaks.

V. CONCLUSION AND FUTURE WORK

Human-aware robot navigation is rapidly growing, but the
community lacks good human agent simulations to test and
debug their systems before real-life experiments. Reactive-
only approaches exist, but we have shown that they are limited.
Through this system, we propose a pertinent approach to
address this issue. Then, by focusing on a specific human-
aware robot planner, we showed that our system generates
conflicting situations that need to be resolved by making
rational choices. Moreover, all the metrics and data recorded
during execution allow us to evaluate the interaction and
behavior of the robot. Our system can also generate different
and tunable behaviors that diversify the situations and conflicts
imposed on the robot, and thus, it helps to debug and tune the
system. The long runs provide additional potential ways to
improve the system.

Our work obviously has limitations. First, we are looking
forward to testing other similar systems and to comparing
them with our system. Secondly, we claim to generate only
reactive and some rational behavior, which is still far from
natural or realistic human behavior. Finally, we currently
handle scenarios with two agents only, the human and the
robot. We can run scenarios with other human agents, but
they will be treated like robots.

We already use effectively this system to test our own
human-aware motion planners and we will refine it over time
thanks to the tests conducted. In future work, we plan to
handle scenarios with more than one intelligent human agent,
with groups and maybe even with crowds. We also intend to
enrich the set of available metrics and of available conflicting
scenarios that could help evaluate social robot navigation.
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