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Event-triggered Neural Network Control
for LTI systems

C. de Souza, S. Tarbouriech, and A. Girard

Abstract— This paper addresses the problem of event-
triggered control (ETC) of discrete-time linear time-invariant
(LTI) systems stabilized by neural network controllers. The
event-triggering mechanisms (ETMs) is proposed to update
only a portion of the layers required to maintain stability
and satisfactory performance of the feedback system, thus
reducing the computational cost associated with the eval-
uation of the neural network. Sufficient convex conditions
in the form of linear matrix inequalities (LMIs) are provided
to compute the triggering parameters and characterize an
estimate of the domain of attraction for the feedback sys-
tem. The formulation is based on the use of Lyapunov
theory and a set of generalized sector constraints that deal
with the nonlinear activation functions, represented in this
case by the saturation function. Optimization procedures
are also formulated to effectively reduce the amount of
computation in the neural network. An example borrowed
from the literature is used to illustrate the effectiveness of
the proposal.

Index Terms— Event-triggered control; Neural network
control; Quadratic constraints; Linear Matrix inequalities;
Lyapunov theory.

I. INTRODUCTION

NEURAL networks (NNs) have become increasingly ef-
fective at many difficult machine-learning tasks. How-

ever, they may suffer from a lack of guarantees due to their
complex structure. In particular, NNs have various types of
nonlinear activation functions, potentially numerous layers,
and a large number of hidden neurons, making it difficult to
apply classical analysis methods, such as Lyapunov theory.
This drawback limits their use in safety-critical applications
such as self-driving vehicles, aircraft collision avoidance pro-
cedures, and robots for surgical procedures (see e.g. [1] for
a survey). In response, a major research effort has been
undertaken to develop tools that provide useful certificates of
stability, safety, and robustness for NNs. Several approaches
have proposed the use of the quadratic constraints (QCs)
formalism to bound the nonlinear activation functions. [2]
uses QCs to upper-bound the Lipschitz constant of deep
feed-forward neural networks, which is a useful indicator of
robustness. [3] verifies the safety of NNs by using QCs to
outer-bound their outputs given a set of inputs. [4] combines
Lyapunov theory with local sector QCs to analyze the stability
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Toulouse, CNRS, Toulouse, France.

A. Girard (antoine.girard@l2s.centralesupelec.fr) is with Université
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of feedback systems with neural network controllers. Such
an approach also allows to include perturbations described
by integral quadratic constraints (IQCs) in the system. As an
extension, [5] analyzes stability in offset-free setpoint tracking
with a piecewise constant reference. Both works provide
ellipsoidal inner approximations of the corresponding regions
of attraction. [6] formulates QCs based on partial gradients
to certify the input-output stability of reinforcement-learning
(RL) controlled systems.

Unlike traditional control systems, network control systems
not only need to provide satisfactory control requirements
but also need to consider the usage of the communication
network. The event-triggered control (ETC) has emerged as
an alternative control paradigm to reduce the computational
overhead and communication traffic, thus saving the limited
network resources. Instead of executing control tasks at peri-
odic intervals, the ETC approach provides a mechanism to
determine the sampling instants without compromising the
desired system performance. In recent years, several event-
triggering mechanisms (ETMs) have been proposed in the
literature (see, for instance, [7]–[10]). Regarding the neural
networks, the ETC technique has been mostly used to update
states during the learning process. [11] investigates an event-
triggered state-feedback control for multi-input-multi-output
(MIMO) uncertain nonlinear continuous-time systems in affine
form, where the controller is approximated by a linear param-
eterized NN (i.e. a neural network where all nonlinearites are
confined to a single layer). [12] proposes an optimal adaptive
event-triggered state-feedback control algorithm based on an
actor/critic NN structure for nonlinear continuous-time sys-
tems. [13] designs a four-layer fully connected feed-forward
NN controller based on event-triggering data updating (state)
for the stability of continuous-time nonlinear systems. A
genetic algorithm (GA) is also used to optimize the initial
weights and thresholds of the NN to reduce the error of the
controller. From a different perspective, in which the neural
network has already been trained, an early work [14] proposes
an ETM (based on a local sector) to transmit the output of
the layers, thus allowing to reduce the computational cost
associated with the control law evaluation.

Following the same idea, but under different considerations,
the present work proposes: i) the design of ETMs (based
on standard error functions) that allow us to compute the
control law by updating only a portion of the layers instead of
providing the periodic sampling of the entire network; ii) the
development of sufficient conditions to compute the triggering
parameters and characterize an estimate of the domain of



attraction for the feedback system. The approach applies
to discrete-time linear time-invariant (LTI) plants stabilized
by known neural network controllers. In contrast to [14]
that employs the hyperbolic tangent (tanh) as the activation
function, the activation function considered in the paper is a
saturation function. This choice is motivated by noting that
the saturation can be seen as an approximation of smooth
functions as tanh and also sigmoid. In addition, existing tools
for handling saturations lead to less conservative conditions for
stability and performance purposes [15], [16]. Thus, by using
Lyapunov theory and a set of generalized sector constraints to
deal with the saturation, we propose convex conditions in the
form of linear matrix inequalities (LMIs) that guarantee the
regional (local) asymptotic stability of the feedback system.
Optimization procedures incorporating these conditions are
also established to effectively reduce the update of the neural
network layers. An example borrowed from the literature is
used to illustrate the effectiveness of the proposal.

Notation. N, Rn, Rn×m denote respectively the sets of non-
negative integers, n-dimensional vectors and n×m matrices.
For any matrix A, A⊤ denotes its transpose. For any square
matrix A, trace(A) denotes its trace and He{A} = A+A⊤.
diag(A1, A2) is a block-diagonal matrix with block diagonal
matrices A1 and A2. For two symmetric matrices of same
dimensions, A and B, A > B means that A−B is symmetric
positive definite. I and 0 stand respectively for the identity and
the null matrix of appropriate dimensions. For a partitioned
matrix, the symbol ⋆ stands for symmetric blocks. For any
vector x ∈ Rn and any symmetric positive definite (or semi-
positive definite) matrix, ∥x∥2Q denotes the quadratic form
x⊤Qx.

II. PROBLEM STATEMENT

A. Neural Network Model
Consider the feedback-system shown in Figure 1, which

consists of a nominal plant F and an event-triggered neural
network controller πETM .

Fig. 1: Feedback system subject to ETMs.

The nominal plant F is a discrete-time linear time-invariant
(LTI) system according to the model:

x(k + 1) = AFx(k) +BFu(k), (1)

where x(k) ∈ RnF is the state vector and u(k) ∈ Rnu is
the control input. The controller πETM is an ℓ-layer, event-
triggered feed-forward neural network (NN) defined by:

ω̂0(k) = x(k),

νi(k) = W iω̂i−1(k) + bi, i ∈ {1, . . . , ℓ},
ωi(k) = sat(νi(k)),

u(k) = W ℓ+1ω̂ℓ(k) + bℓ+1,

(2)

where νi ∈ Rni is the input to the ith activation function,
ωi ∈ Rni and ω̂i ∈ Rni are the current output and the last
updated output from the ith layer, respectively, and sat(·) is
the decentralized vector-valued saturation function defined by

sat(νij(k)) = sign(νij(k))min(|νij(k)|, ν̄ij), (3)

where νij is the jth component of νi, and ν̄ij > 0, i ∈ [1, ℓ],
j ∈ [1, ni], is the maximum (νij = −ν̄ij minimum) limit of the
input signals. The operations for each layer are defined by a
weight matrix W i ∈ Rni×ni−1 , a bias vector bi ∈ Rni , and
the saturation function sat(·), which is applied element-wise,
according to (3).

It is useful to isolate the nonlinear functions from the linear
operations in the neural network [3], [4]. In this case, we can
gather the inputs and outputs of all saturation functions into
augmented vectors as

νϕ=
[
ν1⊤ . . . νℓ⊤

]⊤
, ωϕ=

[
ω1⊤ . . . ωℓ⊤

]⊤
, and

ω̂ϕ=
[
ω̂1⊤ . . . ω̂ℓ⊤

]⊤ ∈ Rnϕ ,

with nϕ =
∑ℓ

i=1 ni. The ith element of νϕ, for instance, is
denoted by νϕ,i. A combined nonlinearity sat(·) : Rnϕ →
Rnϕ can also be obtained by stacking all saturation functions,
i.e.

sat(νϕ) =
[
sat(ν1)⊤ . . . sat(νℓ)⊤

]⊤ ∈ Rnϕ , (4)

which leads to ωϕ(k) = sat(νϕ). From that, the neural
network control policy takes the form:

[
u(k)
νϕ(k)

]
= N

 x(k)
ω̂ϕ(k)
1

 , (5)

where

N =


0 0 . . . 0 W ℓ+1 bℓ+1

W 1 0 . . . 0 0 b1

0 W 2 . . . 0 0 b2

...
...

. . .
...

...
...

0 0 . . . W ℓ 0 bℓ

,

=

[
Nux Nuω Nub

Nνx Nνω Nνb

]
.

(6)

Remark 1: Note that in our approach Nux = 0. However,
this matrix can assume a non-null value, e.g. K ∈ Rnu×nF ,
in the case where u(k) is given by the sum of the expression
in (2) with a linear term Kx(k).

By denoting (x∗, u∗, ν∗, ω∗) the equilibrium point of (1)
and (5)-(6), the following conditions must be satisfied

x∗ = AFx∗ +BFu∗, ω0
∗ = x∗,[

u∗
ν∗

]
= N

x∗
ω∗
1

,
ω∗ = sat(ν∗).

(7)



B. Event-triggering strategy

To reduce the computational cost associated with the neural
network evaluation, we introduce an ETM at the output of
each layer, according to Figure 1. They decide whether or not
to update the current outputs through the neural network.

Such decisions are made based on the following rule:

ω̂i(k) =

{
ωi(k), if f i(ωi(k), ω̂i(k − 1), ω̂i−1(k)) > 0,

ω̂i(k − 1), otherwise,
(8)

where f i(ωi(k), ω̂i(k − 1), ω̂i−1(k)) is defined by

f i(ωi(k), ω̂i(k − 1), ω̂i−1(k)) = ∥ω̂i(k − 1)− ωi(k)∥2qi∆
− ∥ωi(k)− ωi

∗∥2qiω − ∥ω̂i−1(k)− ωi−1
∗ ∥2

qi−1
ω̂

(9)

where qi∆, q
i
ω, q

i−1
ω̂ ∈ Rni×ni are symmetric positive definite

matrices to be designed. Since these matrices act as weights
on the terms associated with the triggering condition, their
computation directly affects the event-triggering rule and con-
sequently how much the data update can be reduced.

It is important to point out that whenever a layer is not
updated, the following ones are not updated either. The reason
for this is that ωi(k) equals to ω̂i(k − 1), consequently f i

becomes negative, preventing the event from being triggered.
Thus, in this case, we do not need to evaluate the subsequent
triggering rules anymore, but keep the outputs with their
previous values. The proposed ETM requires to store the
values of ω̂i, hence the memory requirements are proportional
to nϕ the size of the neural network.

Let us define the error vector ei(k) ∈ Rni on the ith layer
as:

ei(k) = ω̂i(k)− ωi(k). (10)

If ωi(k) is updated at instant k, from (8), it follows that
ei(k) = ω̂i(k) − ωi(k) = ωi(k) − ωi(k) = 0. On the other
hand, if ωi(k) is not updated at instant k, from (8), we have
that ei(k) = ω̂i(k) − ωi(k) = ω̂i(k − 1) − ωi(k). Thus, the
following inequality is always satisfied.

∥ei(k)∥2qi∆ ≤ ∥ωi(k)−ωi
∗∥2qiω + ∥ω̂i−1(k)−ωi−1

∗ ∥2
qi−1
ω̂

. (11)

Based on the above, the problem we intend to solve can be
summarized as:

Problem 1: Consider that the NN controller πETM (5)
stabilizes the LTI system (1). Design the triggering parameters
qi∆, qiω and qi−1

ω̂ , i ∈ {1, . . . , ℓ}, in (9), to reduce the
computational cost associated with the control law evaluation,
while maintaining the stability of the closed-loop system.

Note that an implicit goal in solving Problem 1 is to
characterize an estimate of the region of attraction for the
feedback system. Such a region can be defined as the set of
all points x for which x(0) = x leads to trajectories x(k)
that converge asymptotically toward the equilibrium point x∗,
i.e. limk→∞ x(k) = x∗. Since its geometric characterization
is not a simple task [15], we compute subsets with well-fitted
representation, such as sublevel sets associated to Lyapunov
function.

III. AUXILIARY RESULTS

To deal with the combined saturation sat(νϕ), we have the
following property directly derived from [15, Lemma 1.6, page
43].

Lemma 1: Consider a matrix G =
[
G1⊤ . . . Gℓ⊤

]⊤
with

Gi ∈ Rni×nF , i ∈ {1, . . . , ℓ}. For given vectors ν∗ and
ν̄ =

[
ν̄1⊤ . . . ν̄ℓ⊤

]⊤
satisfying −ν̄ ≤ ν∗ ≤ ν̄ and,

consequently, ω∗ = sat(ν∗) = ν∗, if x(k) belongs to the
set S defined by

S = {x(k), x∗ ∈ RnF : −ν̄ − ν∗ ≤ G(x(k)− x∗) ≤ ν̄ − ν∗}

then, the descentralized nonlinearity ωϕ(k) satisfies the fol-
lowing inequality:

Ψ⊤T [G(x(k)− x∗)− (ωϕ(k)− ω∗)] ≤ 0 (12)

with Ψ = νϕ(k) − ωϕ(k), for any diagonal positive definite
matrix T ∈ Rnϕ×nϕ .

Proof: For i ∈ {1, . . . , nϕ}, assume that −ν̄i ≤ ν∗,i ≤
ν̄i, which implies that ω∗,i = sat(ν∗,i) = ν∗,i. If (x(k), x∗)
are elements of S, it follows that Gi(x(k)−x∗)−(ν̄i−ν∗,i) ≤
0 and Gi(x(k) − x∗) − (−ν̄i − ν∗,i) ≥ 0. Consider now the
three cases below.

• Case 1: νϕ,i(k) > ν̄i. It follows that Ψi = νϕ,i(k)− ν̄i >
0 and one gets Ψ⊤

i Ti,i[Gi(x(k)− x∗)− (ν̄i − ν∗,i)] ≤ 0.
• Case 2: νϕ,i(k) < −ν̄i. It follows that Ψi = νϕ,i −

(−ν̄i) < 0 and one gets Ψ⊤
i Ti,i[Gi(x(k)− x∗)− (−ν̄i −

ν∗,i)] ≤ 0.
• Case 3: −ν̄i < νϕ,i < ν̄i. It follows that Ψi = 0 and

Ψ⊤
i Ti,i[Gi(x(k)− x∗)− (ωϕ,i − ω∗,i)] ≤ 0.

Lemma 1 is based on the assumption that: −ν̄ ≤ ν∗ ≤
ν̄, which implies that ω∗ = sat(ν∗) = ν∗. By using this
information in (7), we have that:

x∗ = [InF
−AF −BFRω]

−1BFRb,

u∗ = Rwx∗ +Rb,

ν∗ = RNνxx∗ +RNνb,

ω∗ = ν∗,

(13)

where R = (InF
− Nνω)

−1, Rb = NuωRNνb + Nub and
Rw = Nux+NuωRNνx. Therefore, (x∗, u∗, ω∗, ν∗) satisfying
(13) is an equilibrium point of (1) and (5)-(6) if

−ν̄ ≤ RNνxx∗ +RNνb ≤ ν̄. (14)

IV. LYAPUNOV CONDITION

In this section, a Lyapunov function and Lemma 1 are
used to compute ETMs aiming at reducing the computational
burden in the neural network while maintaining the stability of
the feedback system. An estimate of its domain of attraction
is also characterized.

Theorem 1: Consider the feedback system consisting of F
in (1) and πETM in (2) with equilibrium point (x∗, u∗, ν∗, ω∗)
satisfying (13)-(14). Let ν̄ ∈ Rnϕ be given and define the
matrix

Rϕ =

 InF
0nF×nϕ

0nF×nϕ

Nνx Nνω Nνω

0nϕ×nF
Inϕ

0nϕ×nF





If there exist symmetric positive definite matrices P, q0ω̂ ∈
RnF×nF , qi∆, q

i
ω ∈ Rni×ni , qjω̂ ∈ Rnj×nj , a diagonal

positive definite matrix T ∈ Rnϕ×nϕ , a matrix Z =[
Z1⊤ . . . Zℓ⊤

]⊤
, Zi ∈ Rni×nF , with i ∈ {1, . . . , ℓ} and

j ∈ {1, . . . , ℓ−1}, and a scalar 0 < α ∈ R, such that the LMI
(15) (at the top of the next page) and[

P Z⊤
i

⋆ 2αTi,i − α2ν̂−2
i

]
≥ 0, ∀i ∈ {1, . . . , nϕ}, (16)

where Qω̂ = diag(q1ω̂, . . . , q
ℓ−1
ω̂ ,0), Q∆ = diag(q1∆ −

q1ω̂, . . . , q
ℓ−1
∆ − qℓ−1

ω̂ , qℓ∆), Qω = diag(q1ω + q1ω̂, . . . , q
ℓ−1
ω +

qℓ−1
ω̂ , qℓω), and ν̂i = min (| − ν̄i − ν∗,i|, |ν̄i − ν∗,i|), hold.

Then:
1) the feedback system F and πETM is locally stable around

x∗,
2) the set E(P, x∗) = {x ∈ RnF : (x−x∗)

⊤P (x−x∗) ≤ 1}
is an estimate of the domain of attraction for the feedback
system.
Proof: First of all, let us define the candidate Lyapunov

function as V (x(k)) = (x(k) − x∗)
⊤P (x(k) − x∗) with

0 < P = P⊤ ∈ RnF×nF . Suppose the feasibility of (16)
and use the fact that [αν̂−2

i − Ti,i]ν̂
2
i [αν̂

−2
i − Ti,i] ≥ 0 or

equivalently T 2
i,iν̂

2
i ≥ 2αTi,i − α2ν̂−2

i . By considering the
change of variables Zi = Ti,iGi, we have that (16) results in[

P G⊤
i Ti,i

⋆ T 2
i,iν̂

2
i

]
≥ 0, ∀i ∈ {1, . . . , nϕ}.

Then, pre- and post-multiply this inequality by
diag(InF

, T−1
i,i ) and its transpose, respectively, and apply

Schur complement. By pre-and post multiplying the resulting
inequality, respectively, by (x−x∗)

⊤ and (x−x∗), we obtain

(x − x∗)
⊤G⊤

i ν̂
−2
i Gi(x − x∗) ≤ (x − x∗)

⊤P (x − x∗).

Note that the bounds of the set S are asymmetric. Then, one
can consider the minimal bound in absolute value as the bound
on the saturation: ν̂i = min (| − ν̄i − ν∗,i|, |ν̄i − ν∗,i|). The
previous inequality ensures that E(P, x∗) ⊆ S , consequently,
Lemma 1 applies.

Moreover, since the LMI in (15) is strict, there exists a
scalar ϵ > 0, such that pre- and post multiplying (15) by[
(x(k)− x∗)

⊤ (ωϕ(k)− ω∗)
⊤ eϕ(k)

⊤
]

and its transpose,
respectively, replacing Z by TG, and rearranging terms, yields
(17) (at the top of the next page). By denoting eϕ(k) =
ω̂ϕ(k)−ωϕ(k) and considering u(k) = Nuxx(k)+Nuωω̂ϕ(k),
we can replace AFx(k) +BFu(k) by x(k + 1), according to
(1), to obtain

(x(k+1)−x∗)
⊤P (x(k+1)−x∗)−(x(k)−x∗)

⊤P (x(k)−x∗)

−2[νϕ(k)−ν∗−(ωϕ(k)−ω∗)]
⊤T [G(x−x∗)−(ωϕ(k)−ω∗)]

− eϕ(k)
⊤Q∆eϕ(k) + (ωϕ(k)− ω∗)

⊤Qω(ωϕ(k)− ω∗)

+ 2eϕ(k)
⊤Qω̂(ωϕ(k)− ω∗) + (x(k)− x∗)

⊤q0ω̂(x(k)− x∗)

< −ϵ∥x(k)− x∗∥2.

Note that the last four terms on the left-hand side of the
previous expression can be rewritten as

∑ℓ
i=1

(
∥ei(k)∥2qi∆ −

∥ωi(k) − ωi
∗∥2qiω − ∥ω̂i−1(k) − ωi−1

∗ ∥2
qi−1
ω̂

)
considering that

ω̂0(k) = x(k) and e0(k) = 0. Also, by denoting Ψ = νϕ(k)−
ν∗ − (ωϕ(k)− ω∗) and observing that ∆V (x(k)) = V (x(k+
1))−V (x(k)) = (x(k+1)−x∗)

⊤P (x(k+1)−x∗)−(x(k)−
x∗)

⊤P (x(k)− x∗), we have that

∆V (x(k))− 2Ψ⊤T [G(x(k)− x∗)− (ωϕ(k)− ω∗)]

−
ℓ∑

i=1

(
∥ei(k)∥2qi∆−∥ωi(k)− ωi

∗∥2qiω−∥ω̂i−1(k)− ωi−1
∗ ∥2

qi−1
ω̂

)
< −ϵ∥x(k)− x∗∥2.

In view of Lemma 1 and the triggering condition (11), we can
conclude that ∆V (x(k)) ≤ −ϵ∥x(k) − x∗∥2, which implies
that if x(k) ∈ E(P, x∗) then x(k+1) ∈ E(P, x∗) (E(P, x∗) is
an invariant set) and and x converges to the equilibrium point
x∗. Therefore, E(P, x∗) constitutes an inner-approximation of
the domain of attraction for the closed-loop system. The proof
is complete.

The complexity of the proposed LMI-conditions is related
with its number of scalar variables, K, and its number of rows,
L. In such a case, we have K = 1 + (nF + nϕ)(nF + 1) +

1.5
∑ℓ

i=1 ni(ni+1) and L = nF (1+nϕ)+3nϕ. For MATLAB
solvers Lmilab and SeDumi, the following expressions allow
respectively to compute the complexity in terms of K and L:
K3L and K2L2.5 + L3.5 [17].

Remark 2: Theorem 1 can be simplified to consider a
triggering rule that only takes into account information about
the layer being assessed, i.e. the last term of (9) disappears. In
this case, we have to assume Q∆ = diag(q1∆, . . . , q

ℓ−1
∆ , qℓ∆),

Qω = diag(q1ω, . . . , q
ℓ−1
ω , qℓω), Qω̂ = 0 and q0ω̂ = 0 on the

conditions of Theorem 1.

V. OPTIMIZATION PROCEDURE

This section presents an optimization procedure to reduce
the computational cost on the neural network. According
to the inequality (8), a solution consists in reducing the
weight on the error measure, i.e. by choosing qi∆ to shrink
∥ω̂i(k − 1) − ωi(k)∥2

qi∆
compared with the magnitude of the

norm-sum of the differences ωi(k) − ω∗ and ω̂i−1(k) − ω∗.
Then, an intuitive method is to find qi∆ as “small” as possible
and qiω and qi−1

ω̂ as “large” as possible. However, experience
shows that this may not be effective due to the generality of
the objective function. Therefore, it seems better to impose
constraints on some matrices and therefore to consider the
following optimization procedure:

O1 :


min −ρ

subject to (15), (16), diag(qi∆) ≤ Inϕ
, and

diag(qiω, q
i−1
ω̂ ) ≥ ρI2nϕ−nℓ+nF

.
(18)

with ρ > 0. Thus, we are bounding qi∆ to unity and looking
for the largest scalar ρ that lower bounds the weight matrices
qiω and qiω̂ .

Another objective consists in considering a given region
of admissible initial states X0 for which we can reduce the



 (AF +BFNux)
⊤P (AF +BFNux)− P + q0ω̂ (AF +BFNux)

⊤PBFNuω (AF +BFNux)
⊤PBFNuω

⋆ (BFNuω)
⊤PBFNuω +Qω (BFNuω)

⊤PBFNuω +Qω̂

⋆ ⋆ (BFNuω)
⊤PBFNuω −Q∆


+R⊤

ϕ

0nF×nϕ
−Z⊤ Z⊤

⋆ 0nϕ
T

⋆ ⋆ −2T

Rϕ < 0, (15)

[
•
]⊤ 

AF +BFNux

BFNuω

BFNuω

⊤

P

AF +BFNux

BFNuω

BFNuω

+

−P + q0ω̂ 0 0
⋆ Qω Qω̂

⋆ ⋆ −Q∆




 x(k)− x∗
ωϕ(k)− ω∗

eϕ(k)


+
[
•
]⊤ 0nF×nϕ

−G⊤T G⊤T

⋆ 0nϕ
T

⋆ ⋆ −2T

 x(k)− x∗
νϕ(k)− ν∗
ωϕ(k)− ω∗

 ≤ −ϵ∥x(k)− x∗∥2. (17)

computational cost on the neural network. In this case, we
should ensure that X0 is contained in the region of attraction
of the closed-loop system, i.e. X0 ⊆ E(P, x∗). If X0 is
characterized by the ellipsoid E(X,x∗) = {x ∈ RnF :
(x − x∗)

⊤X(x − x∗) ≤ 1} with 0 < X ∈ RnF×nF given,
then the inclusion is obtained by imposing[

X P
P P

]
≥ 0. (19)

Thus, a second optimization procedure O2 can be defined
similarly to O1, but by adding the constraint(19). It is impor-
tant to stress that, the optimization procedure O2 deals with
the classical trade-off between the size of the estimate of the
region of attraction and the update saving. Indeed, the bigger
is the region of attraction, the smaller is the update saving.

VI. SIMULATIONS

Consider the inverted pendulum system with mass m =
0.15 kg, length l = 0.5 m, and friction coefficient µ =
0.5 Nms/rad. Its dynamics is described by the following
discrete-time model:[

x1(k + 1)
x2(k + 1)

]
=

 1 δ
gδ

l
1− δµ

ml2

[
x1(k)
x2(k)

]
+

 0
δ

ml2

u(k),

(20)
where the states x1(k) and x2(k) represent respectively the
angular position (rad) and velocity (rad/s), u(k) is the
control input (Nm) and δ = 0.02 is the sampling time [18].

To stabilize (20), we use a controller π under the form of
a 2-layer, feedforward neural network, with n1 = n2 = 32
and the saturation as the activation function for both layers.
For training purpose only, we replaced the saturation by its
smooth approximation provided by tanh, making it possi-
ble to rely on MATLAB’s Reinforcement Learning toolbox.
During the training, the agent’s decision is characterized by
a Gaussian distribution probability with mean π(x(k)) and
standard deviation σ. Also, to illustrate the applicability of
our condition to equilibrium points different from 0, we have

not set the bias in neural network to zero during training.
After training, the policy mean π is used as the deterministic
controller u(k) = π(x(k)) with the saturation as the activation
function.

First, we design ETMs to reduce the amount of computation
on the neural network. By assuming ν̄ = −ν = 1×164×1, we
use the optimization procedure O2 with

X =

[
0.3024 0.0122

⋆ 0.0154

]
, (21)

chosen based on the maximum estimate of the region of attrac-
tion obtained without trigger, α = 9×10−4 and the following
restrictions: diag(q1∆, q

2
∆) ≤ Inϕ

and diag(q1ω, q
2
ω, q

0
ω̂) ≤

ρInϕ
. We then simulate the response of the feedback system

for 1000 initial conditions belonging to the estimate of the
region of attraction. We found an average update rate (the ratio
between the number of events and the number of samplings)
of about 15% for both layers, thus reducing almost 85% of
data update in the neural network.

Figure 2 depicts the estimate of the region of attraction
E(P, x∗) (blue solid line) and the set of admissible initial states
E(X,x∗) (red solid line). Some convergent and divergent
trajectories are also shown in cyan dashed lines and green
dash-dotted lines, starting from the points marked with cyan
circles and green asterisks, respectively. Note that the estimate
of the region of attraction does not overstep the bounds
{−ν̄ − ν∗ ≤ G(x − x∗) ≤ ν̄ − ν∗} (orange lines) for both
layers, as expected.

Furthermore, for the convergent trajectory (dark
solid line) starting from the initial condition x(0) =[
−0.4274 −7.7563

]⊤
, we plot the temporal response of

the closed-loop system in Figure 3. We can see that the
trajectories of the states converge to the equilibrium point
x∗ =

[
−0.1147 0

]⊤
, which verifies the relations (13)-(14),

with an update rate of about 12% for both layers, thus
reducing the computational cost associated with the control
law evaluation.

Finally, Figure 4 shows for each layer the output of the first
neuron, i.e. ω1

1 and ω2
1 . As can be seen, unlike ω1

1 , ω2
1 saturates



Fig. 2: Estimate of the region of attraction for the feedback
system in the plan (x1 − x∗,1 × x2 − x∗,2).

Fig. 3: The closed-loop system temporal response for x(0) =[
−0.4274 −7.7563

]⊤
.

in the first instants of simulation.

Fig. 4: Outputs of the first neuron of each layer.

VII. CONCLUSION

This work has studied the ETC problem of LTI systems
stabilized by neural networks. We have proposed ETMs to
reduce the computational cost associated with the neural net-
work evaluation by updating only a portion of its layers. LMI-
based conditions allowed to compute the triggering parameters

and an inner approximation of the domain of attraction for the
closed-loop system. Simulations tested the effectiveness of the
ETMs, showing a significant reduction in the computational
burden on the neural network. Future work could be devoted
to exploring other types of event-triggering structures and also
other abstractions for the nonlinear functions.
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