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Abstract

In this paper, we propose an inverse-kinematics controller for a class of multi-robot systems in the scenario of sampled
communication. The goal is to make a group of robots perform trajectory tracking in a coordinated way when the sampling
time of communications is much larger than the sampling time of low-level controllers, disrupting theoretical convergence
guarantees of standard control design in continuous time. Given a desired trajectory in configuration space which is pre-
computed offline, the proposed controller receives configuration measurements, possibly via wireless, to re-compute velocity
references for the robots, which are tracked by a low-level controller. We propose joint design of a sampled proportional feedback
plus a novel continuous-time feedforward that linearizes the dynamics around the reference trajectory: this method is amenable
to distributed communication implementation where only one broadcast transmission is needed per sample. Also, we provide
closed-form expressions for instability and stability regions and convergence rate in terms of proportional gain k and sampling
period T . We test the proposed control strategy via numerical simulations in the scenario of cooperative aerial manipulation
of a cable-suspended load using a realistic simulator (Fly-Crane). Finally, we compare our proposed controller with centralized
approaches that adapt the feedback gain online through smart heuristics, and show that it achieves comparable performance.

Key words: Control over sampled communications; distributed control; multi-robot systems; trajectory tracking; UAVs.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are used in the con-
text of mobile robotics to perform surveillance, coverage,
exploration, and transportation [18]. Generally speak-
ing, a group of robots allows to improve task perfor-
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mance with respect to (w.r.t.) the single-robot solution.
Multiple robots can mitigate problems such as limited
payload and time of flight [2]. However, they require care-
ful consideration of cooperation or coordination strate-
gies to achieve common goals [6]. Consider a group of
UAVs that transports a load while avoiding obstacles. In
this case, not only each UAV needs to avoid obstacles,
but the overall multi-robot system should move in a way
such that the load avoids obstacles, as well [4].

One of the most direct approaches to control multi-
robot systems is the centralized kinematic/dynamic
inversion [1, 16, 17, 27, 32]. Because of its nature, failure
of the central unit may cause the whole task to fail. Dis-
tributed and decentralized approaches spread computa-
tions across the robots, guaranteeing greater robustness
and flexibility w.r.t. a centralized one [26]. Although
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Fig. 1. We propose a controller for trajectory tracking
when measurements are transmitted every T seconds, with
feedback proportional gain k. We show that, if (k, T ) lies
outside the dashed red curve, the tracking error is not
ρ-monotonically contractive, while zero tracking error is
guaranteed if (k, T ) lies below the solid green curve τs(k). In
particular, there exist sampling time Tmax such that no gain
k can guarantee convergence if T > Tmax and sampling time
τCR such that a stabilizing gain exists for any T < τCR.

such approaches are preferable for multi-robot systems,
they often lack global information such as load state and
parameters, or the total number of robots. This aspect
increases the difficulty of the controller design and might
even degrade performance. Examples of distributed
control methods, where robots explicitly exchange local
data, can be found for groups of ground [5, 10, 20, 22],
underwater [3,31], and aerial robots [19]. Conversely, de-
centralized control strategies allow for no direct commu-
nication among robots, with examples including ground
or aerial manipulators [30,37]. Also, to reduce communi-
cation issues, communication-less approaches relying on
a leader-follower paradigm were presented for coopera-
tive transportation and manipulation [7, 11, 34, 36, 38].
In these cases, communication is implicitly given by
forces exerted on the load [35]. However, force feed-
back may be insufficient for precise tracking, because
it lacks pose information. The latter can be retrieved
by communication among robots, e.g., making them
exchange poses, or installing a sensor on the load to
broadcast its pose. This setup can also be extended to
formation control problems where a group of robots
needs to complete a task [8, 9]. For example, a common
goal is mapping or surveillance of an area while robots
keep a certain 3D formation in order to, e.g., minimize
overlaps among their fields of view [28]. In this case,
communication-based approaches let robots exchange
group-level measurements, such as relative distances.

In applications, limited bandwidth of wireless channels
disrupts the assumption of continuous-measurement
feedback. As so, specific strategies are needed to deal
with sampled communication [12,15,33]. However, little
work is currently available for multi-robot manipulation.

1.1 Preview of Key Results

In this paper, we aim to design a multi-robot distributed
communication controller for trajectory tracking when

wireless communication induces non-negligible sampling
of feedback measurements. In this context, a distributed
implementation is preferred because (i) it reduces the
overall communication burden and related issues such
as packet loss or latency and (ii) it enhances system ro-
bustness and scalability. Inspired by previous work [25]
where point-stabilization was considered, we propose a
novel Sampled communication-aware Inverse-Kinematic
controller for Multi-robot systems (SIKM) to address the
problem of trajectory tracking under sampled commu-
nication. Our contributions are summarized as follows.

• We develop a distributed SIKM controller for tra-
jectory tracking that receives sampled measurements
and re-computes reference robot velocities along the
trajectory, exploiting a novel continuous-time feedfor-
ward term that allows exact trajectory tracking even
in the presence of sampled communication.

• We show that, differently from [25], there are a max-
imum sampling time Tmax and a minimum feedback
gain kmin beyond which trajectory tracking cannot be
achieved, as graphically depicted in red in Fig. 1.

• We provide closed-form expressions, whose coefficients
can be numerically computed, for the stability region
(depicted in green in Fig. 1) and for the (exponential)
convergence rate of the trajectory tracking error norm
in terms of communication sampling period T and
feedback gain k. We consider stability in terms of ρ-
monotonic contractiveness, which, roughly speaking,
ensures that the trajectory monotonically decreases
the tracking error overtime in the absence of external
disturbances and is bounded away from singularities.

• We validated our strategy by testing the controller
on a realistic dynamical simulator which replicates
with high accuracy the experimental setup available
at LAAS-CNRS Lab, Fly-Crane [27], including dy-
namical inertial terms, motor actuators, sensor noise,
and real-time embedded software implementation.

1.2 Paper Outline

In Section 2 we introduce the class of considered
multi-robot systems, provide the kinematic model (Sec-
tion 2.1), and give an example of real system (Sec-
tion 2.2). In Section 3 we review control architectures
for trajectory tracking, and present our proposed SIKM
controller in Section 3.1. In Section 4 we derive funda-
mental stability limitations in terms of feedback gain
and sampling time. In Section 5 we compute an upper
bound for the convergence rate, outline a numerical
procedure to estimate it from data (Section 5.1), and ex-
plicitly find controller parameters that yield the fastest
convergence (Section 5.2). In Section 6 we test our con-
troller on a realistic simulator of the Fly-Crane, showing
that it outperforms standard designs under sampled
communication. Final remarks are drawn in Section 7.
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2 System Model

2.1 Kinematics of Multi-Robot Systems

In this section, we describe the kinematic model of a
multi-robot system composed of N robots that exchange
state information with a common pivot, labeled as V , to
fulfill a task. As so, robots need not communicate among
themselves, but they implicitly coordinate their motions
by communicating with the pivot. The pivot may be an
object to be manipulated, a robot to be escorted, or a
vehicle in the space. The kinematic model is given by

[p1 . . . pN ]
⊤ = h(q) =

[
h(1)(q1,qV ) . . . h(N)(qN ,qV )

]⊤
.

Function h(·) maps the Lagrangian coordinates of the
system (measured or desired) q = [q⊤

1 · · · q⊤
N q⊤

V ]
⊤ ∈

Rm to the vector p = [p⊤
1 · · · p⊤

N ]⊤ ∈ Rn gathering
robot configurations. In particular, pi ∈ Rni is the po-
sition of the ith robot in space, qi ∈ Rmi gathers angles
and/or distances between the pivot and the ith robot,
and qV ∈ RmV represents the pose (position and orien-
tation) of the pivot. Note that m =

∑N
i=1 mi +mV and

n =
∑N

i=1 ni. The differential kinematics of the system
is

ṗ = Aq q̇, (1)

where the Jacobian Aq = ∂h(q)
∂q ∈ Rn×m has structure

Aq =

A
(1)
q1 0 A

(1)
qV

. . .
...

0 A
(N)
qN A

(N)
qV

, (2)

A
(i)
qi = ∂h(i)(qi,qV )

∂qi
∈ Rni×mi and A

(i)
qV = ∂h(i)(qi,qV )

∂qV
∈

Rni×mV . We focus on the case n = m, corresponding to
square systems. Let us make an example to justify this
choice. Consider the multi-robot system in Fig. 2a, where
robots are linked to a platform though rigid cables, and
assume that Aq is invertible and that desired robot ve-
locities ṗd are assigned a priori . In this case, there al-
ways exists a vector q̇ = A−1

q ṗd in configuration space
that allows the robots to achieve the desired velocity.
The next paragraph expands this example more in de-
tails. If n ̸= m, the Jacobian is not square. In particular,
the system is redundant if n > m. If n < m, there exist
trajectories q̇ in the configuration space which are in-
feasible for any input ṗd. Such cases require a dedicated
analysis which goes beyond the scope of this paper. We
refer to the preprint [24] for such an analysis, that, with
some attention, allows to integrate the control strategy
studied here into more general systems.

Furthermore, we consider a cascade control architecture
where we design the proposed SIKM controller at the

qi1

(a) (N1c, N2c, N) = (0, 3, 3)

q

qi1

(b) (N1c, N2c, N) = (2, 2, 4)

(c) (N1c, N2c, N) = (4, 1, 5) (d) (N1c, N2c, N) = (6, 0, 6)

Fig. 2. Square systems where a common object is manipu-
lated by a group of UAVs. All the possible combinations of
(N1c, N2c, N) introduced in Section 2.2 are represented.

kinematic level. The latter provides the desired motor
velocities which are tracked by low-level dynamics con-
trollers (see Fig. 3), assuming that these have larger
closed-loop bandwidth than the SIKM. This assumption
is indeed validated by extensive simulations of the pro-
posed architecture on a full dynamical model (includ-
ing low-level dynamics as well as external disturbances)
with a realistic simulator of the testbed Fly-Crane.

2.2 Example of Square Systems

In the literature, we can find several applications of
square systems. We now provide an example to show-
case relevance of such model. We consider the system
depicted in Fig. 2a (Fly-Crane [16]), where three UAVs
transport a load linked through rigid cables. The gen-
eralized coordinates are chosen as q = [q1 q2 q3 q⊤

V ]
⊤.

The robot positions pi ∈ R3 are collected in the vector
p = [p⊤

1 p⊤
2 p⊤

3 ]
⊤. Thus, the velocity vectors q̇, ṗ ∈ R9

have the same dimension and Aq ∈ R9×9 is a square
matrix. However, this is a particular case of a larger
class: different square systems can be obtained by simply
changing the number of robots transporting the platform
or the number of cables linking each robot to it. Notice
that if one cable was used instead of two, as shown in
Fig. 2b, then qi = [qi1 qi2 ]

⊤ ∈ R2 because each cable
can move in two directions (assuming that movements
about the cable axis are not allowed). In this case, the
system is no more guaranteed to be square. In particular,
it holds n = 3N and m = 6+2N1c+N2c where N1c ≥ 0
is the number of robots linked to the load through one
cable and N2c ≥ 0 indicates the number of robots linked
through two cables. We have thatN = N1c+N2c and, for

3
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pr, ṗr FB + FF DYN.CONTR. N
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(a) Decentralized (no communication) control (4).

qr,q̇r

SIKM DYN.CONTR. 1
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q1

qr,q̇r

SIKM DYN.CONTR. i
ui

qr,q̇r
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uN

qi

qN

qV

qV

qV
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(b) Distributed communication control (5).

(c) Centralized communication control (6).

Fig. 3. Controller architectures for trajectory tracking. The
pivot is colored in gray, each robot (equipped with a dy-
namical controller which converts u to forces) in blue, sensor
measurements in red, and the reference trajectory in green.
The wireless symbol refers to sampled communication.

a square system n = m, it must be 3N = 6+2N1c+N2c.
From these relations it turns out that N2c ≤ 3, N1c ≤ 6
and N ≤ 6. In particular, the possible configurations
(N1c,N2c,N) are: (0,3,3) in Fig. 2a; (2,2,4) in Fig. 2b;
(4,1,5) in Fig. 2c; (6,0,6) in Fig. 2d.

3 Control Architectures

We consider a tracking problem where a multi-robot sys-
tem is required to follow a sequence of desired config-
urations assigned a priori. We assume that such refer-
ence trajectory is generated offline by a high-level plan-
ner that takes into account goals such as obstacle avoid-
ance, singular points, and energy minimization. Also, we
assume that robots are equipped with dynamical con-
trollers sufficiently fast w.r.t. the dynamics of the sys-
tem, such that (s.t.) their velocities are fully controllable,

ṗ(t) = u(t), (3)

where u = [u⊤
1 · · ·u⊤

N ]⊤ ∈ Rn. We now enumerate possi-
ble control architectures to achieve trajectory tracking.

Decentralized (no communication) control. A
commonly adopted architecture is the following fully

decentralized controller,

ui(t) = κdec
i (pi(t);p

r
i (t), ṗ

r
i (t)) . (4)

In this case, each robot needs only local position mea-
surements pi(t) (no configuration variables q(t) are
needed) to implement feedback and follow its refer-
ence trajectory (pr

i (t), ṗ
r
i (t)), namely, controller (4) is

communication-less and the control design reduces to
a distributed planning problem (Fig. 3a). A typical ex-
ample is ui(t) = −k(pi(t)− pr

i (t)) + ṗr
i (t). However,

lacking communication and coordination, strategy (4) is
not robust against disturbances or robot failures/biases.

Distributed communication control. A distributed
controller reads

ui(t) = κdistr
i (qi(t),qV (hT );q

r
i (t),q

r
V (t), q̇

r
i (t), q̇

r
V (t)),

(5)
where t ∈ [hT, (h + 1)T ), h ∈ N. Specifically, ui(t) de-
pends on the robot’s own configuration qi(t), which can
be measured at all times, and on the load configuration
qV (hT ), which is transmitted via wireless and available
at discrete time instants hT , T being the sampling time.
Also, reference trajectories of robot (qr

i (t), q̇
r
i (t)) and

load (qr
V (t), q̇

r
V (t)) are continuously available as they

are computed offline and pre-stored on robots. Hence,
controller (5) implements a hybrid continuous-sampled
control that includes both continuous-time and discrete-
time signals, inducing more challenging design (Fig. 3b).

Centralized control. Lastly, the centralized controller

ui(t) = κcentr
i (q(hT );qr(t), q̇r(t)) (6)

depends on the full system configuration vector q(hT ).
Figure 3c shows a possible implementation where the
controller, located on the pivot, receives all measure-
ments q(t) and broadcasts the control input u(t) to the
robots via wireless. In this case, while performance is the-
oretically maximized, all-to-all communication burden
may cause issues through limitations of wireless commu-
nication in terms of bandwidth and reliability.

3.1 Proposed SIKM Architectures

In this paper, we focus on the two communication-based
approaches. While these are attractive by virtue of ro-
bustness properties, their design gets challenging when
shifting from continuous-time (typically assumed in the
literature) to hybrid continuous- and discrete-time dy-
namics. In particular, the presence of sampled measure-
ments in (5)–(6) makes both controller design and sta-
bility analysis nontrivial.

Indeed, for continuous-time systems, the controller [29]

u(t) = −kAq(t)(q(t)− qr)︸ ︷︷ ︸
:=uk(t)

+Aq(t)q̇
r(t)︸ ︷︷ ︸

:=uff(t)

(7)
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drives the system configuration q(t) to the desired ref-
erence trajectory qr(t) exponentially fast, whereby the
tracking error e(t) def

= q(t)− qr(t) obeys dynamics

ė(t) = q̇(t)− q̇r(t) = −k
(
q(t)− qr(t)

)
= −ke(t).

Moreover, in light of (2), the centralized controller (7)
can be implemented with a distributed architecture,

ui(t) =− kA
(i)
qi(t)

(qi(t)−qr
i (t)) +A

(i)
qi(t)

q̇r
i (t)

− kA
(i)
qV (t) (qV (t)−qr

V (t)) +A
(i)
qV (t)q̇

r
V (t).

(8)

When measurements are sampled, suitably modify-
ing (7) is nontrivial. In [25], the authors proposed the
following feedback controller for point-stabilization,

u(t) = uk(hT ) = −kAq(hT )(q(hT )− qr), (9)

for t ∈ [hT, (h+ 1)T ). A common strategy for trajectory
tracking in robotic applications is sampling (9),

u(t) = uk(hT ) = −kAq(hT )(q(hT )− qr(hT )), (10)

which however cannot guarantee perfect tracking under
nominal conditions because it lacks feedforward correc-
tion (see technical report [23, Appendix B] for details).

A naive attempt to improve (10) is sampling (7),

u(hT + τ) =− kAq(hT )(q(hT )− qr(hT ))

+Aq(hT )q̇
r(hT + τ), τ ∈ [0, T ),

(11)

which results in the following error dynamics,

ė(hT + τ) = −kA−1
e(hT+τ)+qr(hT+τ)Ae(hT )+qr(hT )e(hT )+

+
(
A−1

e(hT+τ)+qr(hT+τ)Ae(hT )+qr(hT ) − I
)
q̇r(hT + τ).

It is indeed easy to show that, under controller (11), ref-
erence qr(t) is not an equilibrium trajectory, making also
the latter attempt not suitable for trajectory tracking.

Finally, we modify controller (11) as follows,

u(hT + τ) =− kAq(hT )(q(hT )− qr(hT ))

+Aqr(hT+τ)q̇
r(hT + τ), τ ∈ [0, T ).

(12)

Differently from (11), the Jacobian of the feedforward
term in (12) is computed at qr(hT+τ) instead of q(hT ).
Accordingly, the error dynamics become

ė(hT+τ) = −kA−1
e(hT+τ)+qr(hT+τ)Ae(hT )+qr(hT )e(hT )+

+
(
A−1

e(hT+τ)+qr(hT+τ)Aqr(hT+τ)−I
)
q̇r(hT+τ)

def
= f(e(hT+τ),qr(hT+τ), q̇r(hT+τ)), (13)

whereby the reference can be shown to be an equilib-
rium trajectory (see proofs of this and previous claim
in [23]). Also, by virtue of the assumed structure (2) of
the Jacobian, controller (12) can be decoupled and is
thus amenable of a distributed communication imple-
mentation of the form (5),

ui(hT + τ) =− kA
(i)
qi(hT ) (qi(hT )−qr

i (hT ))

− kA
(i)
qV (hT ) (qV (hT )−qr

V (hT ))

+A
(i)
qr
i
(hT+τ)q̇

r
i (hT + τ)

+A
(i)
qr
V
(hT+τ)q̇

r
V (hT + τ).

(14)

In the following, we analyze system dynamics under con-
troller (12) to evaluate stability and performance. In
view of (14), all results straightly carry over to a dis-
tributed architecture. Furthermore, in simulation we will
test the centralized controller where the feedback gain k
is adaptive: this cannot be decoupled, because comput-
ing k online requires the full system configuration.

4 Stability Limitations of SIKM

In this section we prove a negative result: perfect nomi-
nal tracking cannot be ensured for some values of (k, T ).
In particular, the gain k needs to be sufficiently large and
the sampling time T sufficiently small to avoid instabil-
ity. To this aim, we state some preliminary assumptions.

Assumption 1 The following relations hold.

i) The reference trajectory qr(t) ∈ Q is twice contin-
uously differentiable and Q is a compact set. More-
over, velocities and accelerations are uniformly
bounded, i.e., ∥q̇r(t)∥ ≤ vmax and ∥q̈r(t)∥ ≤ amax.

ii) Aq(0) is twice continuously differentiable and in-
vertible.

iii) There exists d > 0 such that, for any configuration
q at distance smaller than d from the reference tra-
jectory, i.e., ∃t : ∥q− qr(t)∥ < d, Aq is twice con-
tinuously differentiable and invertible.

Assumption 1-i) are smoothness properties of the refer-
ence trajectory needed to derive error bounds. Assump-
tion 1-ii) is required to avoid that the initial condition
is a singular point. Assumption 1-iii) further guarantees
that all configurations qr(t) belonging to the reference
trajectory are distant enough from singular points, en-
suring robustness to, e.g., external disturbances, and can
be accommodated through an offline high-level planner.
We will later show that our proposed control strategies,
under such assumptions, also guarantees that the actual
trajectory is always bounded away from singular points.

The error flow f(·, ·, ·) in (14) is discontinuous because
the feedback term depends on e(hT ) and resets at ev-
ery sampling instant t = hT . Thus, existence of a global

5



solution based on standard Lipschitz continuity cannot
be invoked, in general. However, in view of Assump-
tion 1, the flow is Lipschitz continuous for τ ∈ [0, T ).
Hence, if we can show that a solution e(hT + τ) exists
for any τ ∈ [0, T ), and that the limit limτ→T e(hT + τ)
exists finite starting from any e(hT ) satisfying Assump-
tion 1, then global existence is guaranteed by patch-
ing together those intervals. As so, we study the flow
f(e(t),qr(t), q̇r(t); e(hT )) for t = hT + τ, τ ∈ [0, T ),
where we make the dependence on the “initial condition”
e(hT ) explicit. To prove asymptotic stability, we will use
the following notion of contraction.

Definition 1 Given fixed T , k, and under Assumption
1, the flow f(e(t),qr(t), q̇r(t); e(hT )) is ρ-monotonically
contractive if, for any ∥e(hT )∥ < d, it holds

(1) ∥e(hT + τ)∥ ≤ ∥e(hT )∥, τ ∈ [0, T ),
(2) limτ→T ∥e(hT + τ)∥ ≤ ρ∥e(hT )∥, ρ ∈ [0, 1).

Given Definition 1, the following lemma easily follows.

Lemma 2 If the error flow defined in (13) is ρ-
monotonically contractive and under Assumption 1, then

∥q(t)− qr(t)∥ ≤ ρ
t
T −1∥q(0)− qr(0)∥, t ≥ 0.

Lemma 2 ensures exponential convergence to the refer-
ence trajectory. The property of ρ-monotonically con-
tractiveness might appear rather strong since it must
hold for any segment of the trajectory of length T , how-
ever, it is necessary to guarantee that the system avoids
singularity configurations at all times. The next result
encodes necessary conditions for stability.

Proposition 3 Under Assumption 1, there exists
kmin > 0 such that, if one of the following conditions is
satisfied,

(1) k < kmin,
(2) k > 2

T ,

the error flow (13) is not ρ-monotonically contractive.

Intuitively, if the gain k is too small, there exist reference
trajectories such that the feedforward term “pushes" the
system too much without being suitably balanced by the
feedback term. Conversely, if k is too large, the feedback
causes the trajectory to overshoot, possibly amplifying
the error of the initial condition.

PROOF. 1) We will prove the first condition show-
ing that the error norm initially increases for some ini-
tial conditions e(hT ) and choice of reference trajectory
qr(t). Consider the following Lyapunov function

V (τ) =
1

2
∥e(hT + τ)∥2, (15)

and its time derivative at τ = 0 (cf. (13)):

V̇ (0) = e(hT )⊤ė(hT )

= − k∥e(hT )∥2+
e⊤(hT )(A−1

e(hT )+qr(hT )Aqr(hT ) − I)q̇r(hT )︸ ︷︷ ︸
def
=ϕ(e(hT ),qr(hT ),q̇r(hT ))

.

Let us define

cmax
def
= max c

s.t. ∥e(hT )∥ ≤ d, qr(hT ) ∈ Q,

ϕ(e(hT ),qr(hT ), q̇r(hT )) ≥ cvmax∥e(hT )∥2.

The parameter cmax is surely strictly positive because
(i) all arguments of ϕ(·) are defined on a compact set
(see also Assumption 1-i)) and (ii) ϕ(·) is continuously
differentiable. The only case for which cmax = 0 is when
Aq is a constant matrix for all q. This scenario is not
admissible since it would imply ṗ = Aq̇, which is not the
case for the problem at hand. This implies that there
exist tuples (e(hT ),qr(hT ), q̇r(hT )) such that

V̇ (0) ≥ −(k − cmaxvmax)∥e(hT )∥2

Let kmin
def
= cmaxvmax, then V̇ (0) > 0 for any k <

kmin, hence there exists 0 < τ̄ < T s.t. ∥e(hT + τ)∥ >
∥e(hT )∥ ∀τ ∈ (0, τ̄) and (13) it is not ρ-monotonically
contractive.

2) In order to prove the second condition we first choose
qr(t) ≡ qr, t ≥ 0, which satisfies Assumption 1. As so,
the error dynamics reduce to

ė(hT + τ) = −kA−1
e(hT+τ)+qrAe(hT )+qre(hT )︸ ︷︷ ︸

def
= g(e(hT+τ))

.

The error trajectory can be written in the form

e(hT + τ) = e(hT ) + k

∫ hT+τ

hT

g(e(hT + τ ′))dτ ′.

By using Taylor’s theorem for multivariate functions
with integral form of the remainder, it becomes

e(hT + τ) = e(hT ) + kτ g(e(hT ))+

+ k2τ2
∫ 1

0

(1− ε)
∂g(e(hT + ϵτ))

∂e
g(e(hT + ετ))dε

= (1− kτ)e(hT ) + k2τ2r(e(hT + τ); e(hT )), (16)

where r(·) is the second-order reminder where we made
explicit the dependence on e(hT ). Under Assumption 1,
the functions g and ∂g

∂e are continuously differentiable.
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Moreover their arguments are defined in a compact set
and have the additional properties that g(e(hT + τ)) =

0, ∂g(hT+τ)
∂e = 0, ∀τ ∈ [0, T ] if e(hT ) = 0. Therefore, by

applying Lemma A.3 in Appendix A, there must exist
δ > 0 such that

∥r(e(hT+τ); e(hT ))∥ ≤ δ∥e(hT )∥2, ∀τ ∈ [0, T ),∀e(hT ).

We now use the reverse triangle inequality and the pre-
vious inequality to get:

∥e(hT + τ)∥ ≥
≥

∣∣∥(1− kτ)e(hT )∥ − k2τ2∥r(e(hT + τ); e(hT ))∥
∣∣

≥ max{0 , |1− kτ | − k2τ2δ∥e(hT )∥}∥e(hT )∥.

If kT > 2, there exist ϵ > 0 and τ̄ ∈ (0, T ) s.t. kτ̄ = 2+ϵ.
Then, we can choose e(hT ) s.t. ∥e(hT )∥ = ϵ

2kτ̄2δ , hence

∥e(hT + τ̄)∥ ≥
(
1 + ϵ− ϵ

2

)
∥e(hT )∥ ≥ ∥e(hT )∥. 2

Remark 4 (Stability limitations on T and k)
Proposition 3 states that there are choices of T and k for
which the error flow (13) is not ρ-monotonically contrac-
tive, implying that the robots may not track the reference
trajectory. In particular, there exists a feedback gain kmin

below which the system cannot be ρ-monotonically con-
tractive. Also, there exists a sampling time Tmax = 2

kmin

above which the same instability consideration applies,
as graphically shown in Fig. 1. This is in stark contrast
with the result for position stabilization in [25], where
(doubly) exponential stability could be achieved without
sharp limitation on sampling time T or control gain k.
This fundamental difference is mainly due to the novel
feedforward term considered in this work.

In the next section, we find sufficient conditions for sta-
bility in the form of a bounded area in the (k, T )-space
that guarantees ρ-monotonic contractiveness of (13),
and hence perfect asymptotic tracking under nominal
conditions.

5 Stability and Convergence Rate for SIKM

In this section, we compute explicit bounds for parame-
ters k and T that ensure decrease of the tracking error. In
particular, we show that there exist a continuous func-
tion τs(k) and a scalar kCR > 0 such that, for any pair
(k, T ) ∈ U , with U := {kCR < k < +∞, 0 < τ < τs(k)},
flow (13) is ρ-monotonically contractive (pictorially por-
trayed by the green area in Fig. 1).

The next Proposition bounds the convergence rate
through a parametric function z(·, ·) of k and T , with
coefficients depending on system dynamics. A numeri-
cal procedure to estimate such coefficients is described
in Section 5.1.

Proposition 5 For system (13), it is possible to upper
bound the decrease rate of the error norm ∥e(·)∥,

∥e(hT + τ)∥ ≤ z
(
k, τ ;µ, α, γ1, γ2

)
· ∥e(hT )∥, (17)

for h ∈ N, τ ∈ (0, τs(k)), and

z
(
k, τ ;µ, α, γ1, γ2

)
= |1− kτ |+τα+τ2(k2µ+ kγ1 + γ2),

where constants α, µ, γ1, γ2 depend on the system dynam-
ics and are defined in (23) in the proof.

PROOF. The flow defined by (13) can be written as

e(hT+τ) = e(hT )+

∫ hT+τ

hT

f(e(·),qr(·), q̇r(·))
∣∣∣∣
hT+τ ′

dτ ′.

By using Taylor’s theorem for multivariate functions
with integral form of the remainder, we get

e(hT + τ) = e(hT ) + τ f(e(hT ),qr(hT ), q̇r(hT ))+

+ τ2
∫ 1

0

(1− ε) ·
[
∂f(e(·),qr(·), q̇r(·))

∂e(·)
f(e(·),qr(·), q̇r(·))+

+
∂f(e(·),qr(·), q̇r(·))

∂qr(·)
q̇r(·)+

+
∂f(e(·),qr(·), q̇r(·))

∂q̇r(·)
q̈r(·)

]
hT+ετ

dε. (18)

The above expression allows to find an upper bound of
∥e(hT+τ)∥, τ ∈ (0, τs(k)), by acting on the single terms
of (18). Hence, we can compute a more precise estimate
of the convergence rate, i.e., how quickly ∥e(hT + τ)∥,
with τ ∈ (0, τs(k)), decreases w.r.t. ∥e(hT )∥. Moreover,
the following computations will be useful to find values
(k, T ) s.t. the system is stable and the tracking error
converges to zero. First, we observe that

f(e(hT ),qr(hT ), q̇r(hT )) = −ke(hT )+

+
(
A−1

e(hT )+qr(hT )Aqr(hT ) − I
)
q̇r(hT ). (19)

By using Lemma A.2 on the second addend, it holds

∥
(
A−1

e(hT )+qr(hT )Aqr(hT ) − I
)
q̇r(hT )∥ ≤ α∥e(hT )∥,

where α
def
= avmax for some a > 0 that depends on

system dynamics. Moreover, from (13),

∥f(e(hT + τ),qr(hT + τ), q̇r(hT + τ))∥ ≤
≤ ∥ − kA−1

e(hT+τ)+qr(hT+τ)Ae(hT )+qr(hT )e(hT )∥+
+ ∥

(
A−1

e(hT+τ)+qr(hT+τ)Aqr(hT+τ) − I
)
q̇r(hT + τ)∥.

(20)
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Both addends in (20) are continuously differentiable
functions on a compact set. In addition, they are
equal to zero if e(hT ) = 0 and e(hT + τ) = 0,
respectively. Then, we can apply Lemmas A.1-A.2
to get ∥kA−1

e(hT+τ)+qr(hT+τ)Ae(hT )+qr(hT )e(hT )∥ ≤
kb∥e(hT )∥ and ∥

(
A−1

e(hT+τ)+qr(hT+τ)Aqr(hT+τ) −
I
)
q̇r(hT + τ)∥ ≤ d∥e(hT )∥vmax, where we used Def-

inition 1 and constants b, d > 0 depend on system
dynamics. Thus, we rewrite (20) as

∥f(e(·),qr(·), q̇r(·))
∣∣
hT+τ

∥≤(kb+cvmax)∥e(hT )∥. (21)

Also, being f(e(·),qr(·), q̇r(·)) differentiable w.r.t. all its
variables on the compact set Br(e(·)), we can derive the
following bounds based on (19),∥∥∥∥∂f(e(·),qr(·), q̇r(·))

∂e

∣∣∣∣
hT+τ

∥∥∥∥ ≤ (k + gvmax)∥e(hT )∥∥∥∥∥∂f(e(·),qr(·), q̇r(·))
∂qr

∣∣∣∣
hT+τ

∥∥∥∥ ≤ mvmax∥e(hT )∥∥∥∥∥∂f(e(·),qr(·), q̇r(·))
∂q̇r

∣∣∣∣
hT+τ

∥∥∥∥ ≤ kn∥e(hT )∥, (22)

where again g,m, n > 0 depend on system dynamics. In
light of (19), (21), (22), we then derive the bound in (17),

∥e(hT+τ)∥≤
(
|1−kτ |+ατ+τ2(k2µ+kγ1+γ2)

)
∥e(hT )∥,

where

α
def
= avmax

µ
def
= b∥e(hT )∥

γ1
def
= (d+ gb)vmax∥e(hT )∥+ namax

γ2
def
= gdvmax∥e(hT )∥+mvmax. 2 (23)

Remark 6 (Constant reference) Consider (17) and
suppose a constant reference is assigned, i.e. d(n) qr(t)

d t(n) ≡
0, n ≥ 1. Then, α= γ1 = γ2 =0 and z(k, τ ;µ) coincides
with the function g(τ ;µ)

∣∣
τ=kτ

found in [25].

5.1 Estimating Parameters µ, α, γ1, γ2

We would like to find an estimate of the function
z(k, τ ;µ, α, γ1, γ2) that bounds the convergence rate of
the tracking error, and choose the values (k, T ) which
yield the fastest convergence. To this aim, we provide
a numerical procedure to estimate θ

def
= (µ, α, γ1, γ2).

Proposition 5 implies that the following set is nonempty,

Θ
def
= {θ > 0 | ∥e(hT + τ)∥ ≤ z

(
k, τ ; θ

)
∥e(hT )∥,
∀qr(·),q(0)},

where the inequality is componentwise. Ideally, we would
like to pick the smallest possible values for the param-
eters in θ in order to get the largest set of pairs (k, T )
that induce stability. One possibility is choosing

ϑ
def
= argmin

θ∈Θ
∥θ∥.

Such ϑ surely exists because qr(·) and q(0) belong to a
compact set. However, it cannot be computed numeri-
cally because one would need to check all pairs (k, T )
and points qr(t) and q(0). We propose a strategy to es-
timate ϑ by sampling qr(t) and q(0) from their domains
for different values of (k, T ) and run simulations to get a
set of samples {(ki, Ti, e

i
h+1, e

i
h)}Si=1, S being the num-

ber of samples. Let us define the following quantities,

yi
def
= ∥eih+1∥,

s⊤i
def
= [T 2

i k2i Ti T
2
i ki T

2
i ]∥eih∥

bi
def
= |1− kiTi| ∥eih∥,

then the inequality ∥eih+1∥ ≤ z
(
ki, Ti; θ

)
∥eih∥ can be

written as yi ≤ s⊤i θ+ bi. Based on such sampled trajec-
tories, we solve the following quadratic programming:

θ̂S
def
= argmin

θ
∥θ∥2

s. t. θ ≥ 0,

yi ≤ s⊤i θ + bi, i = 1, . . . , S.

(24)

Unfortunately, it is possible that θ̂S /∈ Θ since we are
checking the inequality ∥e(hT+τ)∥ ≤ z

(
k, τ ; θ

)
∥e(hT )∥

over a finite number of points. We expect that
limS→∞ θ̂S = ϑ if the sampling procedure covers do-
mains of qr(·) and q(0) widely enough. However, for-
mally proving this claim is nontrivial. There might be
alternative numerical strategies to compute better es-
timates of ϑ, or other parameter choices in the set Θ.
Such comparison goes beyond the scope of this work,
however, we will show effectiveness of our proposed
strategy through simulations.

5.2 Analysis of the Function z
(
k, τ ;µ, α, γ1, γ2

)
In this section, we analyze the function z (k, τ) in order
to compute the bound τs(k) of the stability region (green
area in Fig. 1), defined as 1

U def
= {(k, τ) : z(k, τ) < 1}, (25)

and the convergence rate for each point in such region.
We also compute the optimal controller gain ko(T ) for

1 In the following, we use the shorthand notation z
(
k, τ

) def
=

z
(
k, τ ;µ, α, γ1, γ2

)
for the sake of readability.
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fixed sampling time T and the optimal sampling time
Ts(k) for fixed gain k. 2 In the interest of space, proofs of
the following propositions are deferred to the technical
report [23, Appendix C].

Proposition 7 The guaranteed stability set of z(k, τ) is

U = {kCR < k < +∞, 0 < τ < τs(k)},

where kCR = α and

τs(k) =


τs1(k) if µ > 1

τs1(k) for α < k < k̄ if µ < 1

τs2(k) for k > k̄ if µ < 1

,

where τs1
def
= k−α

k2µ+kγ1+γ2
, k̄ def

=
α+γ1+

√
(α+γ1)2+4γ2(1−µ)

2(1−µ) ,

τs2
def
=

−(α+k)+
√

(α+k)2+8(k2µ+kγ1+γ2)

2(k2µ+kγ1+γ2)
, and all the con-

stant parameters were defined in Proposition 5.

With fixed k, we can define the optimal sampling time
and convergence rate as functions of the feedback gain,

τo(k)
def
= argmin

τ
z(k, τ) (26)

ρo(k)
def
= z(k, τo(k)) = min

τ
z(k, τ), (27)

where τo is the time when ∥e(hT + τ)∥, 0 ≤ τ ≤ T, is
closest to the origin, hence it corresponds to the fastest
convergence rate of the error ρo.

Proposition 8 With fixed k, the optimal sampling time
τo(k) is

τo(k) =


τo1(k) if µ > 1

2

τo1(k) for α < k < ¯̄k if µ < 1
2

1
k for k > ¯̄k if µ < 1

2

,

τo1(k)
def
= k−α

2(k2µ+kγ1+γ2)
, ¯̄k def

=
α+2γ1+

√
(α+2γ1)2+8γ2(1−2µ)

2(1−2µ) .
The corresponding convergence rate ρo(k) is

ρo(k) =


ρk1

(k) if µ > 1
2

ρk1(k) for α < k < ¯̄k if µ < 1
2

ρk2
(k) for k > ¯̄k if µ < 1

2

,

where ρk1
(k)

def
= 1 − (α−k)2

4(k2µ+kγ1+γ2)
and ρk2

(k)
def
= µ +

1
k (α+ γ1) +

γ2

k2 .

2 Note that, while Ts(k) is the optimal sampling time for
given k, τs(k) is the stability bound, therefore Ts(k) < τs(k).

The same quantities can be found as functions of τ ,

ko(τ)
def
= argmin

k
z(k, τ) (28)

ρo(τ)
def
= z(ko(τ), τ) = min

k
z(k, τ). (29)

Proposition 9 With fixed τ , the optimal gain ko(τ) is

ko(τ) =


1−τγ1

2τµ for 0 < τ < τMτ if µ > 1
2

1−τγ1

2τµ for τmk
< τ < τMτ if µ < 1

2

1
τ for 0 < τ < τmk

if µ < 1
2

,

where τmk

def
= 1−2µ

γ1
, τMτ

def
= min{ 1

γ1
, τ−v2}, and

τ−v2
=

−(γ1+αµ)+
√

(γ1+αµ)2+(−γ2
1+4γ2µ)

−γ2
1+4γ2µ

. The correspond-
ing convergence rate ρo(τ) is

ρo(τ) =


ρτ1(τ) for 0 < τ < τMτ if µ > 1

2

ρτ1(τ) for τmk
< τ < τMτ

if µ < 1
2

ρτ2(τ) for 0 < τ < τmk
if µ < 1

2

,

where ρτ1(τ)
def
=

(−γ2
1+4γ2µ)τ

2+2(γ1+2αµ)τ+4µ−1
4µ and

ρτ2(τ)
def
= γ2τ

2 + (α+ γ1)τ + µ.

Figure 4 depicts the quantities defined above, where
τ(ko) is the inverse function of ko(τ) and represents
the sampling time for which ko is the optimal gain. We
chose three cases corresponding to µ < 1/2 (left box),
1/2 < µ < 1 (middle box), and µ > 1 (right box), in or-
der to span all cases defined in the propositions. Figure 5
represents the convergence rate ρo as a function of k (top
box) and τ (bottom box). The convergence rate is always
smaller than one, i.e. ∥e(hT+τ)∥ ≤ ∥e(hT )∥, τ ∈ [0, T ].

Remark 10 (Sampling time and stabilizability)
Proposition 3 shows that there exists a maximum sam-
pling time Tmax s.t. no feedback gain k can ensure stabil-
ity if T > Tmax. Conversely, Proposition 7 implies that
there exists a threshold τCR, which can be analytically
found by setting dτs1 (k)

dk = 0, s.t. a stabilizing gain always
exists if T < τCR (see Fig. 1). Such values may help to
evaluate the communication hardware to be used.

6 Simulation Results

In this section, we implement and compare four tech-
niques for trajectory tracking, which are summarized in
Table 1. The first one, named SIKM-D, is the distributed
controller (14) proposed in this work, where the gain
k = koff is computed offline following the procedure in

9



Fig. 4. Representation of the quantities τs(k), τo(k), and τ(ko) defined in Propositions 7–9.

0 10 20 30
k

0

0.5

1

0 0.05 0.1 0.15 0.2
0

0.5

1

Fig. 5. Estimated convergence rate ρ0 as a function of the
gain k and of the sampling time τ .

Section 5. The last three, referred to as PS, FF, and
SIKM-C, respectively, are inspired by the online control
strategy proposed in [25]. In particular, they all adopt a
centralized communication architecture and differ only
in the feedforward term design. Specifically, at the h-th
step, kon is the solution to the following optimization
problem with initial condition eh = e(hT ),

kon(hT ) = argmin
k

∥e(hT + T )∥

s. t. u(τ) = uk(hT ) + uff(hT + τ),
(30)

where τ ∈ [hT, hT + T ). The PS technique corresponds
to a simple point-stabilization with no feedforward cor-
rection, therefore it is expected to always lag behind
the desired trajectory. The FF technique implements
the naive controller (11) obtained by discretizing the
standard continuous-time feedforward term which eval-

Control Strategy uk(hT ) uff(hT + τ)

SIKM-D (Eq. (14)) −koffAqh(qh − qr
h) Aqr

hT+τ
q̇r
hT+τ

PS (Eq. (10)) −konAqh(qh − qr
h) 0

FF (Eq. (11)) −konAqh(qh − qr
h) AqhT q̇

r
hT+τ

SIKM-C (Eq. (12)) −konAqh(qh − qr
h) Aqr

hT+τ
q̇r
hT+τ

Table 1
Description of the four strategies used in simulation.

Fig. 6. The Fly-Crane system in the Gazebo simulator.

uates the Jacobian at qhT , that was shown insufficient
for asymptotic tracking. Even this strategy is expected
to perform worse than SIKM-D despite the potential
benefit coming from the online design of the feedback
gain. Finally, SIKM-C has the same control structure as
SIKM-D, but it re-computes the optimal feedback gain
kon at each sampling time. This strategy should provide
the best possible performance as opposed to SIKM-D,
which computes its gain offline solving a worst-case min-
max problem as shown in Section 5. However, SIKM-C
requires solving an optimization problem and receiving
the state of all robots at each sampling time.

Remark 11 (Distributed vs. centralized control)
In contrast with the centralized scheme, a distributed
communication control architecture avoids limita-
tions due to all-to-all wireless communication, such
as larger latency or packet loss, and is more ro-
bust, cheaper and easier to maintain since it does
not depend on the number of robots. Specifically,
the distributed communication controller requires
only one broadcast communication packet from the
load/pivot to the robots, while the centralized communi-
cation requires in addition to the broadcast packet also
the (possibly synchronized) transmission of N packets
from robots to load.

We tested the four techniques on the Fly-Crane sys-
tem [27], whose simulated environment is depicted in
Fig. 6. The dynamical model of the system has been
developed in a physics-based simulator, simulating ca-
bles dynamics as well. Simulations have been performed
with software in the loop, including measurement noise
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GLOBAL PLANNER

SIKM

qr
, q̇r

DYN.CONTR.
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MoCap

+

IMU
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Estimated State

Matlab

DYN.CONTR.
f , τ

DYN.CONTR.
f , τu1
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Fig. 7. Architecture used to perform simulations: a global
planner generates the desired trajectory qr, q̇r and sends it
to the local planner which generates the desired robot veloc-
ities. The blue rectangle on the right represents a realistic
environment where the robotic system is simulated.
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Fig. 8. Tracking error norm ∥e(t)∥ = ∥q(t)−qr(t)∥ obtained
with the tracking strategies described in Table 1 (T = 1.5[s]).

and communication latency. Communication across the
system, planning, and sensing are implemented using
the middle-ware Pocolibs and the software framework
genoM, enabling realistic simulations. The simulator of
Fly-Crane has been used as preliminary validation step
for several experiments, such as the ones in [13,27], prov-
ing excellent adherence to the real testbed. Technical
details about the simulation software and realistic nu-
merical experiments can be found in [21].

The used system architecture is represented in Fig. 7:
a global planner generates offline the desired trajectory
(qr, q̇r) and this information is made available to the
SIKM controller, implemented in Matlab-Simulink. The
latter generates the desired robot velocities ui which are
sent to the robots every T seconds via wireless. Then,
the low-level dynamical controller (geometric position
controller [14]) of each robot converts these velocities
into thrust and torque for the quadrotors. An unscented
Kalman filter, running at 1 [kHz], fuses the Motion Cap-
ture (MoCap) system measurements (at 120 [Hz]) with
the IMU measurements (at 1 [kHz]). The estimated sys-
tem state is then sent to the SIKM controller.

We first compare the tracking error norm for the four
control strategies when T = 1.5 [s] (see Figs. 8–9 and Ta-
ble 2). Note that the tracking error does not converge

Sampling
time T [s]

Mean tracking error norm

SIKM-D SIKM-C FF PS

0.5 0.06 0.05 0.05 0.07

0.75 0.06 0.07 0.06 0.10

1.5 0.10 0.09 0.15 0.16
Table 2
Mean tracking error norms obtained in simulation (best two
results for each sampling time highlighted in bold font).

to zero because of non-idealities implemented in simu-
lation, such as sensor noise. The desired trajectory was
generated in order to stress all components of q, ex-
cept for y-translation because of the system symmetry.
From Fig. 9, one can see the benefits of the feedfor-
ward term w.r.t. to point-stabilization (PS), which is
slower in tracking the desired trajectory as emphasized
in the zoom plot of the component zL. This is because
the desired velocity u is updated only when a new mea-
surement arrives. As for the three feedback-feedforward
techniques, SIKM-C and SIKM-D exhibit the best per-
formance. This is highlighted in the zoomed plot of zL,
where FF causes an overshoot.

More interesting and general is the comparison of
the four strategies with different sampling times. To
compute the feedback gain koff used in the SIKM-
D, we first estimated the parameters [µ, α, γ1, γ2] =
[0.02, 0.13, 0.1, 0.2] along the desired trajectory de-
picted in Fig. 9 for different couples of (k, T ) as described
in Section 5.1, obtaining the stability region depicted in
Fig. 10. Then, for each value of T , we chose the gain k
which ensures the fastest highest convergence rate while
keeping the system stable, by choosing the x coordinate
corresponding to T on the curve τ(ko) in Fig. 10. Table 2
reports the observed mean tracking error norms for each
strategy. The resulting feedback gain–sampling time
pairs (koff, T ) were (2, 0.5), (1.28, 0.75) and (0.67, 1.5).
Point-stabilization PS yields the largest error which
increases quickly with the sampling time. All feedback-
feedforward strategies are comparable for short values
of T , while SIKM-C and SIKM-D yield the lowest errors
for large T . In particular, the good performance of FF
may be explained by the fact that the naive feedforward
term in (11) is a good approximation of the one in (12)
for small T . However, we stress that SIKM-D is dis-
tributed. Hence, the results in Table 2 shall be intended
in even stronger way: the distributed version of our
proposed controller not only outperforms standard cen-
tralized techniques (PS and FF), but is even comparable
with its centralized version with online gain adaptation.

To further validate our method under realistic condi-
tions, we also performed simulations with high position
measurement noise, comparable to a GPS-based posi-
tioning system. As expected, the tracking error remains
bounded, proving our design robust. Results of such ad-
ditional simulations are provided in [23, Appendix E].
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Fig. 9. Comparison of the variables q(t) in four different simulations, where the tracking strategies described in Table 1 are used.
The sampling time is T = 1.5 [s]. The first two rows represent respectively the position xl, yL, zL and orientation ϕL, θL, ψL

(roll, pitch and yaw) of the load. On the bottom, row the angles αi
def
= qi, i = 1, 2, 3 between cables and load are depicted.

Fig. 10. Stability region, optimal gain ko, and sampling time
τo obtained by estimating the parameters µ, α, γ1, γ2 along
the trajectory depicted in Fig. 9 for different couples (k, T ).

7 Conclusions and Future Work

In this paper, we proposed a controller for multi-robot
systems where feedback measurements are transmitted
via wireless. We introduced a novel feedforward term and
proposed a strategy to compute the feedback gain with
convergence guarantees. The more multi-robot systems
will be employed for applications, the more sampled-
based control strategies will be needed: this work paves
the way to future developments and implementations.
A natural evolution of this work is performing experi-
ments on a real system. Further, a formal analysis in-
cluding packets loss and latency, which are typical issues
of wireless communication, should be developed.
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A Useful Lemmas

Lemma A.1 Given x ∈ X ⊂ Rn, X compact, and given
a continuously differentiable function f(x) : Rn → Rm

s.t. f(0) = 0, there exists α > 0 s.t.:

∥f(x)∥ ≤ α∥x∥ ∀x ∈ X .

Lemma A.2 Given x ∈ X ⊂ Rn, y ∈ Y ⊂ Rp, X
and Y compact, and given a continuously differentiable
function in the second argument f(x,y) : Rn×Rp → Rm

s.t. f(x,0) = 0∀x ∈ X , there exists α > 0 s.t.:

∥f(x,y)∥ ≤ α∥y∥ ∀(x,y) ∈ X × Y.

Lemma A.3 Given x ∈ X ⊂ Rn, X compact, and given
two continuously differentiable functions f(x) : Rn →
Rm, g(x) : Rn → Rm s.t. f(0) = g(0) = 0, there exists
α > 0 s.t.:

∥f(x) · g(x)∥ ≤ α∥x∥2 ∀x ∈ X .
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