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Simultaneous Action and Grasp Feasibility Prediction for Task and
Motion Planning through Multi-Task Learning

Smail Ait Bouhsain®, Rachid Alami! and Thierry Siméon

Abstract—1In this paper, we address task and motion plan-
ning (TAMP) which is an important yet challenging robotics
problem. It is known to suffer from the high combinatorial
complexity of discrete search, often requiring a large number
of geometric planning calls. We build upon recent works in
TAMP by taking advantage of learning methods to provide
action feasibility information as a heuristic to the symbolic
planner, thus guiding it to a geometrically feasible solution and
reducing geometric planning time. We propose AGFP-Net, a
multi-task neural network predicting not only action feasibility,
but also the feasibility of a set of grasp types. We also propose
an improved feasibility-informed TAMP algorithm capable of
solving more complex problems, and handling goals which are
not fully specified. Comparative results obtained on different
problems of varying complexity show that our method is able
to greatly reduce task and motion planning time.

I. INTRODUCTION

Task and motion planning (TAMP) [1]-[30] is a robotics
problem that involves determining a sequence of actions
that a robot must take to achieve a desired goal, along
with the corresponding motions of the robot. It combines
discrete symbolic planning with continuous geometric plan-
ning. TAMP problems are challenging due to the high
dimensionality of the state and action spaces, but also to
the combinatorial complexity of discrete search.

Geometric planning is a major bottleneck to TAMP. Since
symbolic planners do not have any geometric reasoning
capabilities, they generate task plans without a guarantee
of feasibility. A geometric planner has to be used in order
to verify the feasibility of each generated task plan and
construct the corresponding motions. However, in complex
problems, symbolic planners generate a high number of
geometrically infeasible solutions before finding a feasible
one, each plan requiring a call to the geometric planner which
results in long planning time. Moreover, geometric planning
might be time consuming even in the case of feasible tasks.
Since not all grasps are feasible or lead to a feasible motion,
finding the right one might require a lot of time.

This work aims at providing the symbolic planner with
a feasibility prediction capability, which increases the prob-
ability that the generated task plans are feasible, and thus
reduces the number of calls to the geometric planner. First,
we improve upon our previous approach [30] in order to
enrich the information provided to the task planner, and
reduce the dimensionality of the action space. Indeed, instead
of predicting the feasibility of a Pick or Place action
with a single specific grasp type, we propose a multi-task
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Fig. 1: A visualization of the initial and goal states of two
complex TAMP problems solved by the proposed planner,
and on which Bouhsain et al. 2023 [30] fails.

learning neural network capable of predicting the feasibility
of an action as well as the feasibility of each grasp type.
We also propose a new training strategy allowing a better
generalization to new environments. In addition, we propose
a more powerful TAMP algorithm capable of solving a wider
range of problems with higher complexity, in particular ones
with semi-specified goals. We develop a method for com-
bining probabilities of feasibility allowing the task planner
to make better use of the predictions obtained by the neural
network, and reduce the branching factor of the search. We
also introduce a new cost function that incorporates both the
action feasibility as well as the grasp feasibility predictions.
Furthermore, we leverage the latter to accelerate geometric
planning, thus reducing the time spent on finding a grasp
that leads to a feasible motion.

II. RELATED WORK

Task and motion planning combines discrete symbolic
planning and continuous geometric planning. Early works
[1]-[11] view the problem from the geometrical perspective,
by formalizing it as a multi-modal motion planning problem.



Most existing TAMP methods [12]-[20] combine a task
planner with a geometric planner, while using geometric
backtracking as an interface between the two. These methods
are known to suffer from the high combinatorial complexity
of discrete search and the slow geometric planning time,
since a call to the geometric planner is still needed to verify
the feasibility of symbolic plans.

Recent works in TAMP [21]-[30] propose to accelerate
the planning process by leveraging learning methods. They
either aim at guiding the planning process towards a solution,
or reducing the number of calls to the geometric planner by
providing a learned heuristic to the task planner. Learning
approaches have also been proposed for grasp planning [31]-
[34], these works aim at finding possible grasps of complex
objects, which is a step of TAMP often overlooked. Works
such as [22] [24] [25] propose to train a learning model
to predict the geometrical feasibility of Pick and Place
actions in tabletop environments. Bouhsain et al. [30] extend
this idea to 3D environments and proposes a feasibility-
informed task and motion planner which takes advantage
of feasibility prediction. This work improves upon [30] by
proposing a multi-task learning neural network providing
richer geometric feedback to the task and motion planner.
We also develop a TAMP algorithm which uses a new
method for handling feasibility predictions, and is capable
of solving more complex problems, for instance ones with
semi-specified goals.

III. PROBLEM DESCRIPTION

We focus on manipulation problems involving the rear-
rangement of a set of objects in a three-dimensional manip-
ulation environment E. The latter is composed of a single
robot arm with a parallel gripper, no box-shaped movable
objects, nss stable support surfaces and n.ps fixed obstacles.
A state s of the planning scene is defined by the configuration
of the robot and of all movable objects, i.e the support surface
and the pose of each object. We denote the configuration of
a movable object O in the state s as s(O). An action a is
defined as the transition between two distinct states s and
s'. Tt involves picking a single movable object O from its
configuration in s, and placing it at a new configuration q.
The action a can then be explicitly formulated as:

a = Moveo(s(0O) — q) (D

Finding a solution to a TAMP problem consists in finding
a sequence of actions 7 = {ag,ay,...,ax}, as well as the
corresponding sequence of motions II = {mg, 71, ..., 7K },
bringing the environment from an initial state sg to a goal
state Sg0q;. Each movable object might have either a fully-
specified goal placement (i.e a support surface and a pose), or
a semi-specified goal placement (i.e a support surface only),
or no specified goal at all.

We also define G as the set of 6 grasp types described in
[30]. They correspond to the side from which the object is
grasped in the perspective of the robot. Hence, each grasp
type is a subspace of grasps from the corresponding side of
the object.

IV. ACTION AND GRASP FEASIBILITY PREDICTION

As in our previous work [30], we aim at reducing the
number of calls to the geometric planner by providing a feasi-
bility prediction capability to the symbolic planner, allowing
it to generate task plans with a high probability of feasibility
first. In this paper, rather than predicting the feasibility of an
action with a specific grasp type, we train a neural network
to simultaneously predict the general feasibility of a Pick or
Place action without considering the grasp, as well as the
feasibility of each grasp type. This means that, contrarily to
the previous method, the grasp is no longer an input to the
neural network but rather an output.

A. Neural Network

The proposed neural network takes as input the 3D scene
and the action to be tested. We use the same representation of
the 3D environment as in [30], using 5 depth images which
correspond to different views of the scene (i.e top, front,
rear, right, left). Each view corresponds to a specific plane
in the 3D space. The top view shows a projection of the
environment on the (z,y) plane, the front and rear views
correspond to the (y, z) plane, and the right and left views
correspond to the (x, z) plane.

Regarding action representation, we consider Pick and
Place tasks as equivalent. Indeed, if we construct these
actions as starting and ending at the same home configu-
ration of the robot, the motion for placing an object at a
configuration is the same as the reversed motion of picking
the same object from the same configuration. Using this
assumptio we always consider the action to be tested as
a Pick task, which reduces the number of inputs to the
neural network, and allows to speedup data generation and
annotation (Section [[V-BJ)).

As in [30], the object of interest is represented using 5
masks over the scene views, showing only the object at
the configuration it should be picked or placed at. Instead
of combining the scene views and the object masks into a
single 10-channel image, we combine them into 3 separate
images depending on the plane the views correspond to. The
first is a 2-channel image I, consisting of the top scene
view and mask. The second and third are two 4-channel
images I, and I, consisting of the left-right and the front-
rear scene views and masks respectivelyﬂ These images
are encoded using three ResNet-based convolutional neural
networks [35]. The resulting embeddings are concatenated,
then fed to a fully connected layer to obtain an encoding
of the 3D scene and the action. A multi-layer perceptron
followed by a Sigmoid activation function are then used
to obtain 2 predictions. The first one is the probability of
feasibility of the action pp. The second is a vector pg
composed of 6 values, each one being the probability of

Note that this assumption is used only at the feasibility prediction level.
The geometric planner used in our TAMP approach considers Pick and
Place as different tasks that might start and end at different configurations
of the robot.

2This separation of the views allows a more sane scene representation
and prevents the neural network from confusing the views



feasibility of one of the grasp types in G. Figure 2] shows
the complete architecture of our proposed neural network.
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Fig. 2: The architecture of the proposed neural network
AGFPNet.

B. Data Generation and Annotation

In order to train the proposed neural network, we develop
an automatic data generation method which can be divided
into three steps. The first is scene generation, which follows
the same procedure detailed in [30]. It generates scenes
containing a large table, up to 4 elevated support surfaces,
and 2 objects. The second is the construction of the dataset.
For each object O in a generated scene, we generate one
Pick action from its configuration q. Using the assumption
that Pick and Place actions are equivalent, these generated
Pick actions also count as Place actions at the same
configuration q.

The third step of data generation is annotation. In this
step, we need to label each generated action but also each
grasp type as feasible or infeasible. We consider a grasp
type as feasible if at least one grasp corresponding to this
type is feasible. All the generated actions causing a collision
are guaranteed to be infeasible, and are thus automatically
labeled as such. We annotate the rest of the actions using a
geometric planner composed of a grasp sampler, an inverse
kinematics solver and a sampling based motion planner.

V. TAMP ALGORITHM

Compared to our prior work [30], we propose an improved
TAMP algorithm, capable of solving a wider range of more
complex problems. In addition to leveraging feasibility pre-
dictions to accelerate the planning process, the branching
factor of our task planner is reduced by using a different
definition of actions at the symbolic level. While in our
previous algorithm, an action was defined as either a Pick
or a Place task with a specific grasp type, in this work, we
define actions as combined Pick — Place tasks without any
grasp type specified.

The main algorithm remains similar to our previous plan-
ner. It combines a symbolic task planner which finds a
sequence of actions bringing the environment to a goal state,
and a geometric planner which checks the feasibility and
finds the motions corresponding to each action. The task
planner is a best-first tree search in which nodes are states of
the environment and edges are actions, as defined in Section
[T At each iteration, the node s with the lowest cost is
retrieved from the set of open nodes. If s is a goal state, we
reconstruct the complete action sequence 7 leading to s. The

geometric planner is then called to find the corresponding
sequence of motions II. If geometric planning succeeds,
then a geometrically feasible solution was found and the
problem is solved. On the other hand, if one of the actions is
infeasible, we prune all children of the first infeasible node
in the task plan from the tree, and continue the search.

Algorithm 1 findChildren
Input: s, E, 54041
1: children <
: A < findPossibleActions(s, E, Sgoai)
: for each a in A do
[pr(a),ps(a)] < predictFeasibility(s, E, a)
child < nextState(s, a)
child.cost < computeCost(child, s g4oal1, pr(a))
children < children U child
: end for
: return children

2
3
4
5:
6:
7
8
9

Algorithm 2 findPossibleActions
Input: s, E, 54041

A+

2: for each O in movable objects do

3: if s(O) ¢ $40a1(O) then

4 if $404:(0) is fully-specified then

5: a < Moveo(s(0) = 540a1(0))
6: A+ AUa
7
8
9

else if s,0,,(O) is semi-specified then
R < samplePlacements(E, sg0q1(0))
for each q in R do

10: a + Movep(s(0) — q)
11 A+~ AUa

12: end for

13: end if

14: end if

15: R + sampleRandomPlacements(E)
16: for each q in R do

17: a < Movep(s(O) — q)

18: A+ AUa

19: end for

20: end for

21: return A

In case s is not a goal node, we call the findChildren
function described in Algorithm We first proceed to
finding the actions applicable at s by calling the function
findPossible Actions detailed in Algorithm [2| For each
movable object O in the scene, we generate two types of
actions. The first action type tries to move the object O
from its placement at s denoted s(O), directly to its goal
placement s,4,4;(O). Within this type of actions, there are two
different scenarios. If O has a fully-specified goal (i.e support
surface and pose), then only one action is generated that
moves the object to that goal (Alg. [2] lines 4-6). However,
if O has a semi-specified goal (i.e it has to be placed on a
specific support surface whatever the pose), then the number



of goal placements is infinite. In this case, we sample a fixed
number of placements on the goal support surface. We then
generate multiple actions, each one moving object O to one
of the sampled placements (Alg. [2] lines 7-12).

The second action type aims at moving the object O to a
random placement without considering the goal. We sample
a fixed number of random placements, then generate multiple
actions moving object O to each one of them (Alg.
lines 15-19). In both action types, the number of placements
sampled is a parameter chosen by the use

Algorithm 3 predictFeasibility
Input: s, F,a

1: O « getObjectToMove(a)
Ustart < S(O)
Qg < getEndPlacement(a)
[pr(Pick), pa(Pick)] < predict(s, E, O, Qgsqrt)
[pr(Place), pe(Place)] + predict(s, E, O, q,,,4)
Pc(a) < pg(Pick) @ pg(Place)
pr(a) = pr(Pick) x prp(Place) x max(pg(a))
return [pr (@), pe(a)]

For each possible action a found, we compute its prob-
ability of feasibility pr(a) as well as the probability of
feasibility of each grasp type ps(a) (Alg. [1} line 5). Since
the neural network predicts the feasibility of Pick and Place
tasks separately, we need a strategy for combining these
predictions in order to obtain the probability of feasibility
of the complete Pick — Place action. This is done in
the predict Feasibility function described in Algorithm
First the action a is decomposed into a Pick task and a
Place task. Then AGFP-Net is queried twice to obtain the
probability of feasibility and the grasp types probabilities for
the Pick and Place actions separately. For a single grasp
type g, we define the probability p,(a) that the complete
action a is feasible using g as follows:

pg(a) = py(Pick) x py(Place) )

with pg(Pick) and py(Place) being the probability that the
Pick and the Place tasks, respectively, are feasible using g.
Using this definition, we can obtain the complete vector of
grasp types probabilities p(a):

Pc(a) = pa(Pick) ® pg(Place) 3)

where ® represents the element-wise product.

Regarding the probability of feasibility of the action
pr(a), multiplying the probabilities of the Pick and Place
tasks is not sufficient. The reason is that even if both these
tasks are feasible, the grasps leading to a feasible Pick
might not be the same as the ones leading to a feasible
Place. Indeed, the complete action a is feasible iff. both
the Pick and the Place tasks are feasible, and have at least

3In case none of the sampled placements lead to a geometrically feasible
solution, a node can be expanded more than once in order to resample more
placements.

one feasible grasp type in common. Therefore, we define
pr(a) as:

pr(a) = pr(Pick) x prp(Place) x maz(pg(a))  (4)

where pp(Pick) and pp(Place) are the probabilities of
feasibility of the Pick and the Place tasks respectively, and
max(pg(a)) is the highest probability in the vector ps(a).

After the feasibility prediction step, we construct a new
child as the result of applying action a to state s (Alg.
line 5). We then compute its cost which is defined as:

CTotal = CSoFar + C(ToG'oal + CFeasibility (5)

where Cg, g, 18 the number of actions in the branch leading
to the child node, C'1ocoq; is the number of objects that are
not at their goal placement, and Creqsivitity 1S a feasibility
cost calculated using the expression:

1
CFreasivitity = —— — 1 €]0,00 6
Feasibility pr(a) ] [ 6)

This definition allows to incorporate the feasibility predic-
tions in the state costs. Thus, the higher the probability of
feasibility of an action leading to a state is, the lower its cost
will be. After all the children are generated, they are added
to the set of open nodes which is sorted by increasing cost.

One important novelty of this work is the use of grasp fea-
sibility predictions to accelerate geometric planning. When
the geometric planner is called to find the motion of an action
a, we use the previously computed grasp type probabilities
P (a) in order to prioritize feasible grasp types during grasp
sampling. Thanks to this heuristic, the geometric planning
time on feasible actions can be reduced.

VI. EXPERIMENTS

In order to test our method, we first train and test the
proposed neural network on a generated dataset. Then, we
define a set of TAMP problems to evaluate the performance
of our algorithm.

A. Neural Network Training and Testing

Using the data generation method described in [[V-B|
we construct a training dataset based on 20’000 generated
scenes. We also generate a validation set and a testing
set, based on 5’000 generated scenes each, in order to
evaluate the performance of the trained neural network.
For annotation, we use an adapted version of Moveit! Task
Constructor [36] with a BiTRRT motion planner [37]. The
model is implemented on Pytorch [38] and trained using
a weighted binary cross entropy loss to account for the
imbalance between feasible and infeasible datapoints. We use
the ADAM optimizer with a learning rate of 0.0001 and a
batch size of 128. To prevent overfitting, we use dropout with
a probability of 0.1, and weight decay of 0.0001.

Moreover, in order to increase the size of our training set,
we use online data augmentation. Since the robot can turn
360° around its base, rotating the scene around the z axis
does not affect the feasibility of the action or the grasp types.
This allows to obtain new labeled datapoints from already



annotated ones. During training, scenes are either kept as
they are, or rotated by a multiple of 7 around the z axis. This
data augmentation method improves training by allowing the
neural network to learn more scenarios, and ensuring that
the predictions are consistent between equivalent scenes. It
also allows for a better generalization to new environments.
The neural network is trained for 200 epochs, which takes
approximately 24 hours.

B. Test Problems for the TAMP Algorithm

In order to compare the performance of our proposed
approach with our prior work, we reuse the 5-object versions
of the three TAMP problems described in [30]. The first is
the Reorder domain in which the goal is to move a set
of movable objects from a shelf to another while changing
the order. The second is the Unpack problem, in which a
set of objects on a tray have to be organized on a shelf.
The third is the Swap domain in which the goal is to swap
the placements of different objects. In these problems, the
challenge comes either from grasp choice, the proximity
between objects, or the occupancy of goal placements.

We also define two more complex TAMP problems that
demonstrate the additional capabilities of our new method.
The Access domain, shown in Figure[Ta] involves moving a
single object (red) to its goal placement while ensuring that
the other movable objects are back at their initial placement.
In this problem, the challenge comes from the fact that each
object blocks access to the object next to it. The robot has
to move all blocking objects one by one to a temporary
placement, move the red object to its goal placement and
finally put back the previously moved objects at their initial
placements in the same order.

The Sort problem, shown in Figure [[b]aims at demonstrat-
ing the ability of our algorithm to handle semi-specified and
unspecified goals. The goal is to move a set of objects from
a shelf and to one of two small tables depending on their
color. Here, the challenge comes from placement sampling,
meaning that the planner must find the set of placements
allowing all objects of the same color to be on a narrow
support surface. The initial proximity of objects is also a
challenge, since the objects have to be moved in a specific
order. Moreover, we make the problem more complex by
adding blocking objects (orange) with unspecified goals on
the tables.

The Access and Sort problems also aim at testing the
generalizability of AGFP-Net to more realistic scenes, with
a higher number of objects and vertical obstacles.

VII. RESULTS

We first analyze the performance of AGFP-Net on the
generated test data. We then evaluate the performance of the
proposed TAMP algorithm on the test TAMP problems.

A. Neural Network Performance

Table [I] shows the performance of the proposed neural
network. Comparing the results obtained by AGFP-Net to
the one yielded by [30] shows an overall improvement in

performance with an F1-Score of 92.4%. Also, the yielded
true positive rate (TPR) of 93.7% and true negative rate
(TNR) of 97% show that AGFP-Net is as good at predicting
feasibility as it is at predicting infeasibility. Regarding grasp
feasibility prediction, the results show that the model is able
to accurately predict the feasibility of each grasp type with
an F1-Score of 86.6%, a TPR of 93.3% and a TNR of 97.1%.

TABLE I: Comparison of the performance of AGFP-Net and
our prior model AFP-Net.

Model Prediction Task F1-Score TPR TNR
AFP-Net [30] | Action Feasibility 90% 91.5% 84.3%
Action Feasibility 92.4% 93.7% 97%

AGFP-Net | " op Feasibility | 86.6%  933%  98.1%

B. Performance of the feasibility-informed TAMP algorithm

We ran our algorithm on all five TAMP problems defined
in Section with 10 runs each. In order to measure the
performance gain of action and grasp feasibility prediction,
we do the same with a non-informed version of our TAMP
algorithm. This is done by disabling feasibility prediction
and setting all probabilities of feasibility to 1.

TABLE II: Planning performances with and without using a
feasibility heuristic, averaged over 10 runs.

Infeasible Total
Domain | Method Heuristic Task Planning
Plans Time
[30] None 5.0 61.0
Reorder AFP-Net 0.4 20.5
Pronosed None 0.0 15.6
P AGFP-Net 0.0 6.4
None 11.8 71.7
Unack (301 AFP-Net 33 219
P Promosed None 30 285
PO AGFP-Net 0.1 7.6
[30] None 30.6 125.8
Swa AFP-Net 3.9 22
wap b P None 7.9 172
TOposed A GFP-Net 0.2 7.4
[30] Not handled
Sort Proposed None 108.3 599.1
P AGFP-Net 1.1 50.0
[30] Planning Failure
Access P d None 339.3 1500.1
Toposed - AGFP-Net 1.9 952

We first compare our approach to the one proposed in
[30]. Figure [3] and Table [[I] show a comparison of the two
methods on the Reorder, Unpack and Swap problems.
Results obtained without feasibility prediction show that the
new TAMP algorithm generates less geometrically infeasible
task plans, which translates into less geometric planning
time spent on infeasible actions. This is due to the fact that
grasp types are no longer considered by the task planner,
but rather by the geometric planner. As a result, in problems
where the grasp choice is important such as the Reorder
and Unpack domains, the task planner does not generate
task plans that are infeasible due to the choice of grasp. In
the Swap problem, however, this gain in performance is not
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Fig. 3: Planning time comparison between the proposed approach and Bouhsain et al. 2023 [30] averaged over 10 runs. For
each method, we report the mean and standard deviation of the planning time with and without feasibility prediction, using

AFP-Net for [30] and AGFP-Net for the proposed approach.

as pronounced since in this domain, infeasibility is mostly
due to collisions.

On the other hand, comparing the performances yielded
using the feasibility prediction heuristic shows that thanks
to the improved accuracy of AGFP-Net (producing less
misclassifications), and the new probability combination
strategy, the proposed TAMP algorithm is able to reduce
the number of infeasible task plans generated to 0 in most
runs, even in problems where [30] has some failures such
as the Unpack and the Swap domains. Figures [3b] and
show that geometric planning time on infeasible actions is
eliminated using our feasibility-informed planner.

Moreover, the results demonstrate the improvement in
planning time yielded using grasp feasibility prediction. In-
deed, comparing geometric planning time on feasible actions
with and without AGFP-Net shows that using the grasp
feasibility heuristic allows the geometric planner to find
grasps leading to a feasible motion faster. This decrease
in geometric planning time not only compensates for the
time spent on feasibility prediction, but also reduces the total
planning time as shown particularly in Figure [3a]

On the Access problem, the method proposed in [30]
fails to find a geometrically feasible solution in a reasonable
amount of time, whether feasibility prediction is used or
not. This is due to the high combinatorial complexity of
the problem. Thanks to the reduced branching factor, our
algorithm is able to solve this problem in approximately 25
minutes when no feasibility heuristic is used. However, Table
[0 shows that the number of infeasible task plans generated
before finding a feasible solution is high with an average
of 339.3. Using AGFP-Net, this number is reduced to an
average of 1.9, yielding a 93% reduction in total planning
time. For the Sort domain, the number of infeasible task
plans generated is 108, which is reduced to 1 using AGFP-
Net. Hence, the total planning time is 12 times faster.

Furthermore, these results show that, although AGFP-Net
has been trained on scenes containing two objects only and
no vertical obstacles, it is able to generalize to scenes with a
higher number of objects and a limited number of obstacles

while keeping feasibility predictions accurate.

Feasibility prediction time
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Fig. 4: Detailed planning time of the proposed approach on
the Sort and Access problems with/without AGFP-Net.

VIII. CONCLUSION

In this work, we propose a feasibility-informed task and
motion planner which improves total planning times on
three fronts. First, the branching factor of the task planner
is reduced allowing better handling of the combinatorial
complexity of the search. Second, we take advantage of
feasibility predictions to generate geometrically feasible task
plans. Finally, we leverage grasp feasibility predictions to ac-
celerate geometric planning time on feasible actions. We also
demonstrate the performance gain yielded by our method on
5 different TAMP problems.

As future work, we consider the extension of this approach
to multi-robot TAMP problems such as ones involving mul-
tiple robot arms, or mobile manipulators. Also, It is also
important to test and generalize the proposed method to real-
life scenarios where the shapes of objects, support surfaces
and obstacles might be more complex.
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