Dillon Z Chen
email: dillon.chen@anu.edu.au

Felipe Trevizan
email: felipe.trevizan@anu.edu.au

Sylvie Thiébaux
email: sylvie.thiebaux@anu.edu.au

Heuristic Search for Multi-Objective Probabilistic Planning

Heuristic search is a powerful approach that has successfully been applied to a broad class of planning problems, including classical planning, multi-objective planning, and probabilistic planning modelled as a stochastic shortest path (SSP) problem. Here, we extend the reach of heuristic search to a more expressive class of problems, namely multi-objective stochastic shortest paths (MOSSPs), which require computing a coverage set of non-dominated policies. We design new heuristic search algorithms MOLAO* and MOLRTDP, which extend well-known SSP algorithms to the multi-objective case. We further construct a spectrum of domain-independent heuristic functions differing in their ability to take into account the stochastic and multi-objective features of the problem to guide the search. Our experiments demonstrate the benefits of these algorithms and the relative merits of the heuristics.

Introduction

Stochastic shortest path problems (SSPs) are the de facto model for planning under uncertainty. Solving an SSP involves computing a policy which maps states to actions so as to minimise the expected (scalar) cost to reach the goal from a given initial state. Multi-objective stochastic shortest path problems (MOSSPs) are a useful generalisation of SSPs where multiple objectives (e.g. time, fuel, risk) need to be optimised without the user being able to a priori weigh these objectives against each other [START_REF] Roijers | Multi-Objective Decision Making[END_REF]. In this more complex case, we now aim to compute a set of non-dominated policies whose vector-valued costs represent all the possible trade-offs between the objectives.

There exist two approaches to solving MOMDPs (Roijers and Whiteson 2017), a special case of MOSSPs: inner loop planning which consists in extending SSP solvers by generalising single objective operators to the multi-objective (MO) case, and outer loop planning which consists in solving a scalarised MOSSP multiple times with an SSP solver. We focus on the former. The canonical inner loop method, MO Value Iteration (MOVI) [START_REF] White | Multi-objective infinite-horizon discounted Markov decision processes[END_REF]) and its variants [START_REF] Wiering | Computing Optimal Stationary Policies for Multi-Objective Markov Decision Processes[END_REF][START_REF] Barrett | Learning All Optimal Policies with Multiple Criteria[END_REF][START_REF] Roijers | Multi-Objective Decision Making[END_REF], require enumerating the entire state space of the problem and are unable to scale to the huge state spaces typically found in automated planning.

Therefore, this paper focuses on heuristic search methods which explore only a small fraction of the state space when guided with informative heuristics. Heuristic search has been successfully applied to a range of optimal planning settings, including single objective (SO) or constrained SSPs [START_REF] Hansen | LAO * : A Heuristic search algorithm that finds solutions with loops[END_REF][START_REF] Bonet | Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming[END_REF]Trevizan et al. 2017), and MO deterministic planning [START_REF] Mandow | Multiobjective A * search with consistent heuristics[END_REF][START_REF] Khouadjia | Pareto-Based Multiobjective AI Planning[END_REF][START_REF] Ulloa | A Simple and Fast Bi-Objective Search Algorithm[END_REF]. Moreover, a technical report by [START_REF] Bryce | Probabilistic Planning is Multi-Objective[END_REF] advocated the need for heuristic search and outlined an extension of LAO* [START_REF] Hansen | LAO * : A Heuristic search algorithm that finds solutions with loops[END_REF] for finite horizon problems involving multiple objectives and partial observability. Convex Hull Monte-Carlo Tree-Search [START_REF] Painter | Convex Hull Monte-Carlo Tree-Search[END_REF] extends the Trial-Based Heuristic Tree Search framework [START_REF] Keller | Trial-Based Heuristic Tree Search for Finite Horizon MDPs[END_REF] to the MO setting but applies only to finitehorizon MOMDPs. Yet to the best of our knowledge there is no investigation of heuristic search for MOSSPs. This paper fills this gap in heuristic search for MOSSPs. First, we characterise the necessary conditions for MOVI to converge in the general case of MOSSPs. We then extend the well-known SSP heuristic search algorithms LAO* [START_REF] Hansen | LAO * : A Heuristic search algorithm that finds solutions with loops[END_REF] and LRTDP [START_REF] Bonet | Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming[END_REF] to the multi-objective case, leading to two new MOSSP algorithms, MOLAO* and MOLRTDP, which we describe along with sufficient conditions for their convergence. We also consider the problem of guiding the search of these algorithms with domain-independent heuristics. A plethora of domain-independent heuristics exist for classical planning, but works on constructing heuristics for (single objective) probabilistic or multi-objective (deterministic) planning are much more recent [START_REF] Trevizan | Occupation Measure Heuristics for Probabilistic Planning[END_REF][START_REF] Klößner | Pattern Databases for Stochastic Shortest Path Problems[END_REF][START_REF] Geißer | Admissible Heuristics for Multi-Objective Planning[END_REF]. Building on these recent works, we investigate a spectrum of heuristics for MOSSPs differing in their ability to account for the probabilistic and multi-objective features of the problem.

Finally, we conduct an experimental comparison of these algorithms and of the guidance obtained via these heuristics. We observe the superiority of heuristic search over value iteration methods for MOSSPs, and of heuristics that are able to account for the tradeoffs between competing objectives.

A multi-objective stochastic shortest path problem (MOSSP) is a tuple (S, s 0 , G, A, P, C) where: S is a finite set of states, one of which is the initial state s 0 , G ⊆ S is a set of goal states, A is a finite set of actions, P (s | s, a) is the probability of reaching s after applying action a in s, and C(a) ∈ R n ≥0 is the n-dimensional vector representing the cost of action a. Two special cases of MOSSPs are stochastic shortest path problems (SSPs) and bi-objective SSPs which are obtained when n equals 1 and 2, respectively.

A solution for an SSP is a deterministic policy π, i.e., a mapping from states to actions. A policy π is proper or closed w.r.t. s 0 if the probability of reaching G when following π from s 0 is 1; if this probability of reaching G is less than 1, then π is an improper policy. We denote by S π ⊆ S the set of states visited when following a policy π from s 0 . The expected cost of reaching G when using a proper policy π from a state s ∈ S π is given by the policy value function defined as

V π (s) = C(π(s)) + s ∈S P (s |s, π(s))V π (s) (1)
for s ∈ S π \ G and V π (g) = 0 for g ∈ G. An optimal policy for an SSP is any proper policy π * such that V π * (s 0) ≤ V π (s 0) for all proper policies π . Although π * might not be unique, the optimal value function V * is unique and equals V π * for any π * . Stochastic policies are a generalisation of deterministic policies which map states to probability distributions of actions. The definitions of proper, improper and policy value function are trivially generalised to stochastic policies. A key result for SSPs is that at least one of its optimal policies is deterministic [START_REF] Bertsekas | An Analysis of Stochastic Shortest Path Problems[END_REF]; thus it suffices to search for deterministic policies when solving SSPs.

Coverage sets and solutions for MOSSPs

In the context of MOSSPs, given a policy π, we denote by V π : S → R n ≥0 the vector value function for π. The function V π is computed by replacing V and C by V and C in (1), respectively. In order to define the solution of an MOSSP, we need to first define how to compare two different vectors: a cost vector v dominates u, denoted as v u,

if v i ≤ u i for i = 1, . . . , n. A coverage set for a set of vectors V, denoted as CS(V), is any set satisfying ∀ v ∈ CS(V), u ∈ CS(V) s.t. u
v and u = v.1 An example of a coverage set is the Pareto coverage set (PCS) which is the largest possible coverage set. For the remainder of the paper we focus on the convex coverage set (CCS) [START_REF] Barrett | Learning All Optimal Policies with Multiple Criteria[END_REF][START_REF] Roijers | Multi-Objective Decision Making[END_REF] which is defined as the convex hull of the PCS. Details for computing the CCS of a set V with a linear program (LP) can be found in (Roijers and Whiteson 2017, Sec. 4.1.3). We say that a set of vectors U dominates another set of vectors V, denoted by U V, if for all v ∈ V there exists u ∈ U such that u v. Given an MOSSP define the optimal value function V * by V * (s) = CCS({ V π (s) | π is a proper policy}). Then we define a solution to the MOSSP to be any set of proper policies Π such that the function ϕ : Π → V * (s 0) with ϕ(π) = V π (s 0) is a bijection. By choosing CCS as our coverage set operator, we may focus our attention to only non-dominated deterministic policies, where non-dominated stochastic policies are implicitly given by the points on the surface of the polyhedron drawn out by the CCS. In this way, we avoid having to explicitly compute infinitely many non-dominated stochastic policies.

To illustrate this statement, consider the MOSSP in Fig. 1 with actions a 1 and a 2 where P (s 0 |s 0 , a 1) = P (g 1 |s 0 , a 1) = P (s 0 |s 0 , a 2) = P (g 2 |s 0 , a 2) = 0.5 and C(a 1) = [1, 0] and C(a 2) = [0, 1]. One solution consists of only two deterministic policies π 1 (s 0) = a 1 and π 2 (s 0) = a 2 with corresponding expected costs [2, 0] and [0, 2]. Notice that there are uncountably many stochastic policies obtained by the convex combinations of π 1 and π 2 , i.e., π t (a

1 |s 0) = 1 -t, π t (a 2 |s 0) = t for t ∈ [0, 1]. The expected cost of each π t is [2 -2t, 2t
] and these stochastic policies do not dominate each other. Therefore, if the PCS is used instead of the CCS in the definition of optimal value function, then V * (s 0) would be {[2 -2t, 2t] | t ∈ [0, 1]} and the corresponding solution would be {π t | t ∈ [0, 1]}. The CCS allows us to compactly represent the potentially infinite PCS by storing only the deterministic policies: in this example, the actual solution is {π 1 , π 2 } and the optimal value function is

V * (s 0) = {[2, 0], [0, 2]}.

Value Iteration for SSPs

We finish this section by reviewing how to compute the optimal value function V * for SSPs and extend these results to MOSSPs in the next section. The optimal (scalar) value function V * for an SSP can be computed using the Value Iteration (VI) algorithm [START_REF] Bertsekas | of Optimization and neural computation series[END_REF]: given an initial value function V 0 it computes the sequence V 1 , . . . , V k where V t+1 is obtained by applying a Bellman backup, that is

V t+1 (g) = 0 if g ∈ G and, for s ∈ S \ G, V t+1 (s) = min a∈A Q t+1 (s, a)
(2)

Q t+1 (s, a) = C(a) + s ∈S P (s |s, a)V t (s). (3)
VI guarantees that V k converges to V * as k → ∞ under the following conditions: (i) for all s ∈ S, there exists a proper policy w.r.

if s ∈ G then V new (s) ← { 0} ; 4 else V new (s) ← BellmanBackup(s) ; 5 res(s) ← D(V, V new) 6 V ← V new 7 return V
to requiring that no dead ends exist, while the latter condition can be seen as preventing cycles with 0 cost. Notice that finite-horizon Markov Decision Processes (MDPs) and infinite-horizon discounted MDPs are special cases of SSPs in which all policies are guaranteed to be proper [START_REF] Bertsekas | of Optimization and neural computation series[END_REF].

Value Iteration for MOSSPs

Value Iteration has been extended to the MO setting in special cases of SSPs, e.g. infinite-horizon discounted MDPs [START_REF] White | Multi-objective infinite-horizon discounted Markov decision processes[END_REF]. In this section, we present the MO version of Value Iteration for the general MOSSP case. While the changes in the algorithm are minimal, the key contribution of this section is the generalisation of the assumptions needed for convergence. We start by generalising the Bellman backup operation from the SO, i.e. (2) and (3), to the MO case. For s ∈ S \ G we have

V t+1 (s) = CS a∈A Q t+1 (s, a) (4) Q t+1 (s, a) = { C(a)} ⊕ s ∈S P (s |s, a)V t (s) , (5)
and V t+1 (g) = { 0} for g ∈ G where ⊕ denotes the sum of two sets of vectors V and U defined as

{ u + v | u ∈ U, v ∈ V},
and is the generalised version of ⊕ to several sets. Alg. 1 illustrates the MO version of Value Iteration (MOVI) which is very similar to the single-objective VI algorithm with the notable difference that the convergence criterion is generalised to handle sets of vectors. The Hausdorff distance between two sets of vectors U and V is given by

D(U, V) = max max u∈U min v∈V d(u, v), max u∈V min v∈U d(u, v) (6)
for some choice of metric d such as the Euclidean metric. We use this distance to define residuals in line 5. As with VI, MOVI converges to the optimal value function at the limit [START_REF] White | Multi-objective infinite-horizon discounted Markov decision processes[END_REF][START_REF] Barrett | Learning All Optimal Policies with Multiple Criteria[END_REF] under certain strong assumptions presented in the next section. We can extract policies with the choice of a scalarising weight w from the value function [START_REF] Barrett | Learning All Optimal Policies with Multiple Criteria[END_REF].

Assumptions for the convergence of MOVI

Similarly to the SO version of VI, MOVI requires that the reachability assumption holds; however, the assumption that Algorithm 2: MOVI under Assumption 1 Data: MOSSP problem P = (S, s 0 , G, A, P, C), initial values V(s) for each state s (default to V(s) = { 0}), consistency threshold ε and upper bound b.

1 while max s∈S res(s) < ε do 2 for s ∈ S do 3 if s ∈ G then V new (s) ← { 0} ; 4 else V new (s) ← BellmanBackup B (s) ; 5 res(s) ← D(V, V new) 6 V ← V new 7 for s ∈ S do V(s) = V(s) \ { b} ; 8 return V
improper policies have infinite cost needs to be generalised to the MO case. One option is to require that all improper policies cost ∞ which we call the strong improper policy assumption and, if it holds with the reachability assumption, then MOVI (Alg. 1) is sound and complete for MOSSPs. The strong assumption is very restrictive because it implies that any cycle in an MOSSP must have a cost greater than zero in all dimensions; however, it is common for MOSSPs to have zero-cost cycles in one or more dimensions. For instance, in navigation domains where some actions such as wait, load and unload do not consume fuel and can be used to generate zero-fuel-cost loops.

Another possible generalisation for the cost of improper policies is that they cost infinity in at least one dimension. This requirement is not enough as illustrated by the (deterministic) MOSSP in Fig. 2. The only deterministic proper policy is π(s 0) = a g with cost [0, 1], and the other deterministic policy is π (s 0) = a 1 , π (s 1) = a 2 which is improper and costs [∞, 0]. Since neither [0, 1] or [∞, 0] dominate each other, two issues arise: MOVI tries to converge to infinity and thus never terminates; and even if it did, the cost of an improper policy would be wrongly added to the CCS.

These issues stem from VI and its generalisations not explicitly pruning improper policies. Instead they rely on the assumption that improper policies have infinite cost to implicitly prune them. This approach is enough in the SO case because any proper policy dominates all improper policies since domination is reduced to the '≤' operator; however, as shown in this example, the implicit pruning approach for improper policies is not correct for the MO case.

We address these issues by providing a version of MOVI that explicitly prunes improper policies and to do so we need a new assumption:

s 0 s 1 g a 2 a 1 a g Figure 2: An MOSSP with action costs given by C(a 1) = [1, 0], C(a 2) = [1, 0], C(a g) = [0, 1].
Assumption 1 (Weak Improper Policy Assumption). There exists a vector b ∈ R n ≥0 such that for every improper policy π and s ∈ S, V π (s) b, and for every proper policy π and s ∈ S, V π (s) b and V π (s) = b.

The weak assumption allows improper policies to have finite cost in some but not all dimensions at the expense of knowing an upper bound b on the cost of all proper policies. This upper bound b lets us infer that a policy π is improper whenever V π (s) b, i.e., that V π (s) is greater than b in at least one dimension.

Alg. 2 outlines the new MOVI where the differences can be found in lines 4 and 7. In line 4, we use a modified Bellman backup which detects vectors associated to improper policies and assigns them the upper bound b given by the weak improper policy assumption. The modified backup is given by

V t+1 (s) = CS B a∈A Q t+1 B (s, a) (7)
Q t+1 B (s, a) = { C(a)} ⊕ B s ∈S B P (s |s, a)V t (s) (8)
where ⊕ B is a modified set addition operator defined on pairwise vectors u and v by

u ⊕ B v = b if u ⊕ v b u ⊕ v otherwise, (9)
and similarly for the generalised version B . Also define CS B to be the modified coverage set operator which does not prune away b if it is in the input set. The modified backup (7) enforces a cap on value functions (i.e., V t (s) { b}) through the operator ⊕ B (9). This guarantees that a finite fixed point exists for all V π (s) and, as a result, that Alg. 2 terminates. Once the algorithm converges, we need to explicitly prune the expected cost of improper policies which is done in line 7. By Assumption 1, we have that no proper policy costs b thus we can safely remove b from the solution. Note that the overhead in applying this modified backup and post-processing pruning is negligible. Theorem 3.1 shows that MOVI converges to the correct solution. Theorem 3.1. Given an MOSSP in which the reachability and weak improper policy assumptions hold for an upper bound b, and given a set of vectors

V 0 such that V 0 V * , the sequence V 1 , . . . , V k computed by MOVI converges to the MOSSP solution V * as k → ∞.
Proof sketch. By the assumption that V 0

V * , we have that MOVI will not prune away vectors associated with proper policies which contribute to a solution. If V 0 V * , e.g., V 0 (s) = { b} for all s, then Alg. 2 is not guaranteed to find the optimal value function since it will incorrectly prune proper policies. Otherwise, we have that V 1 , . . . , V k converges to V † = V * ∪ { b} if the original MOVI in Alg. 1 does not converge, and V † = V * otherwise. For example, V * = {[0, 1]} in the example seen in Fig. 2

but V † = {[2, 2], [0, 1]} if we choose b = [2, 2].
This convergence result follows by noticing that, by definition of the modified backup in (7), every vector in V t (s) for all t dominates b. We may then apply the proof for the convergence of MOVI with convex coverage sets by [START_REF] Barrett | Learning All Optimal Policies with Multiple Criteria[END_REF] which reduces to the convergence of scalarised SSPs using VI in the limit, of which there are finitely many since the number of deterministic policies is finite. Here, we have for every w that w • b is an upper bound for the problem scalarised by w. Finally, we have that line 7 removes b from V † such that we correctly return V * .

Note that the original proof for MOMDPs by [START_REF] Barrett | Learning All Optimal Policies with Multiple Criteria[END_REF] does not directly work for MOSSPs as some of the scalarised SSPs have a solution of infinite expected cost such that VI never converges. The upper bound b we introduce solves this issue as achieving this bound is the same as detecting improper policies. The proof remains correct in the original setting applied to discounted MOMDPs in which there are no improper policies.

Relaxing the reachability assumption

The reachability assumption can also be relaxed by transforming an MOSSP with dead ends into a new MOSSP without dead ends. Formally, given an MOSSP (S, s 0 , G, A, P, C) with dead ends, let A = A ∪ {give-up}; P (s g |give-up, s) = 1 for all s ∈ S and any

s g ∈ G; C (a) = [C(a) : 0] for all a ∈ A; and C (give-up) = [0 : 1].
Then the MOSSP (S, s 0 , G, A , P, C) does not have dead ends (i.e., the reachability assumption holds) since the giveup action is applicable in all states s ∈ S. This transformation is similar to the finite-penalty transformation for SSPs [START_REF] Trevizan | Efficient Solutions for Stochastic Shortest Path Problems with Dead Ends[END_REF]; however it does not require a large penalty constant. Instead, the MOSSP transformation uses an extra cost dimension to encode the cost of giving up and the value of the n+1-th dimension of C (give-up) is irrelevant as long as it is greater than 0. Since the give-up action can only be applied once, defining the cost of give-up as 1 let us interpret the n + 1th dimension of any V π (s) as the probability of giving up when following π from s.

Heuristic search

Value iteration gives us one method for solving MOSSPs but is limited by the fact that it requires enumerating over the whole state space. This is impractical for planning problems, as their state space grows exponentially with the size of the problem encoding. This motivates the need for heuristic search algorithms in the vein of LAO * and LRTDP for SSPs [START_REF] Hansen | LAO * : A Heuristic search algorithm that finds solutions with loops[END_REF][START_REF] Bonet | Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming[END_REF], which perform backups on a promising subset of states at each iteration. To guide the choice of the states to expand and explore at each iteration, they use heuristic estimates of state values initialised when the state is first encountered. In this section, we extend the concept of heuristics to the more general MOSSP setting, discuss a range of ways these heuristics can be constructed, and provide multi-objective versions of LAO * and LRTDP.

Heuristics

For the remainder of the paper, we will call a set of vectors a value. Thus, a heuristic value for a state is a set of vectors H(s) ⊂ R n ≥0 . We implicitly assume that any heuristic value H(s) has already been pruned with some coverage set operator. The definition of an admissible heuristic for MOSSPs should be at most as strong as the definition for deterministic MO search (Mandow and Pérez-de-la-Cruz 2010).

Definition 4.1. A heuristic H for an MOSSP is admissible if ∀s ∈ S \ G, H(s) V * (s) where V * is the optimal value function, and ∀g ∈ G, H(g) = { 0}.

For example, if for some MOSSP we have

V * (s) = {[0, 2]} for a state s, then H(s) = {[0, 1], [3, 0]} and H(s) = { 0}
for all other s is an admissible heuristic. As in the single-objective case, admissible heuristics ensure that the algorithms below converge to near optimal value functions for ε > 0 with finitely many iterations and to optimal value functions with possibly infinitely many iterations when ε = 0.

Definition 4.2. A heuristic H for an MOSSP is consistent if we have for all s ∈ S, a ∈ A that H(s) { C(a)} ⊕ (s ∈S P (s |s, a)H(s)).
The definition of consistent heuristic is derived and generalised from the definition of consistent heuristics for deterministic search: h(s) ≤ c(s, a, s) + h(s). The main idea is that assuming non-negative costs, state costs increase monotonically which results in no re-expansions of nodes in A * search. Similarly, we desire monotonically increasing value functions for faster convergence.

We now turn to the question of constructing domainindependent heuristics satisfying these properties from the encoding of a planning domain. This question has only recently been addressed in the deterministic multi-objective planning setting [START_REF] Geißer | Admissible Heuristics for Multi-Objective Planning[END_REF]): with the exception of this latter work, MO heuristic search algorithms have been evaluated using "ideal-point" heuristics, which apply a single-objective heuristic h i to each objective in isolation, resulting in a single vector H ideal (s) = {[h 1 (s), . . . h n (s)]}. Moreover, informative domain-independent heuristics for single objective SSPs are also relatively new [START_REF] Trevizan | Occupation Measure Heuristics for Probabilistic Planning[END_REF][START_REF] Klößner | Pattern Databases for Stochastic Shortest Path Problems[END_REF]: a common practice was to resort to classical planning heuristics obtained after determinisation of the SSP [START_REF] Jimenez | Planning in Probabilistic Domains using a Deterministic Numeric Planner[END_REF].

We consider a spectrum of options when constructing domain-independent heuristics for MOSSPs, which we instantiate using the most promising families of heuristics identified in [START_REF] Geißer | Admissible Heuristics for Multi-Objective Planning[END_REF] for the deterministic case: critical paths and abstraction heuristics. All heuristics are consistent and admissible unless otherwise mentioned.

• The baseline option is to ignore both the MO and stochastic aspects of the problem, and resort to an ideal-point heuristic constructed from the determinised problem.

In our experiments below, we apply the classical h max heuristic [START_REF] Bonet | Planning as Heuristic Search[END_REF] to each objective and call this H max ideal .

• A more elaborate option is to consider only the stochastic aspects of the problem, resulting in an ideal-point SSP heuristic. In our experiments, we apply the recent SSP canonical PDB abstraction heuristic by [START_REF] Klößner | Pattern Databases for Stochastic Shortest Path Problems[END_REF] to each objective which we call H pdb2 ideal and H pdb3 ideal for patterns of size 2 and 3, respectively. • Alternatively, one might consider only the multiobjective aspects, by applying some of the MO deterministic heuristics [START_REF] Geißer | Admissible Heuristics for Multi-Objective Planning[END_REF] to the determinised SSP. The heuristics we consider in our experiments are the MO extension of h max and canonical PDBs: H comax mo , H pdb2 mo , and H pdb3 mo . These extend classical planning heuristics by using MO deterministic search to solve subproblems and combining solutions by taking the maximum of two sets of vectors with the admissibility preserving operator comax [START_REF] Geißer | Admissible Heuristics for Multi-Objective Planning[END_REF]).

• The best option is to combine the power of SSP and MO heuristics. We do so with a novel heuristic H pdb mossp which extends the SSP PDB abstraction heuristic [START_REF] Klößner | Pattern Databases for Stochastic Shortest Path Problems[END_REF] to the MO case by using an MO extension of topological VI (TVI) [START_REF] Dai | Topological Value Iteration Algorithms[END_REF] to solve each projection and the comax operator to combine the results. Our experiments use H pdb2 mossp and H pdb3 mossp .

(i)MOLAO *

Readers familiar with the LAO * heuristic search algorithm and the multi-objective backup can convince themselves that an extension of LAO * to the multi-objective case can be obtained by replacing the backup operator with the multiobjective version. This idea was first outlined by [START_REF] Bryce | Probabilistic Planning is Multi-Objective[END_REF] for finite-horizon MDPs which is a special case of SSPs without improper policies. In the same vein as [START_REF] Hansen | LAO * : A Heuristic search algorithm that finds solutions with loops[END_REF], we provide MOLAO * alongside an 'improved' version, iMOLAO * , in Alg. 3 and 4 respectively. MOLAO * begins in line 1 by lazily assigning an initial value function V to each state with the heuristic function, as opposed to explicitly initialising all initial values at once. Π is a dictionary representing our partial solution which maps states to sets of optimal actions corresponding to their current value function. The main while loop of the algorithm terminates once there are no nongoal states on the frontier as described in line 2, at which point we have achieved a set of closed policies.

The loop begins with lines 3-5 by removing a nongoal state s from the frontier representing a state on the boundary of the partial solution graph, and adding it to the interior set I. The nodes of the partial solution graph are partial solution states, and the edges are the probabilistic transitions under all partial solution actions. Next in line 6 we add the set of yet unexplored successors of s to the frontier: any state s ∈ S \ I such that ∃a ∈ A, P (s |s, a) > 0. Then we extract the set Z of all ancestor states of s in the partial solution Π using graph search in line 7. We run MOVI to ε-consistency on the MOSSP problem restricted to the set of states Z and update the value functions for the corresponding states in line 8. The partial solution is updated in line 9 by extracting Algorithm 3: MOLAO * Data: MOSSP problem P = (S, s 0 , G, A, P, C), heuristic H, and consistency threshold ε

1 V ← H; Π ← ∅; F ← {s 0 } ; I ← ∅; N ← {s 0 } 2 while (F ∩ N) \ G = ∅ do 3 s ← any element from (F ∩ N) \ G 4 F ← F \ {s} 5 I ← I ∪ {s} 6 F ← F ∪ (successors(s) \ I) 7 Z ← ancestorStates(s, Π) 8 V| Z ← MOVI(P | Z , V| Z , ε) 9 for s ∈ Z do Π(s) ← getActions(s, V) ; 10 N ← solutionGraph(s I , Π) 11 return V Algorithm 4: IMOLAO * Data: MOSSP problem P = (S, s 0 , G, A, P, C),
heuristic H, and consistency threshold ε

1 V ← H; Π ← ∅; F ← {s 0 } ; I ← ∅; N ← {s 0 } 2 while ((F ∩ N) \ G = ∅) ∧ (max s∈N res(s) < ε) do 3 F = ∅ 4 N ← postorderTraversalDFS(s I , Π) 5 for s ∈ N in the computed order do 6 V(s) ← BellmanBackup(s) 7 Π(s) = getActions(s, V) 8 if s / ∈ I then F = F ∪ {s} ; 9 I = I ∪ {s} 10 return V
the actions corresponding to the value function with

getActions(s, V) = {a ∈ A | Q(s, a) ∩ V(s) = ∅} . (10
)
This function can be seen as a generalisation of arg min to the MO case where here we select the actions whose Q value at s contribute to the current value V(s). Next, we extract the set of states N corresponding to all states reachable from s 0 by the partial solution Π in line 10. The completeness and correctness of MOLAO * follows from the same reasoning as LAO * extended to the MO case. Specifically, we have that given an admissible heuristic the algorithm achieves ε-consistency upon termination.

One potential issue with MOLAO * is that we may waste a lot of backups while running MOVI to convergence several times on partial solution graphs which do not end up contributing to the final solution. The original authors of LAO * proposed the iLAO * algorithm to deal with this. We provide the MO extension, namely iMOLAO * . The main idea with iMOLAO * is that we only run one set of backups every time we (re-)expand a state instead of running VI to convergence in the loop in lines 5 to 9. Backups are also performed asynchronously using DFS postorder traversal of the states in the partial solution graph computed in line 4, allowing for faster convergence times.

To summarise, the two main changes required to extend 2) storing possibly more than one greedy action at each state corresponding to incomparable vector Q-values, resulting in a larger set of successors associated to each state. These ideas can be applied to other asynchronous VI methods such as Prioritised VI [START_REF] Wingate | Prioritization Methods for Accelerating MDP Solvers[END_REF] and Topological VI [START_REF] Dai | Topological Value Iteration Algorithms[END_REF].

MOLRTDP

LRTDP [START_REF] Bonet | Labeled RTDP: Improving the Convergence of Real-Time Dynamic Programming[END_REF] is another heuristic search algorithm for solving SSPs. The idea of LRTDP is to perform random trials using greedy actions based on the current value function or heuristic for performing backups, and labelling states as solved when the consistency threshold has been reached in order to gradually narrow down the search space and achieve a convergence criterion. A multi-objective extension of LRTDP is not as straightforward as extending the backup operator given that each state has possibly more than one greedy action to account for. The two main changes from the original LRTDP are (1) the sampling of a random greedy action before sampling successor states in the main loop, and (2) defining the descendants of a state by considering successors of all greedy actions (as opposed to just one in LRDTP). Alg. 5 outlines the MO extension of LRTDP.

MOLRTDP consists of repeatedly trialing paths through the state space and performing backups until the initial state is marked as solved. Trials are run by randomly sampling a greedy action a from getActions(s, V) at each state s followed by a next state sampled from the probability distribution of a until a goal state is reached as in the first inner loop from lines 5 to 10. The second inner loop from lines 11 to 13 calls the checkSolved routine in the reverse trial order to label states as solved by checking whether the residual of all its descendant states under greedy actions are less than the convergence criterion.

The checkSolved routine begins with inserting s into the open set if it has not been solved, and returns true otherwise due to line 2. The main loop in lines 3 to 10 collects the descendent states all greedy actions (lines 8-10) and checks whether the residual of all the descendent states are small (lines 5-7). If true, all descendents are labelled as solved as in line 11. Otherwise, backups are performed in the reverse order of explored states as in lines 12 to 15.

The completeness and correctness of MOLRTDP follows similarly from its single objective ancestor. We note specifically that the labelling feature works similarly in the sense that whenever a state is marked as solved, it is known for certain that all its descendents' values are ε-consistent and remain unchanged when backups are performed elsewhere.

Experiments

In this section we empirically evaluate the different algorithms and heuristics for MOSSPs in several domains. Since no benchmark domains for MOSSPs exist, we adapt domains from a variety of sources to capture challenging features of both SSPs and MO deterministic planning. Our benchmark set is introduced in the next section and it is followed by our experiments setup and analysis of the results.

Benchmarks

k-d Exploding Blocksworld Exploding Blocksworld (ExBw) was first introduced by [START_REF] Younes | The First Probabilistic Track of the International Planning Competition[END_REF] and later slightly modified for the IPPC'08 [START_REF] Bryce | 6th Int. Planning Competition: Uncertainty Track. 3rd Int. Probabilistic Planning Competition[END_REF]. In ExBw, a robot has to pick up and stack blocks on top of each other to get a target tower configuration. Blocks have a chance of detonating and destroying blocks underneath or the table. We consider a version with no dead ends using an action to repair the table (Trevizan et al. 2017). We extend ExBw to contain multi-objective costs. ExBw-2d has two objectives: the number of actions required to stack the blocks and number of times we need to repair the table. ExBw-3d has an additional action to repair blocks with an objective to minimise the number of block repairs.

MO Search and Rescue Search and Rescue (SAR-n) was first introduced by Trevizan et al. (2017) as a Constrained SSP. The goal is to find, board and escort to a safe location any one survivor in an n × n grid as quickly as possible, constrained by a fuel limit. Probabilities are introduced when modelling fuel consumption and partial observability of whether a survivor exists in a given location. The location of only one survivor is known for certain. We extend the problem by making fuel consumption as an additional objective instead of a constraint. A solution for a SAR MOSSP is a set of policies with different trade-offs between fuel and time.

MO Triangle Tireworld Triangle Tireworld, introduced by Little and Thiébaux (2007) as a probabilistically interesting problem, consists of a triangular grid of locations. The goal is to travel from an initial to a target location where each location has a probability of getting a flat tire. Some locations contain a spare tire which the agent can load into the car for future use. These problems have dead ends and they occur when a tire is flat and no spare is available. We apply the give-up transformation from Section 3 resulting in an MOSSP with two objectives: total number of actions and probability of using the give-up action.

Probabilistic VisitAll

The deterministic MO Visi-tAll [START_REF] Geißer | Admissible Heuristics for Multi-Objective Planning[END_REF]) is a TSP problem on a grid, where the agents must collectively visit all locations, and each agent's objective is to minimise its own number of moves. This problem is considered MO interesting because any admissible ideal-point heuristic returns the zero vector for all states since it is possible for a single agent to visit all locations while no actions are performed by the other agents. We extend this domain by adding a probabilistic action move-risky which has probability 0.5 of acting as the regular move action and 0.5 of teleporting the agent back to its initial location. The cost of the original move action was changed to 2 while the cost of the move-risky action is 1.

VisitAllTire This domain combines features of both the probabilistic Tireworld and the deterministic MO VisitAll domains into one that is probabilistically and MO interesting. The underlying structure and dynamics is the same as the deterministic MO VisitAll except that the move action now can result in a flat tire with probability 0.5. We also added the actions for loading and changing tires for each of the agents. Similarly to Triangle Tireworld, the problems in this domain can have dead ends when a flat tire occurs and no spare tire is available. Applying the give-up transformation from Section 3 to this domain results in k + 1 cost functions where k is the number of agents.

Setup

We implemented the MO versions of the VI, TVI, (i)LAO * and LRTDP algorithms and the MO version of the PDB abstraction heuristics (H pdb mossp) in C++.2 PDB heuristics are computed using TVI, ε = 0.001 and b = 100. We include in our experiments the following heuristics for deterministic ideal and H pdb3 ideal) are also included in our experiments. All problem configurations are run with a timeout of 1800 seconds, memory limit of 4GB, and a single CPU core. The experiments are run on a cluster with Intel Xeon 3.2 GHz CPUs. We used CPLEX version 22.1 as the LP solver for computing CCS. The consistency threshold is set to ε = 0.001 and we set b = 100. Each experimental configuration is run 6 times and averages are taken to reduce variance in the data.

We also modify the inequality constraint in Alg. 4.3 from Roijers and Whiteson 2017 for computing CCS to w • (vv) + x ≤ -λ, ∀ v ∈ V with λ = 0.01 to deal with inevitable numerical precision errors when solving the LP. If the λ term is not added, the function may fail to prune unnecessary points such as those corresponding to stochastic policies in the CCS, resulting in slower convergence. However, an overly large λ may return incorrect results by discarding important points in the CCS. One may alternatively consider the term as an MO parameter for trading off solution accuracy and search time, similarly to the ε parameter.

Fig. 3 shows the distribution of CCS sizes for different domains. Recall that the CCS implicitly represents a potentially infinite set of stochastic policies and their value functions. As a result, a small CCS is sufficient to dominate a large number of solutions, for instance, in Triangle Tireworld, a CCS of size 3 to 4 is enough to dominate all other policies even though the number of deterministic policies for this domain is double exponential in its parameter n.

Results

Fig. 4 summarises our results by showing the cumulative coverage of different planners and heuristics across all considered problems. The following is a summary of our findings (we omit the MO in the planner names for simplicity):

What is the best planner and heuristic combination? Referring to the overall cumulative coverage plot in Fig. 4a and coverage tables in Tab. 1, we notice that LRTDP+H pdb2 (d) PDB approaches considered, i.e., summation across the ideal-point, MO, and MOSSP approaches. Notice that the xaxis is the same for all plots but the y-axis is different and might not start at 0. and iLAO * +H pdb3 mossp . The ranking of the top 3 planners remain the same if we normalise the coverage by domain.

We note that the considered Exbw3 problems had several improper policies resulting in slow convergence of TVI for solving PDBs of size 3. This is due to Assumption 1 and the What planner is best? To answer this question, we look at the cumulative coverage marginalised over heuristics, that is, we sum the coverage of a planner across the different heuristics. The results are shown in Fig. 4b and Tab. 1 and the best three planners in order are LRTDP, iLAO * and LAO * . Notice that the difference in coverage between LRTDP and iLAO * is at 185.6 solved instances while the difference between TVI and VI is only 9.7. The ranking between planners remains the same when the coverage is normalised per domain. Considering domains individually, LRTDP is the best planner for Exbw and VisitAllTire while for iLAO * is the best planner for SAR and Probabilistic VisitAll. For MO Tireworld, both LRTDP and iLAO * are tied in first place.

What heuristic is best? The cumulative coverage marginalised over planners for selected heuristics is shown in Fig. 4c and Tab. 1. The MOSSP PDB heuristic of size 3 (H pdb3 mossp) has the best performance followed by H pdb2 mossp , H pdb3 mo and H pdb2 mo . We note there is a large overlap in the 95% confidence intervals of H pdb2 mossp and H pdb3 mossp due to the slow computation of H pdb3 mossp on Exbw3. The overlap disappears when we remove the Exbw3 results with coverage and confidence intervals given by 862.9 ± 3.0 and 807.6 ± 2.9 for H pdb3 mossp and H pdb2 mossp , respectively. We further quantify heuristic accuracy using the directed Hausdorff distance between heuristic and optimal values in Tab. 2. We notice that H comax mo achieves strong accuracy relative to other heuristics but has the worst coverage of 504.5 due to its high computation time. Table 2: The mean relative error (%) of the heuristic value relative to the optimal value at the initial state computed with the directed Hausdorff distance divided by the norm of the largest vector in the optimal value: max v∈V * min u∈H d(v, u)/ max v∈V * v . Only solved instances for which all heuristics were computed for the initial state within the time limit were considered. Cells ranked first to third are shaded. Lower values are better.

What feature of MOSSPs is more important to capture in a heuristic? To answer this question, consider the performance of the 3 classes of PDB heuristics: probabilistic-only PDBs (H pdb ideal), MO only PDBs (H pdb mo), and MO probabilistic PDBs (H pdb mossp). The cumulative coverage marginalised over the different PDB heuristics shown in Fig. 4d and Tab. 1 highlights the effectiveness of MO PDBs. H pdb mossp is able to solve 63.8 and 281 more instances than H pdb mo and H pdb ideal , respectively. The ranking remains the same when the coverage is normalised per domain. Moreover, notice in Tab. 2 that H pdb mo heuristics are at least as informative as H pdb ideal heuristics on all domains. Lastly, we note that an admissible ideal point heuristic is upper bounded by { u} where u i = min v∈V * v i for i = 1, . . . , n. These results suggest that it is more important for a heuristic to maintain the MO cost structure of MOSSPs than the stochastic structure of actions.

Conclusion

In this work we define a new general class of problems, namely multi-objective stochastic shortest path problems (MOSSPs). We adapt MOVI which was originally constructed for solving multi-objective Markov Decision Processes to our MOSSP setting with conditions for convergence. We further design new, more powerful heuristic search algorithms (i)MOLAO * and MOLRTDP for solving MOSSPs. The algorithms are complemented by a range of MOSSP heuristics and an extensive set of experiments on several benchmarks with varying difficulty and features. Through our evaluation, we can conclude that MOLRTDP is the best performing MOSSP solver, and abstraction heuristics which consider both the MO and probabilistic aspects of MOSSPs the best performing MOSSP heuristic. Our future work includes adding probabilistic LTL constraints as additional multi-objectives in order to compute solutions to MO-PLTL SSPs [START_REF] Baumgartner | Heuristic Search Planning With Multi-Objective Probabilistic LTL Constraints[END_REF] that are robust to the choice of probability thresholds.

Figure 1 :

 1 Figure 1: A MOSSP with action costs given by C(a 1) = [1, 0] and C(a 2) = [0, 1].

Algorithm 5 :

 5 MOLRTDP Data: MOSSP problem P = (S, s 0 , G, A, P, C), heuristic H, and consistency threshold ε procedure MOLRTDP(P, ε, H) true; open ← ∅; closed ← ∅ 2 if ¬s.solved then open.push(s) ; 3 while ¬open.empty() do 4 s ← open.pop() getActions(s, V) do 9 for s ∈ successors(s, a) do 10 if ¬s .solved ∧ s / ∈ open ∪ closed then open.push(s) ; 11 if rv then for s ∈ closed do s.solved = true ; LAO * to the MO case are (1) replacing the backup operator with the MO version, and (

Figure 4 :

 4 Figure 4: Cumulative coverage of: (a) planners and heuristics combinations (low-performing planners omitted); (b) planners only, i.e., summation across different heuristics; (c) heuristics only, i.e. summation across different planners;(d) PDB approaches considered, i.e., summation across the ideal-point, MO, and MOSSP approaches. Notice that the xaxis is the same for all plots but the y-axis is different and might not start at 0.

Table 1 :

 1 Average marginalised cumulative coverages with 95% confidence intervals. Higher values are better. chosen b = 100 for our experiments which that requires the cost of improper policies in each PDB to cost at least 100 in one of its dimensions. Ignoring the Exbw3 domain, the top 3 configurations are LRTDP+H pdb3 mossp , LRTDP+H pdb2 mossp and iLAO * +H pdb3 mossp and their 95% confidence intervals all overlap. The ranking of the top few planners remain the same if the coverage is normalised.

	planner + heuristic	coverage	heuristic coverage
	LRTDP H pdb2 mossp	307.6 ± 2.7 H pdb3 mossp	893.5 ± 1.9
	LRTDP H pdb2 mo	302.8 ± 2.1 H pdb2 mossp	893.3 ± 3.2
	LRTDP H pdb3 mo	291.2 ± 1.3 H pdb3 mo	871.2 ± 1.8
	iLAO * H pdb3 mossp	276.7 ± 0.7 H pdb2 mo	851.8 ± 2.1
	iLAO * H pdb3 mo LRTDP H pdb3 mossp	272.0 ± 0.0 H pdb3 ideal 271.2 ± 1.7 H max ideal	768.7 ± 0.7 755.2 ± 0.7
	LRTDP H max ideal iLAO * H pdb2 mo	263.2 ± 0.7 H pdb2 ideal 262.0 ± 0.0 blind	737.2 ± 1.2 572.9 ± 1.4
	planner	coverage	PDB	coverage
	LRTDP	2297.3±3.0 H pdb mossp	1786.8±1.6
	iLAO *	2111.7±0.7 H pdb mo	1723.0±2.0
	LAO *	1529.0±1.2 H pdb ideal	1505.8±1.9
	TVI	460.0 ± 0.5		
	VI	450.3 ± 0.7		

We will denote sets of vectors or functions which map to sets of vectors with bold face, e.g. V, and single vectors or functions which map to single vectors with vector notation, e.g. V .

Code at https://github.com/DillonZChen/cpp-mossp-planner

Acknowledgements

This work was supported by ARC project DP180103446, On-line planning for constrained autonomous agents in an uncertain world. The computational resources for this project were provided by the Australian Government through the National Computational Infrastructure (NCI) under the ANU Startup Scheme.