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Learned Sensitivity Metrics for Robust and Accurate Motion Planning

Simon Wasiela1, Marco Cognetti1,2, Paolo Robuffo Giordano3, Juan Cortés1 and Thierry Siméon1

Abstract— This paper addresses the problem of computing
robust trajectories against uncertainties in the robot model.
Based on the notion of closed-loop state sensitivity introduced
in [1], [2] for identifying deviations of the closed-loop tra-
jectories of any robot/controller pair against variations of
uncertain parameters in the robot model, uncertainty tubes
can be derived for bounded parameter variations [3]. Such
tubes were integrated within a motion planner named SAMP
[4] to produce robust global plans, emphasizing the generation
of low sensitivity trajectories. However, a bottleneck of this
method remains the very high computational cost of the
uncertainty tubes. In this paper, we mitigate this problem
by proposing a novel framework that first incorporates a
Long Short-Term Memory [5] (LSTM) neural network (NN)
to provide fast and accurate uncertainty tubes estimation, and
then reduces tracking errors at given points on the trajectory.
We validate our framework on a full 3D-quadrotor UAV model
performing a ‘ring-recovering’ task requiring high accuracy.
Our results show the computational gain of the LSTM-based
robust planning and that the subsequent optimization stage
significantly improves the accuracy of the trajectory execution.

I. INTRODUCTION

Nowadays, motion planners can generate feasible and
globally-optimal paths for high-dimensional systems and
complex constraints/environments (e.g. see the recent survey
[6]). However, most planners do not consider the unavoidable
presence of uncertainties in the robot/environment model,
and of a feedback action that will track the planned trajecto-
ries in presence of these uncertainties. This can often lead to
a poor robustness and potential loss of optimality at runtime.

Efforts have been made to merge control and planning
together. For example, the well known Model Predictive
Control (MPC) technique [7] provides a “less local” con-
trol strategy. This technique consists in re-planning a local
optimal trajectory taking into account a state feedback and a
prediction of the evolution of the system state over a finite
horizon. Nevertheless, MPC remains local in the vicinity
of the reference trajectory. On the other hand, the global
control-aware motion planner proposed in [8] relies on some
coupling between planning and control, but uncertainties are
not explicitly considered.

Other approaches based on contraction theory [9]–[13] or
the so-called ‘feedback motion planning’ [14], [15] synthe-
size or rely on a specific robust controller that ensures that the
trajectory remains within some uncertainty tubes, which can
then be used in global planners as RRT [16]. These methods,
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(a) Missed ring pick (b) Successful ring pick

Fig. 1: Scenario with a drone that has to grasp a ring. (a) the
uncertainty associated with its end-effector position is too
large and the execution fails. (b) with a lower uncertainty
the robot is able to successfully accomplish the task.

however, remain limited to a specific form of control strategy
and are often applicable only to specific class of systems for
which the controller derivation is feasible in practice.

To overcome some of these problems, the sensitivity-
aware motion planner (SAMP) [4] exploits the derivation
of the uncertainty tubes in [3] (based on the so-called
closed-loop sensitivity matrix [1], [2]) to generate globally
robust trajectories for any controller and any robot dynamics.
However, this planner suffers from the high computational
cost of calculating the uncertainty tubes.

The contribution presented in this paper is twofold. We
first propose a more efficient sampling-based motion planner
(SBMP) relying on a Long Short-Term Memory (LSTM)
[5] network that quickly and accurately estimates the un-
certainty tubes and control input profiles along trajectories.
In addition, the proposed framework locally optimizes the
planned trajectory together with the controller gains in order
to maximize the accuracy at a set of waypoints. Simulation
results show the higher computational efficiency of the
planning framework. Also, we tested our approach for the
scenario shown in Fig.1 where a 3D-quadrotor with uncertain
parameters has to perform an in-flight ring recovery task. The
results confirm a better accuracy and robustness of the plan.

The paper is organized as follows. Sect. II first provides
a reminder of the closed-loop sensitivity notions, and then
describes our machine learning approach. Sect. III presents
a framework to generate robust and accurate trajectories,
and explains the incorporation of the LSTM-based neural
network into a global planner. The dynamics of a 3D



quadrotor, the application of the learning method to the
latter, and the planning scenario are described in Sect. IV.
Simulations results are provided in Sect. V. Finally we draw
some conclusions and future directions in Sect. VI.

II. LEARNING SENSITIVITY METRICS

A. Closed-loop sensitivity : Reminder

The notion of closed-loop state sensitivity [1], [2]
quantifies deviations of the closed-loop trajectory of any
robot/controller pair against variations of uncertain param-
eters in the robot model. Consider a generic robot dynamics

q̇ = f(q, u, p), q(t0) = q0, (1)

where q ∈ Rnq is the state vector, u ∈ Rnu the input
vector, and p ∈ Rnp the vector containing (possibly uncer-
tain) model parameters. Also assume presence of a tracking
controller of any form to track a reference trajectory rd(a, t)
parameterized by vector a s.t.,{

ξ̇ = g(ξ, q, a, pc, kc, t), ξ(t0) = ξ0
u = h(ξ, q, a, pc, kc, t),

(2)

where ξ ∈ Rnξ are the internal states of the controller
(e.g., an integral action), kc ∈ Rnk the controller gains and
pc ∈ Rnp the vector of nominal robot parameters used in
the control loop.

In order to quantify how sensible the system is w.r.t.
parameter variations, let the state sensitivity matrix Π be
defined as (see [1])

Π(t) =
∂q(t)

∂p

∣∣∣∣
p=pc

∈ Rnq×np , (3)

and the input sensitivity matrix as (see [2])

Θ(t) =
∂u(t)

∂p

∣∣∣∣
p=pc

∈ Rnu×np . (4)

These two matrices quantify, respectively, how sensible the
states q(t) and the inputs u(t) are w.r.t. variations of p
(w.r.t. the ‘nominal’ pc) for the closed-loop system (1–2).
They do not have in general a closed-form expression, but it
is possible to obtain a closed-expression for their dynamics.
Therefore, the behavior of Π(t) and Θ(t) is obtained in
practice by numerical integration of a first-order differential
equation along a planned trajectory.

The sensitivity framework has been extended in [3] in the
case where each parameter pi is assumed to vary within
a range δpi centered on the parameter nominal value pci
s.t. pi ∈ [pci − δpi, pci + δpi]. In these conditions, the so-
called uncertainty tubes can be computed as the envelope
of the perturbed state/input trajectories obtained when the
parameters vary in the given range. In order to compute these
tubes, let W = diag(δp2i ) be a weighting matrix and

∆pTW−1∆p = 1, (5)

be an ellipsoid in parameter space centered at pc and semi-
axis δpi, with ∆p = p − pc. Assuming small variations of
the parameters, one has ∆q ≈ Π(t)∆p, and it is possible to

Fig. 2: A simplified architecture of the proposed LSTM
NN. Blue blocks correspond to the inputs of the NN that
are composed of a sequence of states qk and an initial
tuple (h0, c0). Green blocks refer to the outputs of the
NN which are a sequence of radii and actuator’s inputs
(Rq

k,Ru
k,Uk), and the final tuple (hend, cend).

obtain – see [3] for details – the corresponding ellipsoids in
the state and the control spaces as

∆qT (ΠWΠT )−1∆q = 1, (6)

∆uT (ΘWΘT )−1∆u = 1, (7)

where ∆q = q−qnom, ∆u = u−unom, while qnom (resp.
unom) is the state (resp. input) evolution of the closed-loop
system in eqs. (1-2) in the nominal case (p = pc). These
ellipsoids represent the sets where the states and the inputs
can vary in case the parameters vary in the specified ranges.
Following the procedure given in [3], it is further possible
to compute the radius ri(t) along the i-th component of the
state that bounds its evolution over time. In order words,

qi,nom(t)− ri(t) ≤ qi(t) ≤ qi,nom(t) + ri(t). (8)

A similar derivation can also be done for the input ellipsoid.
Such radii were used in [4] to perform robust collision
checking within a motion planning framework. However,
their computations rely on the knowledge of Π(t) and Θ(t)
that have been shown to be computationally expensive in the
context of sampling-based motion planning, resulting in high
planning times even for simple problems.

B. LSTM-based learning method

To leverage this computational issue, we propose a
learning-based method to quickly and accurately estimate the
tube radii in eq. (8) and the input profiles in eq. (2).

LSTM [5] is a recurrent neural network (NN) that has
feedback connections encoding past events thanks to the so-
called hidden and cell states. LSTM NN has already been
used in recent years for motion planning applications, e.g., to
quickly predict the surrounding state of the robot [17], [18],
or to predict trajectories in sampling based algorithms [19].
Since LSTM NNs work very well in processing sequences
of data – in particular time series – they perfectly fit with
our framework, since the robot trajectory can be discretized



in some points (hereafter referred to as state) associated with
some time instants, that will be treated as input sequences
by the LSTM NN.

A simplified architecture of our NN is presented in Fig. 2,
where the tuple (h0, c0) represents the initial hidden and cell
states, respectively. The input sequence consists of a series
of states, denoted with qk, evaluated along a trajectory at a
given time step. The output is a sequence consisting of the
inputs values Uk and of Rq

k and Ru
k, that represent the

radii of the uncertainty tubes, estimated at the k-th state of
the trajectory, along the desired direction of the state and of
the input spaces respectively. Finally, the tuple (hend, cend)
corresponds to the hidden and the cell states at the last point
of our sequence (i.e., the last state of our trajectory). The
importance of such initial and final tuples is discussed in
Sect. III-B. Training and prediction results are presented in
Sect. V, as well as a discussion on the limitations.

III. ROBUST AND ACCURATE MOTION
PLANNING VIA LEARNED SENSITIVITY

METRICS
We first present the overall planning framework proposed

to generate both robust and accurate trajectories in Sect. III-
A. The two components of this framework are described
next: Sect. III-B shows how to integrate the sensitivity
learning method within a sampling-based motion planner,
Sect. III-C then explains the accuracy optimization stage.

A. Robust and accurate planning framework (RA-SAMP)
In this section, we present RA-SAMP, a planning frame-

work that generates robust and accurate trajectories. It works
in two stages: (i) first, it generates a robust trajectory based
on a Robust Sensitivity-Aware Motion Planner (R-SAMP)
integrating the LSTM-based computation of the uncertainty
tubes ; (ii) second, it optimizes the accuracy at some given
points of this trajectory by minimizing the size of the
uncertainty tubes at these locations. The motivation behind
the second stage is to improve the accuracy of the planned
robust trajectory for tasks – e.g., pick-and-place or insertion
tasks – where the precision is important only at specific
designed locations, as for picking the ring in Fig. 1.

We present RA-SAMP in its most general form in Alg.1. It
takes as inputs the list of waypoints listwpt = (w0, . . . , wn)
for which the accuracy should be optimized, and the values
of the nominal controller gains.

Algorithm 1 RA-SAMP [listwpt, gainsinit]

1: {πtot, gainsbest} ← {∅, gainsinit} ;
2: for (i = 1; i < len(listwpt); i = i+ 1) do
3: πi ← R9SAMP (listwpt(i− 1), listwpt(i));
4: πtot ← πtot + πi;
5: end for
6: {πtot, gainsbest} ← A9Optim(πtot, gainsbest);
7: return {πtot, gainsbest};

The first step of the algorithm consists in generating robust
trajectories between successive waypoints in the list (line

3 of Alg. 1) by means of a SBMP framework called R-
SAMP that utilizes our learning approach. These trajectories
are concatenated into a global one, interconnecting all the
waypoints (lines 2-5 in Alg. 1).

Then, the trajectory from R-SAMP is locally modified
by A-Optim (line 6 in Alg. 1), an algorithm whose aim
is to optimize the accuracy at given waypoints along the
input trajectory. In particular, this algorithm samples, at each
iteration, both the trajectory from R-SAMP and the con-
troller’s gains, modifying the former in order to minimize the
uncertainty at the waypoints. The outputs of the algorithm are
then: (i) a robust trajectory where the accuracy is maximized
at the desired waypoints; (ii) the optimal controller gains.

Note that, even if R-SAMP benefits from the neural net-
work, A-Optim cannot employ it because the controller gains
are different from those used for training the network.

B. Robust sensitivity-aware motion planning (R-SAMP)

In this section, we describe how the learned uncertainty
tubes can be incorporated in any tree-based SBMP in order
to generate a robust sensitivity-aware motion planner (R-
SAMP). As discussed before, one issue for computing the
sensitivity metrics along a given trajectory comes from the
possibly high computational time of the numerical integra-
tion of the dynamics for obtaining Π(t) and Θ(t). This time
might span from tens of milliseconds to several seconds
– depending on the trajectory duration – and it sensibly
increases the planning time for a SBMP. Moreover, an
additional problem – that is specific when integrating the
sensitivity machinery within a SBMP – comes from the fact
that, for computing the sensitivity for a given node of a
SBMP, the overall path for arriving at that node is needed.

However, this is not a problem for our framework thanks
to the LSTM network, that naturally encodes this information
within the hidden and the cell states. To this aim, these
states are saved for each node of the tree built by the SBMP.
Then, when expanding a node, the starting hidden and cell
states (as for the tuple (h0, c0) of Fig.2) are already available
from previous iterations, and the final ones (hend, cend) are
embedded within the node generated by the expansion. This
last tuple can then be reused in future extensions as the initial
condition tuple (h0, c0). Note that such mechanism of using
the tuples (h, c) limits its validity to tree-based planners (e.g.,
[20]–[24]), where each node has a single parent. Therefore,
planners whose nodes may have multiple parents (e.g., PRM
[25]) cannot employ such mechanism.

The LSTM network is used by the tree-based planner
inside the function RobustCCNN whose pseudocode is
reported in Alg.2. Its role is to validate the trajectory
provided as input, together with the tuple (h0, c0) of the first
trajectory state. The outputs of this function are a boolean
value (validity) that specifies if the trajectory is valid or not,
and the tuple (hend, cend), computed for the final state of the
validated trajectory. The trajectory to be checked (π) is first
discretized (πd) using a time step ∆T (line 2). Then, all the
radii and the inputs profiles (Rq,Ru,U ) on this trajectory
are predicted by the LSTM network by means of the SensiNN



function (line 3 in Alg. 2). This function takes into account
the initial trajectory conditions encoded in the tuple (h0, c0),
and it returns the above-mentioned radii and inputs, together
with the pair (hend, cend) by using the LSTM network.

For each state qk of the discretized trajectory, the func-
tion IsValid (line 5 in Alg. 2) performs a robust collision
checking, testing if there are no collisions despite the state
uncertainty, and if the inputs are within some bounds that
the system can exert. Since the first operation is known to be
computationally expensive, the input bounds are tested first
and, in case they are respected, the collisions are checked
between the robot and the environment.

Algorithm 2 RobustCCNN [π, (h0, c0)]

1: validity ← true;
2: πd ← DiscretizedTraj(π,∆T );
3: {Rq, Ru, U, (hend, cend)} ← SensiNN(πd, (h0, c0));
4: for each qk in πd do
5: if not IsV alid(Rk

u, U
k, Rk

q , qk) then
6: validity ← false;
7: break;
8: end if
9: end for

10: return {validity, (hend, cend)};

Note that this robust collision checker can be employed
within any tree-based planner. An example on how to include
RobustCCNN for the case of a standard RRT planner
is given in Alg. 3 with the pseudocode of the R-SARRT
function, as a particular instance of R-SAMP planner. The
same notation is used in Sect. V. As shown in lines 7-
12 of Alg. 3, a valid output from RobustCCNN simply
corresponds to a successful extension from a node, and the
final state of the trajectory is inserted in the tree as a new
node, storing in it also (hend, cend).

Algorithm 3 R-SARRT [qinit, qgoal]

1: T ← {qinit, qgoal} ;
2: for k = 0 to K do
3: qrand ← Sample();
4: qnear ← Nearest(T, qrand);
5: π ← Steer(qnear, qrand);
6: (h0, c0)← qnear.getHidden();
7: {valid, (hend, cend)} ← RobustCCNN (π, (h0, c0))
8: if valid then
9: qrand.setHidden(hend, cend);

10: T.addV ertex(qrand);
11: T.addEdge(qnear, qrand);
12: end if
13: end for
14: return T ;

C. Accuracy optimization (A-Optim)
The choice to use a local optimization is justified by the

cost function considered in order to optimize the accuracy at

desired waypoints. Indeed, the latter is defined as:

c = E[Rq] + V[Rq] (9)

which aims at minimizing the average size of the radii and
their variance at each desired waypoints. The variance is
considered in this cost function so that the minimization
of a radius at a given point does not lead to a growth of
another radius at another waypoint. This function is then
neither additive (i.e considering two trajectories (π1, π2),
the cost of their concatenation c(π1|π2) ̸= c(π1) + c(π2)),
nor monotonic, which makes it impossible to optimize in
most global planners. This cost function is then optimized
within the A-Optim method while other cost function can be
optimized in the R-SAMP (e.g. path length). Given that we
do not have the analytic form of the cost function derivatives
and that estimating them would be expensive, the accuracy
optimization has to be performed by a derivative-free (or
black-box) method, e.g., the random shortcut algorithm [26].

IV. APPLICATION TO A 3D-QUADROTOR

In Sect.IV-A, we introduce the scenario on which we
tested our framework, using a quadrotor as robotic platform.
Then, in Sect. IV-B, we explain how we learned the uncer-
tainty tubes for the quadrotor case.

A. 3D-quadrotor application and planning scenario

The dynamic model of the robot is the same full 3D
quadrotor model as described in [3]. The tracking controller
considered in this work is the so-called Lee (or geometric)
controller [27] where the control inputs are the squared rotor
speeds u = [ω2

1 ω
2
2 ω

2
3 ω

2
4 ]

T .
An in-flight ring recovery task is considered for testing our

accurate optimization framework. In particular, the quadrotor
is tasked to recover some rings by means of a perch mounted
along its x-axis, as depicted in Fig. 1. The task is performed
in the environment shown in Fig. 3, in which the robot must
first recover 3 rings in the departure room (red rectangle in
the figure), then it must pass through a window of dimension
1.5m × 1m (blue rectangle) for reaching the second room
(green rectangle) and collecting other 4 rings. Finally, it has
to return to the departure room, passing again through the
small window. In Fig. 3, each ring is represented by a black
dot, it has an inner radius of 0.06m and a mass of 50g.

For this scenario we consider the uncertain parameters
p = [mgx Ix Iy Iz]

T where m denotes the mass of the
system, gx the position of its center of mass along the x-
axis of the body frame, and Ix, Iy, Iz, are the principal
moments of inertia in the body frame. Recovered rings will
remain attached to the perch, modifying the mass of the
quadrotor along its x-axis. This justifies why we considered
as uncertain gx only and not gy , due to the fact that the
mass and its distribution becomes mostly uncertain along
the x-axis of the UAV. We chose our nominal parameters
as pc = [1.5, 0.0, 0.01, 0.01, 0.02]T and their associated
uncertainty range δp = [10%, 5cm, 5%, 5%, 5%]T which
represents the percentage variation of the parameters w.r.t.
their associated nominal values except for gx whose nominal



Fig. 3: Environment of the ’ring recovery task’ scenario. The
position of the 7 rings is represented by a black dot. The
departure room of the drone (red rectangle) contains 3 rings
and is connected by a small window (blue rectangle) to a
second room room with 4 rings.

value is null. The quadrotor trajectories are planned using the
Kinosplines steering method of [28], and a RRT ∗ algorithm
[20] minimizing the time-length. Robust collision checking
is performed by simply considering a bounding sphere of the
UAV increased by the predicted state uncertainty radii Rq .

B. Learning uncertainty tubes for the 3D-quadrotor

As mentioned in Sect. II-B, our LSTM-based network
predicts the uncertainty tubes’ radii and the inputs of the
system. In the quadrotor case, the control inputs to be
predicted are U = [U1, U2, U3, U4]

T , with Ui = ω2
i .

Regarding the uncertainty tubes, the LSTM-based network
predicts Rq =[Rx, Ry, Rz]

T (with Rk, k ∈ {x, y, z} the
radius of the state uncertainty tube along the {x, y, z}-axis)
and Ru = [Ru1, Ru2, Ru3, Ru4]

T (with Rui the radius of
the input uncertainty tube associated with the i-th control
input of the system).

Then, as shown in eq.(6), the computation of these radii
is strongly related to the one of the state/input sensitivity
matrices (3–4). Such matrices can be computed numerically
by forward integration and thus strongly rely on the Jacobian
of the system dynamics. This justifies our choice of using
the global velocities and accelerations as well as the yaw
angle (Ψ) along the trajectory to be the components of
qi =[cos(Ψ) sin(Ψ) q̇d q̈d]

T evaluated at time i∆T , where
qd =[x y zΨ]T and ∆T is the same time step that will be
used for the collision checking by the planner.

Finally, the LSTM-based network is trained using the MSE
criterion on 10.000 randomly generated trajectories with an
execution time of 15s. In order to evaluate the accuracy of the
network, we generated an evaluation set composed of 1.000
trajectories whose duration is slightly longer (17s) w.r.t. the
ones used in the training set. The performance of the learning
is illustrated in Table I that reports the accuracy for each
radius according to the L1 error norm.

Rx Ry Rz Ui Ru1, Ru3 Ru2, Ru4

Accuracy 0.96 0.95 0.91 0.99 0.99 0.85

TABLE I: Accuracy according to L1 norm of the relative
error along each component of the predicted vector. Rui is
the radius of the uncertainty tube associated with the i-th
input and Ui, i ∈ {1, 2, 3, 4} represents the i-th actuator input

Fig. 4: Example of network predictions along a trajectory
(orange) against true values (blue). Rx,y,z are expressed in
m, and input associated values (Rui, Ui)i=1,4 in rpm.

V. SIMULATION RESULTS

This section first presents results showing the quality
of the learning-based computation uncertainty tubes and
its high efficiency when used for robust motion planning.
Then, we illustrate the ability of the proposed RA-SAMP
planning approach to generate high accuracy trajectories for
the scenario illustrated by Figure 3.

A. Performance of the learning-based tube computation

Figure 4 compares the learning-based prediction of the
tubes radii and inputs wrt. their real values. The curves
illustrate the excellent accuracy on the predictions of the



(a) RRT (b) RRT ∗

Fig. 5: Number of (a) RRT / (b) RRT ∗ iterations as a
function of planning time using the learning method (green)
or the Π dynamics integration (red), as done in [4].

inputs U as well as on the radii Ru1, Ru3, Rx, Ry while a
lower accuracy is observed on Ru2, Ru4, Rz . However, note
that the absolute values of these radii are much smaller com-
pared to the others. In other words, the relative accuracy (or,
equivalently, the relative error, normalized by the reference
value) is comparable and similar in all the radii, confirming
the validity of the prediction of the LSTM-based network.
Moreover, in order to guarantee the prediction robustness, we
add for each component of the predicted vector the quartile
of its relative error observed on the evaluation set.

Fig. 5 shows the significant performance improvement
of using this learning-based prediction within a SBMP for
checking the robustness of the local tree expansions using the
RobustCCNN function (see Alg. 3), against the previous
version [4] integrating the Π dynamics. Results provided
for RRT and RRT ∗ compare the number of iterations of
the main loop of the algorithm a function of computing
time, showing for both cases a significant gain thanks to
the proposed learning method. Note that in the RRT case
this time gain is constant (45 times faster) because the
expansion benefits from the neural network only once per
iteration. In the RRT ∗ case, the denser the tree, the more
robust collision tests are required for the rewiring connection
phase. Therefore, more time is saved by using the learning
method. In particular, the gain on the planning time can reach
more than two-orders of magnitudes for problems requiring
a significant amount of iterations.

Note that the application of the learning method is limited
to trajectories having a shorter execution time than those used
for training, which constraints the time-length of the local
paths used by the planner for the tree expansions. Also, the
predictions are only valid for the variation of the parameters
δp chosen during the generation of the training set, and the
model is trained for given values of the controller gains.

B. Accuracy optimization evaluation

Finally, we demonstrate the efficiency of our accuracy
optimization framework on the in-flight ring recovery task
scenario by planning trajectories that minimize the uncer-
tainties for the end effector position of the perch at the
location of the rings. The rings that are collected by the
robot’s perch modify the quadrotor mass at run time. The
planned trajectories are executed in the Gazebo simulator.

For this experiment, twenty trajectories are planned,
using the classic RRT ∗, a robust version of the latter

RRT ∗ R9SARRT ∗ RA9SARRT ∗

Failure (%) 65.0 5.0 5.0
Number of

rings picked
1.2

± 1.6
3.1

± 0.9
4.1

± 1.1

TABLE II: Average number of failures, together with the
average number of rings picked over 20 simulations.

(a) XY uncertainty (b) XZ uncertainty

Fig. 6: Example of uncertainty ellipsoid at the first ring loca-
tion, before (pink) and after (purple) accuracy optimization,
displayed along the XY plane (left) and XZ plane (right).
The ring shape is displayed as a black rectangle. Similar
results are observed for the other rings.

(R9SARRT ∗), and a robust version also optimizing the
accuracy (RA9SARRT ∗), where the A-Optim function is
a simple robust variant of the shortcut algorithm [26] in
which the controller gains are also sampled between 50%
and 150% of their nominal values. Table II shows the average
execution failure1 percentage for each type of trajectory, as
well as the average number of rings recovered. We can see
that LSTM-based tubes prediction allows to generate more
robust trajectories than the standard RRT ∗, and that the
accuracy optimization allows to recover even more rings.
Finally, Fig.6 shows an example of uncertainty ellipsoids
before and after the accuracy optimization (i.e., R9SARRT ∗

vs. RA9SARRT ∗) at one ring location. In particular, the
uncertainty, that was larger than the radius of the ring, is
reduced and becomes smaller after optimization.

VI. CONCLUSION
In this paper, we propose a motion planner able to generate

trajectories that are intrinsically robust against parametric
uncertainties for any robot/controller pair. It is hinged on a
LSTM-based learning approach that quickly and accurately
estimates the control inputs and the uncertainty tubes of the
state and of the inputs. The results confirm the efficiency
of the proposed learning method and highlight the impact
of integrating it within a motion planner, resulting in a
significant reduction of the planning times. Moreover, we
showed that our framework is able to locally optimize the
planned trajectory in order to minimize the size of the
uncertainty tubes of the state at some desired locations,
allowing the system to accurately perform a precision task.
Future works will focus on considering uncertainties not
only at the parametric level, by extending the computation
of the tubes for external disturbances. Finally, we aim to
experimentally validate the proposed framework on a real
robotic platform.

1An execution failure is characterized by zero ring recovered.
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