
HAL Id: hal-04029130
https://laas.hal.science/hal-04029130v1

Submitted on 14 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Investigating adversarial attacks against Random
Forest-based network attack detection systems

Philippe Owezarski

To cite this version:
Philippe Owezarski. Investigating adversarial attacks against Random Forest-based network attack de-
tection systems. 8th IEEE/IFIP International Workshop On Analytics For Network And Service Man-
agement, IEEE/IFIP, May 2023, Miami (FL), United States. �10.1109/NOMS56928.2023.10154328�.
�hal-04029130�

https://laas.hal.science/hal-04029130v1
https://hal.archives-ouvertes.fr

Investigating adversarial attacks against Random
Forest-based network attack detection systems

Philippe Owezarski
LAAS-CNRS, Université de Toulouse, CNRS

Toulouse, France

Abstract—A significant research effort in cybersecurity cur-
rently deals with Machine Learning-based attack detection. It
is aimed at providing autonomous attack detection systems
that require less human expert resources, and are then less
expensive in time and money. Indeed, such systems are able
to autonomously learn about benign and malicious traffic, and
to classify further traffic samples accordingly. In such context,
hackers start designing adversarial learning approaches in order
to design new attacks able to evade from the Machine Learning-
based detection systems. The work presented in this paper aims
at exhibiting how easy it is to modify existing attacks to make
them evade from the Machine Learning-based attack detectors.
The Random Forest algorithm has been selected for this work
as it is globally evaluated as one of the best Machine Learning
algorithm for cybersecurity, and it provides informations on how
a decision is made. Indeed, the analysis of the related Random
Forest trees helps explaining the limits of this Machine Learning
algorithm, and gives some information that could be helpful for
making attack detection somewhat explainable. Several other
Machine Learning algorithms as SVM, kNN ans LSTM have
been selected for evaluating their ability to detect the adversarial
attack presented in this paper.

Index Terms—Adversarial learning, Machine Learning, Ran-
dom Forest, Network Attacks Detection

I. INTRODUCTION

Attack/intrusion detection is one of the hot topics in cyber-
security, and nowadays, most of the efforts on network attack
detection deal with machine learning (ML) and deep learning
(DL) based approaches, for their capabilities of working and
making decision autonomously. It is then a step toward correct-
ing the main limits of signature based attack detection (time
to proceed, amount of human resources involved, and cost).
Despite ML based attack detection is not widely deployed, it is
raising most of the research efforts nowadays, and the related
literature exhibits very good detection results, often evaluated
over 99% of detection accuracy in labs [1] [2].

Despite these high accuracy results, Elmrabi et al. [1] and
Ahmad et al. [2] pointed out limits of ML based detection
approaches, and especially that none of the existing papers
exhibit a full detection of all attacks contained in any dataset.
Many papers dealing with adversarial learning also exhibit
weaknesses of ML based anomaly detection approaches (cf. II)
when facing attacks whose statistical profile has been modified
not to relate to the trained model [3] [4]. This new paper
then deals with investigating how some attacks that have never
been considered in previous adversarial learning based works
can easily evade from ML based detection systems, and this,

targeting as simple as possible changes on attack profiles.
Throughout this paper, and for deeper analysis, the Random
Forest (RF) supervised ML algorithm has been selected: the
Random Forest (RF) algorithms is mostly used, as it has been
widely studied and used for attack detection, and it appears as
one of the best algorithms for attack detection, with a detection
accuracy often evaluated over 99% [5]. It also provides a lot
of informations on the different trees of the forest, especially
on what parameters and related values impacted the decision
finally taken when facing a bin of traffic. RF then allows deep
analysis for explaining its Artificial Intelligence (AI) process
for decision making. Note also that several other supervised
ML algorithms for attack detection have been evaluated on the
new modified adversarial attacks.

The rest of this paper is as follows: section II presents some
significant related contributions in the domain of adversarial
learning. Section III provides some information on the dataset
that has been selected for running the experiments performed
for the works described in this paper. Section IV shows
how the RF-based detection tool has been built, and its
detection performance on the selected dataset. Section V then
investigates on few examples how it is possible to tune some
generally well detected legacy attacks to make them evade the
RF detection tool. Section VI also shows that the tuned attacks
also easily evade SVM, kNN and LSTM [6] machine Learning
algorithms. Finally section VII concludes this paper.

II. RELATED WORKS

The use of ML in cybersecurity has been raising a lot
of efforts since at least a decade. The literature is rich in
papers reporting ML-based attack detection experiments that
exhibit very high performance and accuracy. However, only
few of these works integrate some adversarial learning aspects.
This is a significant issue as these few papers on adversarial
learning in cybersecurity exhibit strong limits of ML-based
attack detection, showing examples on how to evade from
ML-based detectors, and pointing out the lack of robustness
of these ML-based detection approaches [7]. They also show,
based on adversarial learning results, how to improve the ML
algorithms for more efficient and robust attack detection (as
[8] in the case of RF). Some works on adversarial learning
[9] more specifically demonstrate that very limited adversar-
ial perturbations can have a strong negative impact on the
classification accuracy of ML algorithms. It is also the case
for DL algorithms [10]. In papers as [3] [9], authors propose

adversarial attacks (often they are only modified well-known
attacks) that evade some ML algorithms that are nevertheless
considered as very efficient for detecting such attacks. It has
then be proved that famous ML algorithms as K-mean, SVM,
kNN or Logistic Regression, to quote a few, can often miss
simple adversarial attacks. Adversarial attacks have also been
designed for evading famous algorithms as Gradient Boosted
Decision Trees [11], or Neural Networks [12].

Note however that two approaches can be considered when
designing adversarial attacks: most of the times, researchers
adopt a white-box point of view for ML-based anomaly
detectors, i.e. they can enter the ML engine and data to
analyze the ML algorithm behavior and its decision. But some
researchers adopt the black-box position of hackers, i.e. they
cannot have access to internal ML algorithm informations, and
they can just make remote tests for getting information on
what kind of attacks ML-based detectors can detect or miss,
and explain why. Such black-box approach has been adopted
by authors of papers like [13]. In our paper we adopt an
intermediate approach, i.e. the adversarial attacks are designed
with a black-box approach for the RF algorithm. However, for
analyzing the results, we use internal RF information on built
RF trees to understand the reasons for a success or a miss of
the detection of an attack.

III. THE CIC-IDS-2017 DATASET

For illustration purpose, the CIC-IDS-2017 dataset has been
selected [14]. CIC-IDS-2017 is nowadays a new reference
dataset for security tool assessment. This dataset has been
created by the Canadian Institute for Cybersecurity with the
purpose of giving researchers an open source Dataset for
designing and evaluating network intrusion detection systems.
The CIC-IDS-2017 dataset consists of eight .csv files. It
represents a total of five days of traffic. Each gathered day
contains one attack or more that were specifically generated.
Table I indicates the list of attacks contained in the different
files of the CIC-IDS-2017 dataset.

Each of the .csv files is the result of the network traffic
analysis performed with CICFlowMeter, an open source tool
that re-constructs bidirectional flows from the gathered packet
pcap files, and extracts the specific features of these flows.
In bidirectional flows, the first packet determines the forward
(source to destination) and backward (destination to source)
directions. Hence the statistical time-related features can be
calculated separately in the forward and backward directions.
CIC-IDS-2017 comes with 78 features.

For using this dataset, we had to merge all the files into
one single .csv file. We then cleaned the dataset by taking
off the rows with NaN, infinite or missing values. We also
noticed that there were 8 features that had a variance of 0. We
then took these features off the dataset. Finally we added a
binary label column. The dataset is given with types of attack
as labels, but we chose to add the option of using binary class
with “1” to indicate an attack, and “0” for benign traffic.

After this preprocessing stage, the final dataset consists of
2 827 876 samples with 70 features and two label columns: a

TABLE I
CIC-IDS-2017 FILES DESCRIPTION

File name Day Attacks found
Monday-
WorkingHours.csv

Monday Benign (Normal Activity)

Tuesday-
WorkingHours.csv

Tuesday Benign, FTP-Patator,
SSH-Patator

Wednesday-
workingHours.csv

Wednesday Benign, DoS GoldenEye,
DoS Hulk, DoS
Slowhttptest, DoS
slowloris, Heartbleed

Thursday-WorkingHours-
Morning-WebAttacks.csv

Thursday Benign, Web Attack -
Brute Force, Web Attack
- SQL injection, Web At-
tack - XSS

Thursday-WorkingHours-
Afternoon-
Infilteration.csv

Thursday Benign, Infiltration

Friday-WorkingHours-
Morning.csv

Friday Benign, Bot

Friday-WorkingHours-
Afternoon-PortScan.csv

Friday Benign, PortScan

Friday-WorkingHours-
Afternoon-DoS.csv

Friday Benign, DDoS

TABLE II
DISTRIBUTION OF SAMPLES IN CIC-IDS-2017

Attack Type Number of samples in the dataset
BENIGN 2271320
DoS Hulk 230124
PortScan 158804

DDoS 128025
DoS GoldenEye 10293

FTP-Patator 7935
SSH-Patator 5897

DoS slowloris 5796
DoS Slowhttptest 5499

Bot 1956
Web Attack - Brute Force 1507

Web Attack - XSS 652
Infiltration 36

Web Attack - Sql Injection 21
Heartbleed 11

MultiClass label (which is the attack type) and a binary label.
Table II details the distribution of the different attack types in
the dataset.

IV. RF-TOOL DESIGN AND PERFORMANCE

As it is generally the case in the related literature, we se-
lected the RandomForestClassifier [15] function from Python
Scikit-Learn as the RF-based attack detection tool. It appears
to be a very good implementation of the RF algorithm. It
always exhibited very high detection performance on any
dataset [5].

For running the experiments, it is first required to optimize
the three RF hyper-parameters, i.e. number of trees in the
forest, maximum depth of the trees, and maximum number of
features in the trees. Indeed, RF ranks all features of the dataset
from the most to the less important ones for the classification.
By working only on the most important features, a significant

TABLE III
FN RATE PER ATTACK TYPE FOR RF DETECTION

Attack Type

Number
of
samples
in the
dataset

Percentage
of
undetected
samples

DoS Hulk 230124 0.09%
PortScan 158804 0.02%
DDoS 128025 0.08%
DoS Golden-
Eye 10293 1.58%

FTP-Patator 7935 0.06%
SSH-Patator 5897 0.16%
DoS
slowloris 5796 1.23%

DoS
Slowhttptest 5499 1.66%

Bot 1956 63.01%
Web Attack -
Brute Force 1507 5.29%

Web Attack -
XSS 652 4.20%

Infiltration 36 80%
Web Attack -
Sql Injection 21 57.14%

Heartbleed 11 0%

reduction of the computing times is gained without reducing
much the detection/classification accuracy. The methodology
for finding out the 3 optimal RF hyper-parameters follows
the classically used 5-fold Cross-Validation approach. For
each parameter, several runs with a wide range of values
are performed, the other hyper-parameters being fixed to the
best values previously determined. For the scoring of each
run, we use the function score() of Scikit-learn which gives
the accuracy of the detection. The accuracy is defined as the
number of correctly identified samples over the total number
of samples.

The optimization stage gives for each hyper-parameter the
following values:
• Number of estimators (i.e. number of trees): 80
• Max depth of trees: 15
• max number of features : 15
The optimal detection performance for each of the 14

attacks contained in the CIC-IDS-2017 with RF is depicted in
Table III. Table III displays the percentage of False Negatives
per attack kind, together with the number of samples of each
attack present in the dataset.

As in most papers of the related literature, in this paper,
performance of attack detectors are evaluated thanks to values
and evaluation metrics as the number of True Negatives (TN),
False Positives (FP), False Negatives (FN), True Positives
(TP), Precision, Recall, and F1-Score. These three last metrics
are often completed with an accuracy score defined by:

Accuracy.Score =
of samples correctly classified

total number of samples
(1)

The optimal detection results with our RF-based detection
tool on CIC-IDS-2017 full dataset are :

• Precision = 0.999075
• Recall = 0.999260
• F1-score = 0.999167
• Accuracy score = 0.998663
These statistical results appear as very good, and based on

such figures, it is generally accepted that RF performs very
efficiently for attack detection. These results have however
to be balanced with the results depicted in table III that
clearly shows significant lacks of the RF-based detector. It
clearly appears in Table III that despite a very low global
FN rate, some attacks remain mostly undetected by RF-based
attack detection: some attacks as SQL web injection, Bot or
infiltration attacks are very often missed by the RF-based
detector. This limit of the detection performance does not
appear on the classical performance metrics because attacks
are statistically merged with a very big number of benign
sample of traffic that are well classified by the RF-based
detector. It also appears that the attacks that are not well
detected are the ones with the fewest samples in the dataset.
But this is not an absolute rule, as the Heartbleed attack
- that is the one with the less samples in the dataset - is
perfectly detected. The underrepresentation of some attacks
in the dataset is then not the (only?) cause of miss-detection.

Anyway, the classical statistical evaluation metrics for attack
detection are not representative of the real performance of the
detectors. In the remainder of the paper, the evaluation, both in
quantity and quality, is based on the number of false negatives.
This is the most representative indicator when dealing with
adversarial attacks, the aim being to investigate how attacks
can evade the RF-based attack detector.

V. ADVERSARIAL ATTACKS

Adversarial attacks have already been the topic of many
works [3] [4]. Some of them notably relate to RF-based
attack detection as [3]. They especially investigate the optimal
attack that always (or almost always) evade from the detection
algorithms. For that, the design of the adversarial attack often
takes advantage of some information got from the internal
analysis of the ML-based detection system, as the main
features used by the ML algorithms for making the decision.
In this paper, we target the design of a generic method for
building any kind of adversarial attacks as simple as possible,
with a high efficiency whatever the kind of ML algorithm
used for attack detection. For that purpose, ML algorithms are
considered as black-boxes, and we then design the adversarial
attacks without benefiting from any knowledge on how the
considered ML algorithm behaves when facing attacks. We
are considering the ML algorithm a a white-box only after its
experimental performance evaluation, and this for analyzing
the reasons of the detection changes with regard to the different
kinds of adversarial attacks.

This section particularly aims at showing how easy it is
to design attacks that evade RF-based attack detection. It
just leverages that RF makes its attack classification/detection
when observing statistical deviations between current traffic
samples and the trained traffic. The idea there is then just

to modify the volume and temporal profile of attack flows.
It consists in replaying existing attacks whose traces are
available in public datasets (here the CIC-IDS-2017 dataset)
after changing:
• The size of the packets
• The inter-arrival times of packets
Just changing these two features impacts several others,

as packet rate per second, throughput per second, packets
bursts sizes and rates, etc. that are often features that the ML
algorithms are taking advantage of for making their decision.

The changes will be applied to the 14 kinds of attacks
contained in the CIC-IDS-2017 dataset then constituting a new
dataset with modified attacks profiles. The methodology then
deals with training the RF-detector with the original CIC-IDS-
2017 dataset, and then to measure the FN rates on each attack
kind when the RF detector is applied on the modified dataset.

Practically, the changes on the packet sizes and inter-arrival
times are applied in a random manner, but with a maximum
amplitude parameter C expressed in percent. For example,
the packet size cannot be modified by more than C% of its
initial value.

The packets sizes of the adversarial attack flows are modi-
fied as follows:

∀n ∈ [0;Max Packets], S′(n) = (1 + C.Rand(−1;+1))S(n)

with : S′(n) ∈ [40; 1500]
(2)

For the Inter-Arrival Times, by definition:{
t′(0) = t(0)
∀n ∈ [0;Max Packets− 1], IAT (n) = t(n+ 1)− t(n)

(3)
The Inter-Arrival Times are modified as follows:

∀n ∈ [0;Max Packets− 1],

IAT ′(n) = (1 + C.Rand(−1;+1)).IAT (n)
(4)

Finally, for the modified dataset, the arrival time of the
packets of the adversarial attack are :

∀n ∈ [0;Max Packets−1], t′(n+1) = t′(n)+IAT ′(n) (5)

where:
• S(n) is the size of the nth packet of the flow in the

original dataset.
• S′(n) is the size of the nth packet of the flow in the

modified dataset.
• IAT (n) is the Inter-Arrival Time between the nth and

(n+ 1)th packets of the flow in the original dataset.
• IAT ′(n) is the Inter-Arrival Time between the nth and

(n+ 1)th packets of the flow in the modified dataset.
• t(n) is the arrival time of the nth packet of the flow in

the original dataset.
• t′(n) is the arrival time of the nth packet of the flow in

the modified dataset.

TABLE IV
FN RATE PER ATTACK TYPE FOR RF DETECTION

Attack Type

FN rate
with the
original
dataset

FN rate
with
10%mod-
ified
attacks
profiles

FN rate
with
25%mod-
ified
attacks
profiles

FN rate
with
50%mod-
ified
attacks
profiles

DoS Hulk 0.09% 14.52% 38.87% 72.23%
PortScan 0.02% 1.94% 5.16% 12.06%
DDoS 0.08% 21.49% 54.31% 82.92%
DoS Golden-
Eye 1.58% 41.88% 81.52% 97.77%

FTP-Patator 0.06% 1.12% 3.25% 6.09%
SSH-Patator 0.16% 1.84% 4.36% 8.67%
DoS
slowloris 1.23% 35.29% 69.41% 86.89%

DoS
Slowhttptest 1.66% 39.55% 74.42% 91.63%

Bot 63.01% 88.31% 100.00% 100.00%
Web Attack -
Brute Force 5.29% 57.26% 79.03% 94.49%

Web Attack -
XSS 4.20% 63.62% 98.80% 100.00%

Infiltration 80.00% 100.00% 100.00% 100.00%
Web Attack -
Sql Injection 57.14% 98.73% 100.00% 100.00%

Heartbleed 0% 0% 0% 0%

• Rand(−1;+1) is the random function that returns a
random floating number in the [-1; +1] interval.

• Max Packets is the number of packets in the flow.
• C is the maximum modification value in percent for the

size of packets or Inter-Arrival times.

In the following, three different modified datasets serve for
exhibiting how RF detector performs depending on the level of
modifications applied on the attack profiles, respectively with
C = 10, 25 and 50%. FN ratio for each attack kinds are given
in Table IV.

It clearly appears in Table IV that changing the size and
the IAT of packets has a negative impact on the detection
accuracy, except for Heartbleed and Patators attacks that have
a clear signature related to specific protocols, and of course
PortScan attacks whose detection mostly leverages source
and destination addresses pairs that are not impacted by the
changes performed on the dataset. To analyze these results
we have been using the Scikit-learn library [16] that provides
all required information on the trees inside the RF (here 80
trees). For each tree, much information on the nodes and leaves
are provided, as the features and thresholds considered. And
in depth analysis of the RF trees obtained with the original
vs. the modified CIC-IDS-2017 datasets exhibits two main
differences:

• For 37% of the trees of the RF, the considered features
in the leaves close from the root (the most significant
features for the decision making) have changed. The
RF algorithm then classifies the samples differently for
the two datasets, and they then converge to different
classification results.

• For 54% of the trees of the RF, it appears that the changes
make the figures contained in the tree nodes and leaves
lower than the detection thresholds. The related samples
then are not detected as being part of an attack class, and
remain classified as benign traffic.

For the remaining trees, they do not change significantly for
the two datasets and correspond to the traffic classes whose
detection is not significantly impacted by the dataset changes
(Heartbleed, PortScan, and Patator attacks).

VI. COMPARISON OF ADVERSARIAL ATTACK DETECTION
WITH SEVERAL OTHER SUPERVISED LEARNING

ALGORITHMS

This section deals with evaluating how several other su-
pervised Machine Learning algorithms perform when facing
the new adversarial attacks. SVM, kNN and LSTM have been
selected as they cover the main different approaches of super-
vised machine learning from vectors to neural networks. The
experimental methodology is the same as for RF: the Machine
Learning based detection algorithms are trained on the original
CIC-IDS-2017 dataset, and their detection performance is then
evaluated on the modified datasets. The SVM, kNN and LSTM
algorithms have been configured with the parameters that
provided the lowest FN rate when running on the original CIC-
IDS-2017 dataset. These parameters have been determined
using an empirical approach, i.e. fixing arbitrarily values to the
parameters at the beginning, and then applying a dichotomy
on the parameters for the following experiments based on the
obtained detection results for the previous experiment.

The results are presented (as for RF) in tables: table V
presents the comparative results between RF, SVM, kNN
and LSTM when the testing dataset has not been modified
compared to the training dataset. Tables VI, VII, and VIII
presents the quality of detection, based on the FN rate, when
the testing dataset has been modified with C value equals 10,
25 and 50 respectively.

These results clearly exhibit the effectiveness of the new
adversarial technique as almost all the modified attacks easily
evade from all the detection algorithms. It also appears that
SVM and kNN have the worst detection results, especially
compared to RF. The result was expected as RF combines
several trees that helps considering many parameters at the
same time. RF can be considered as working on the same
principle as ensemble learning approaches that combine sev-
eral detection tools to make the decision, except that for RF, all
models are similar (i.e. binary trees) but focusing on different
features. This however gives RF more detection capabilities
than ML models as SVM or kNN. The low detection perfor-
mance of LSTM is more surprising. The analysis of the logs
of the neurons seems to exhibit that LSTM is not able to easily
adapt to the brutal changes in the profile of the attacks: the
detection threshold are not violated with the new packet sizes
and IAT of the attacks. Note that this is particularly difficult to
get into the neurons behaviors, and understand how they make
their final decision. The same question arises when considering
how the neural network behaves during the training phase.

TABLE V
FN RATE PER ATTACK TYPE FOR RF, SVM, KNN AND LSTM DETECTION

WITH THE ORIGINAL DATASET

Attack Type RF SVM kNN LSTM
DoS Hulk 0.09% 3.12% 2.97% 0.17%
PortScan 0.02% 6.86% 1.73% 0.03%
DDoS 0.08% 0.09% 0.12% 0.11%
DoS Golden-
Eye 1.58% 5.77% 4.34% 6.28%

FTP-Patator 0.06% 2.84% 0.18% 0.09%
SSH-Patator 0.16% 0.68% 1.22% 0.38%
DoS
slowloris 1.23% 3.16% 6.32% 42.08%

DoS
Slowhttptest 1.66% 1.74% 3.42% 2.19%

Bot 63.01% 97.04% 100.00% 100.00%
Web Attack -
Brute Force 5.29% 28.73% 6.06% 6.76%

Web Attack -
XSS 4.20% 12.83% 7.67% 5.19%

Infiltration 80.00% 100.00% 100.00% 100.00%
Web Attack -
Sql Injection 57.14% 100.00% 100.00% 87.44%

Heartbleed 0% 0% 0% 0%

TABLE VI
FN RATE PER ATTACK TYPE FOR RF, SVM, KNN AND LSTM DETECTION

WITH 10% MODIFIED ATTACKS PROFILES

Attack Type RF SVM kNN LSTM
DoS Hulk 14.52% 68.31% 47.44% 28.17%
PortScan 1.94% 36.14% .33,89% 7.35%
DDoS 21.49% 77.11% 89.37% 36.18%
DoS Golden-
Eye 41.88% 44.08% 45.92% 45.03%

FTP-Patator 1.12% 3.15% 4.74% 2.03%
SSH-Patator 1.84% 5.32% 4.28% 1.93%
DoS
slowloris 35.29% 100.00% 100.00% 52.06%

DoS
Slowhttptest 39.55% 100.00% 100.00% 41.73%

Bot 88.31% 100.00% 100.00% 100.00%
Web Attack -
Brute Force 57.26% 100.00% 100.00% 89.91%

Web Attack -
XSS 63.62% 100.00% 100.00% 97.16%

Infiltration 100.00% 100.00% 100.00% 100.00%
Web Attack -
Sql Injection 98.73% 100.00% 100.00% 100.00%

Heartbleed 0% 0% 0% 0%

Anyway, the bad result of this experiment is that the
4 selected supervised machine learning algorithms are not
able to detect attacks when the packet sizes and IAT have
been changed compared to the original training dataset, IAT
appearing as the key feature generally used by ML algorithms.

VII. CONCLUDING REMARKS

This paper deals with investigating adversarial attacks for
evading supervised Machine Learning-based attack detection
systems. It proposes two main contributions. The first one
aims at showing how easy it is to create attacks that have
significant chances to evade the supervised Machine Learning-

TABLE VII
FN RATE PER ATTACK TYPE FOR RF, SVM, KNN AND LSTM DETECTION

WITH 25% MODIFIED ATTACKS PROFILES

Attack Type RF SVM kNN LSTM
DoS Hulk 38.87% 100.00% 100.00% 84.21%
PortScan 5.16% 78.33% 69.42% 47.17%
DDoS 54.31% 100.00% 100.00% 100.00%
DoS Golden-
Eye 81.52% 100.00% 100.00% 100.00%

FTP-Patator 3.25% 11.76% 16.46% 6.17%
SSH-Patator 4.36% 19.39% 23.19% 7.87%
DoS
slowloris 69.41% 100.00% 100.00% 100.00%

DoS
Slowhttptest 74.42% 100.00% 100.00% 100.00%

Bot 100.00% 100.00% 100.00% 100.00%
Web Attack -
Brute Force 79.03% 100.00% 100.00% 100.00%

Web Attack -
XSS 98.80% 100.00% 100.00% 100.00%

Infiltration 100.00% 100.00% 100.00% 100.00%
Web Attack -
Sql Injection 100.00% 100.00% 100.00% 100.00%

Heartbleed 0% 0% 0% 0%

TABLE VIII
FN RATE PER ATTACK TYPE FOR RF, SVM, KNN AND LSTM DETECTION

WITH 50% MODIFIED ATTACKS PROFILES

Attack Type RF SVM kNN LSTM
DoS Hulk 72.23% 100.00% 100.00% 100.00%
PortScan 12.06% 100.00% 100,00% 94.67%
DDoS 82.92% 100.00% 100.00% 100.00%
DoS Golden-
Eye 97.77% 100.00% 100.00% 100.00%

FTP-Patator 6.09% 27.72% 31.19% 12.84%
SSH-Patator 8.67% 47.32% 51.34% 28.87%
DoS
slowloris 86.89% 100.00% 100.00% 100.00%

DoS
Slowhttptest 91.63% 100.00% 100.00% 100.00%

Bot 100.00% 100.00% 100.00% 100.00%
Web Attack -
Brute Force 94.49% 100.00% 100.00% 100.00%

Web Attack -
XSS 100.00% 100.00% 100.00% 100.00%

Infiltration 100.00% 100.00% 100.00% 100.00%
Web Attack -
Sql Injection 100.00% 100.00% 100.00% 100.00%

Heartbleed 0% 0% 0% 0%

based detection. It is shown that it is enough to modify the
size of packets and the temporal profile of packets arrivals, not
to fall in cases learned by the ML algorithm during its training
phase. This result is a very bad news as is is then very easy
to apply such a simple methodology to all existing attacks for
them to remain undetected by ML-based detection algorithms.
The second contribution deals with explaining, in the case
of RF, the reasons of the bad detection performance when
facing our new adversarial attacks. The goal of this second
contribution deals with opening the path to explainable AI,
and then providing to security managers some explanations
why a given flow is classified as benign or malicious.

The strongest contribution of the work presented in this
paper certainly deals with studying how the RF algorithm
makes its classification decision by going deeply in the anal-
ysis of the RF trees. It appears that very small changes on
some parameters of the traffic samples can make the RF
trees change completely, notably with changes in the order of
the most significant features for making the decision, or the
decision thresholds. The RF algorithm then appears as very
sensitive to the data it takes advantage of for the training and
the classification phases. It can even appear as chaotic. This
specificity is a lack that makes the design of adversarial attacks
very easy.

REFERENCES

[1] N. Elmrabit, F. Zhou, F. Li, H. Zhou, “Evaluation of Machine Learning
Algorithms for Anomaly Detection”, IEEE International Conference on
Cyber Security and Protection of Digital Services (Cyber Security), 2020

[2] Z. Ahmad, A. Shahid Khan, C. Wai Shiang, J. Abdullah, F. Ahmad,
“Network Intrusion Detection System: A Systematic Study of Machine
Learning and Deep Learning Approaches”, Transactions on Emerging
Telecommunications Technologies, 32(1), 2021

[3] J. Aiken, S. Scott-Hayward, ”Investigating Adversarial Attacks against
Network Intrusion Detection Systems in SDNs”, IEEE Conference
on Network Functions Virtualization and Software Defined Networks,
Dallas, TX, USA, 12-14 November 2019

[4] G. Apruzzese, M. Andreolini, M. Marchetti, A. Venturi, M. Colajanni,
”Deep Reinforcement Adversarial Learning against Botnet Evasion
Attacks”, IEEE Transactions on Network and services Management, Vol.
17, No. 4, December 2020

[5] P.A. Alves Resende, A. Costa Drummond, “A Survey of Random Forest
Based Methods for Intrusion Detection Systems”, ACM Computing
Survey, vol. 51, No. 3, May 2018

[6] A. H. Mirza, S. Cosan, ”Computer network intrusion detection using
sequential LSTM neural networks autoencoders”, In IEEE 26th Signal
Processing and Communications Applications Conference (SIU), IEEE,
2018

[7] C. Yin, Y. Zhu, S. Liu, J. Fei, H. Zhang, ”Enhancing network intrusion
detection classifiers using supervised adversarial training”, Springer
Journal of Supercomputing, 2019

[8] G. Apruzzese, M. Andreolini, M. Colajanni, M. Marchetti, ”Hardening
random forest cyber detectors against adversarial attacks”, IEEE Trans-
actions on Emerging Topics in computational Intelligence, Vol. 4, No.
4, 2020

[9] G. Apruzzese, M. Colajanni, L. Ferretti, M. Marchetti, ”Addressing
Adversarial Attacks Against Security Systems Based on Machine Learn-
ing”, IEEE International Conference on Cyber Conflicts, May 2019

[10] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z.B. Celik, A. Swami,
”The Limitations of Deep Learning in Adversarial Settings”, IEEE
European Symposium on Security and Privacy (Euro S&P’2016), March
2016

[11] S. Calzavara, C. Lucchese, G. Tolomei, ”Adversarial Training of
Gradient-Boosted Decision Trees”, ACM International Conference on
Information Knowledge management, 2019

[12] D.J. Miller, Z. Xiang, G. Kesidis, ”Adversarial Learning targeting Deep
neural Network Classification: A Comprehensive Review of Defense
Against Attacks”, proceedings of the IEEE, Vol. 108, 2020

[13] Y. Senzaki, S. Ohata, K. Matsuura, ”Simple Black-Box Adversarial
Examples Generation with Very Few Queries”, IEICE Transactions on
Information and Systems, Vol. 103, No. 2, 2020

[14] I. Sharafaldin, A. Habibi Lashkari, A. Ghorbani, “Toward Generating a
New Intrusion Detection Dataset and Intrusion Traffic Characterization”,
Proceedings of the 4th International Conference on Information Systems
Security and Privacy - ICISSP, pages 108-116, 2018

[15] RandomForestClassifier Scikit Learn: https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClas-
sifier.html

[16] Understanding the decision tree structure Scikit Learn :
https://imbalanced-learn.org/stable/references/generated/imblearn.over
sampling.RandomOverSampler.html

