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CHEBYSHEV AND EQUILIBRIUM MEASURE VS

BERNSTEIN AND LEBESGUE MEASURE

JEAN B. LASSERRE

Abstract. We show that Bernstein polynomials are related to the
Lebesgue measure on [0, 1] in a manner similar as Chebyshev polyno-

mials are related to the equilibrium measure dx/π
√
1− x2 of [−1, 1].

We also show that Pell’s polynomial equation satisfied by Chebyshev
polynomials, provides a partition of unity of [−1, 1], the analogue of the
partition of unity of [0, 1] provided by Bernstein polynomials. Both par-
titions of unity are interpreted as a specific algebraic certificate that the
constant polynomial “1” is positive – on [−1, 1] via Putinar’s certificate
of positivity (for Chebyshev), and – on [0, 1] via Handeman’s certificate
of positivity (for Bernstein). Then in a second step, one combines this
partition of unity with an interpretation of a duality result of Nesterov
in convex conic optimization to obtain an explicit connection with the
equilibrium measure on [−1, 1] (for Chebyshev) and Lebesgue measure
on [0, 1] (for Bernstein). Finally this connection is also partially estab-

lished for the simplex in R
d.

1. Introduction

In a recent contribution [6] we have considered some specific sets S ⊂ R
d

like the unit box [−1, 1]d, the Euclidean unit ball and the canonical simplex
of Rd, and established (in the author’s opinion) surprising connections be-
tween the Christoffel function of their associated equilibrium measure, the
polynomial Pell’s equation, and a Putinar’s certificate of positivity on S for
the constant polynomial “1”.

The notion of equilibrium measure associated to a given set, originates
from logarithmic potential theory (working in C in the univariate case) to
minimize some energy functional. For instance, the equilibrium (Chebsy-

shev) measure dφ := dx/π
√
1− x2 minimizes the Riesz s-energy functional

∫ ∫
1

|x− y|s dµ(x) dµ(y)

2020 Mathematics Subject Classification. 42C05 33C47 90C23 90C46 94A17 41A99.
J.B. Lasserre is supported by the AI Interdisciplinary Institute ANITI funding through

the french program “Investing for the Future PI3A” under the grant agreement number
ANR-19-PI3A-0004. This research is also part of the programme DesCartes and is sup-
ported by the National Research Foundation, Prime Minister’s Office, Singapore under its
Campus for Research Excellence and Technological Enterprise (CREATE) programme.

1



2 JEAN B. LASSERRE

with s = 2, among all measures µ equivalent to φ. Some generalizations
have been obtained in the multivariate case via pluripotential theory in C

n.
In particular, if S ⊂ R

n ⊂ C
n is compact then its equilibrium measure is

equivalent to Lebesgue measure on compact subsets of int(S); see e.g. [1].
For the interested reader, some examples of equilibrium measures can be
found in e.g. [3, 7].

For illustration and ease of exposition, consider the prototypal example
of the univariate unit box [−1, 1] and its associated equilibrium measure

dφ = dx/π
√
1− x2. Starting from the polynomial Pell’s equation1

(1.1) Tn(x)
2 + (1− x2)Un−1(x)

2 = 1 , ∀x ∈ R ,

satisfied by the Chebyshev polynomials (Tn)n∈N of the first kind and (Un)n∈N
of second kind, one easily obtains that

(1.2) 1 =

n∑

j=0

Tj(x)
2/(n + 1) + (1− x2)

n−1∑

i=0

Ui(x)
2/(n + 1) , ∀x ∈ R .

Interestingly, (1.2) is a sum-of-squares (SOS)-based Putinar’s certificate

(1.3) 1 = σ0(x) + (1− x2)σ1(x) , ∀x ∈ R ,

that the constant polynomial “1” is positive on [−1, 1]. As shown in [5, 6],
among all such representations (1.3), the particular form (1.2) maximizes an
entropy related functional of the Gram matrices of the SOS weights σ0 and
σ1 in (1.3). On the other hand, (1.1) is nothing less that the Markov-Lukács
representation of the constant polynomial “1” into a weighted sum of only
two squares, that is, a representation of the form (1.3) with single squares
instead of sum-of-squares.

Finally, with x 7→ g(x) := 1 − x2, and after a rescaling of Tj to T̂j =

Tj/
√
2 (resp. Ûj := Uj/

√
2) so as to obtain a family of polynomials that are

orthonormal w.r.t. φ (resp. w.r.t. g · φ where g · φ is the measure gdφ),

2n+ 1 =
n∑

j=0

T̂ 2
j + g

n−1∑

i=0

Û2
i(1.4)

= Λφ
n(x)

−1 + g(x)Λg·φ
n (x)−1 , ∀x ∈ R ,(1.5)

where Λφ
n (resp. Λg·φ

n ) is the degree-n Christoffel function associated with
φ (resp. g · φ); see [6]. Notice that in (1.2), the polynomials

{(Tj/(n + 1))j≤n , g Uj/(n + 1))j≤n−1}
or in (1.4), the polynomials

{
(T̂j/(2n + 1))j≤n , g Ûj/(2n + 1))j≤n−1

}
,

1A multivariate polynomial F ∈ Z[x] is called a multi-variable Fermat-Pell polynomial
if there exist polynomials C,H ∈ Z[x] such that C2 − F H2 = 1 or C2 − F H2 = −1 for
all x. Then the triple (C,H,F ) is a multi-variable solution to Pell’s equation; see e.g. [8].
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form a partition of unity of the interval [−1, 1]. This partition of unity (1.2)
(or (1.4)) is related explicitly to the equilibrium measure φ of [−1, 1] by the
interpretation (1.5) of (1.4) (and/or the orthogonality w.r.t. φ).

Contribution. Inspired by the partition of unity (1.2), we now consider
another well-known partition of unity, namely:

(1.6) 1 =
n∑

j=0

Bn,j(x) , ∀x ∈ R , ∀n ∈ N ,

of the interval [0, 1], provided by the Bernstein polynomials (Bn,j)j≤n, where
x 7→ Bn,j(x) :=

(
n
j

)
xj (1 − x)n−j, for all j = 0, . . . , n. In particular, using

that
∫ 1
0 Bn,j(x)dx = 1/(n + 1) for all j = 0, . . . , n, and summing up, yields

1 =
2

(n+ 1)(n + 2)

n∑

t=0

t∑

j=0

Bt,j(x)∫ 1
0 Bt,j(x)dx

, ∀x ∈ R ,(1.7)

=
2

(n+ 1)(n + 2)

∑

(i,j)∈N2
n

c∗ijx
i (1− x)j , ∀x ∈ R ,(1.8)

with 1/c∗ij =
i! j!

(i+j+1)! =
∫ 1
0 xi(1− x)jdx.

We want to convince the reader that (1.7) (or (1.8)) is the analogue for
Bernstein polynomials on S = [0, 1], of (1.4)-(1.5) for Chebyshev polynomi-
als on S = [−1, 1]. Indeed :

• In (1.7), (n+ 1)(n+ 2)/2 is the number of terms xi(1− x)j , exactly as

2n + 1 is also the number of terms T̂j(x)
2 and (1 − x2)Ûj(x)

2 in the right-
hand-side of (1.4). So in both cases, the polynomial “1” is expressed as an
average of a certain number of polynomials that are positive on S.

• The coefficient c∗ij associated with xi(1 − x)j (equivalently to Bi+j,i)

is just 1/
∫ 1
0 xi(1 − x)jdx (integration w.r.t. Lebesgue measure on [0, 1]),

exactly as 1 is the coefficient associated with T̂ 2
j and (1−x2)Û2

j , and satisfies

1 =

∫ 1

−1
T̂j(x)

2dφ ; 1 =

∫ 1

−1
(1−x2)Ûj(x)

2dφ =

∫ 1

−1
Ûj(x)

2
√
1− x2dx/π

(integration w.r.t. equilibrium measure φ on [−1, 1]).
• The vector of coefficients c∗ = (c∗ij)(i,j)∈N2

n
is the unique optimal solution

of the “max-entropy” optimization problem:

sup
c≥0

{
∑

(i,j)∈N2
n

log(cij) : 1 =
2

(n+ 1)(n + 2)

∑

(i,j)∈N2
n

cijx
i (1−x)j , ∀x ∈ R } .
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Similarly, with vn(x) := (xj)j≤n ∈ R[x]n+1 (and x 7→ g(x) := 1− x2),

x 7→
n∑

j=0

T̂ 2
j (x) = vn(x)

TMn(φ)
−1vn(x) , ∀x ∈ R

x 7→
n−1∑

j=0

Û2
j (x) = vn−1(x)

TMn(g · φ)−1vn−1(x) , ∀x ∈ R,

the couple of Gram matrices (A∗,B∗) := (Mn(φ)
−1,Mn−1(g · φ)−1) is the

unique optimal solution of the max-entropy optimization problem:

sup
A,B�0

{ log det(A) + log det(B) :

s.t. 1 = 1
2n+1 [vn(x)

TAvn(x)︸ ︷︷ ︸
σ0(x)

+(1− x2) vn−1(x)
TBvn−1(x)︸ ︷︷ ︸
σ1(x)

] , ∀x ∈ R }
.

So the partition of unity (1.2) associated with Chebyshev polynomials is
associated with Putinar’s certificate of positivity (1.3) on [−1, 1], based on
SOS polynomials, and applied to the constant polynomial “1”, whereas the
partition of unity (1.7) associated with Bernstein polynomials is associated
with Handelman’s certificate of positivity on [0, 1], based on nonnegative
coefficients cij of xi(1− x)j . But both share the same variational property,
namely their coefficients in their respective certificate maximize a similar
entropy criterion.

2. Notation definitions and a duality result

2.1. Notation and definitions. Let R[x] be the ring of univariate poly-
nomials, R[x]t ⊂ R[x] be the space of polynomials of degree at most t,
and Σ[x]t ⊂ R[x]2t be the convex cone of univariate sum-of-squares (SOS)
polynomials of degree at most 2t. An element p ∈ R[x]t is written as
x 7→ p(x) = pTvt(x) where vt(x) = (xj)0≤j≤t is the usual monomial ba-
sis of R[x]t, and p ∈ R

t+1 is the vector of coefficients of p in that basis.
An element φ ∈ R[x]∗t is represented by a vector φ = (φj)0≤j≤t, that is,

φ(p) = φTp.
Given a polynomial g ∈ R[x] and a linear functional φ ∈ R[x]∗t with

associated sequence φ ∈ R
t+1, define the new linear functional g · φ ∈ R[x]∗t

(with associated sequence g · φ) defined by:

p 7→ g · φ(p) = φ(g p) = 〈g · φ,p〉 , ∀p ∈ R[x]t .

Given a sequence φ ∈ R[x]t denote by Mt(φ) (or Mt(φ)), the moment
matrix associated with φ. It is the (t+ 1) × (t+ 1) real symmetric Hankel
matrix with entries

Mt(φ)[i, j] = φ(xi+j−2) = φi+j−2 , ∀1 ≤ i, j ≤ t+ 1 .
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Similarly, the matrix Mt(g ·φ) (or Mt(g ·φ)), i.e., the moment matrix asso-
ciated with the sequence g ·φ, is also called the localizing matrix associated
with φ and g.

With x 7→ g(x) := (1 − x2), introduce the convex cone Qn(g) ⊂ R[x]2n
defined by

Qn(g) := {σ0 + σ1 g : σ0 ∈ Σ[x]n , σ1 ∈ Σ[x]n−1 } .
Its dual Qn(g)

∗ ⊂ R[x]∗2n is the convex cone defined by

Qn(g)
∗ := {φ ∈ R

2n+1 : Mt(φ) � 0 ; Mn−1(g · φ) � 0 } .
In the terminology of real algebraic geometry, Qn(g) is the quadratic module
associated with the polynomial g.

2.2. Two certificates of positivity. We next introduce two (celebrated)
certificates of positivity on [1, 1] and [0, 1] respectively.

Theorem 2.1 (Markov-Lukács & Putinar). If p ∈ R[x]2n is nonnegative on
[−1, 1] then p ∈ Qn(g), i.e.,

(2.1) p = σ0 + σ1 g ,

for some SOS polynomials σ0 ∈ Σ[x]n and σ1 ∈ Σ[x]n−1. In fact, we even
have

(2.2) p = p20 + p21 g ,

for some polynomials p0 ∈ R[x]n and p1 ∈ R[x]n−1.

So the refinement (2.2) of (2.1) is Markov-Lukács’ theorem which states
that one may even decompose p as a (weighted) sum of only two single
squares. Putinar’s Positivstellensatz [10] is a multivariate generalization of
Theorem 3.2 for polynomials that are strictly positive on a compact basic
semi-algebraic set (whose generators satisfy an Archimedean property).

Theorem 2.2 (Bernstein [2]). If p ∈ R[x]n is (strictly) positive on [0, 1]
then there exists m ≥ n and 0 ≤ c = (cij)i+j=m such that

(2.3) p(x) =
∑

i+j=m

cij x
i (1− x)j , ∀x ∈ R .

Theorem 2.3 (Handelman (univariate)). If p ∈ R[x]n is (strictly) positive
on [0, 1] then there exists 0 ≤ c = (cij)i+j≤n such that

(2.4) p(x) =
∑

i+j≤n

cij x
i (1− x)j , ∀x ∈ R .

Theorem 2.3 is a specialization to the univariate case and S = [0, 1],
of the more general Handeman’s Positivstellensatz [4] valid on a convex
polytope S ⊂ R

d with nonempty interior, while in (the older) Theorem 2.2
of Bernstein, all terms xi (1 − x)j have same degree i + j = m. Note that
the two certificates of positivity (2.1) (or (2.2)) and (2.4) are quite different
in nature. The first one (2.1) which is the univariate version of Putinar’s
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theorem, uses SOS polynomials (σ0, σ1) and is valid for polynomials that are
nonnegative on [−1, 1], whereas (2.4) which uses a vector c of nonnegative
scalars, is valid for polynomials that are strictly positive on [0, 1].

Moreover, testing whether a given p ∈ R[x]2t satisfies (2.1), reduces to
solving a semidefinite program (or an eigenvalue problem). On the other
hand, testing whether p satisfies (2.3) reduces to solving a linear program.

3. Main result

In this section we show how Chebyshev (resp. Bernstein) polynomials
are related in a similar manner to the equilibrium measure of [−1, 1] (resp.
Lebesgue measure on [0, 1]).

3.1. Chebyshev polynomials and equilibrium measure of [−1, 1].
Polynomial Pell’s equation. Let (T )j∈N (resp. (Uj)j∈N) be the Chebyshev

polynomials of the first (resp. second) kind. After normlization T̂j :=

Tj/
√
2, j = 1, . . . , n, and Ûj := Uj/

√
2, j = 0, . . . , n, (T̂j)j∈N (resp. (Ûj)j∈N

) form a family of polynomials orthonormal w.r.t. dφ = dx/π
√
1− x2 (resp.

(1 − x2) dφ =
√
1− x2dx/π). It turns out that the Chebyshev polynomials

satisfy the so-called polynomial Pell’s equation (1.1), that is,

Tn(x)
2 + (1− x2)Un−1(x)

2 = 1 , ∀x ∈ R , ∀n ≥ 1 .

As already mentioned in introduction, observe that (1.1) is a nice illustration
of Markov-Lukács’s theorem (2.2) for the constant polynomial “1” which is
indeed positive on [−1, 1]. In other words, the Chebyshev polynomials of first
and second kind provide the Markov-Lukács decomposition of the constant
polynomial “1”.

In [8] this result was given an interpretation in terms of Christoffel func-
tions of the equilibrium measure φ of [−1, 1], namely:

Theorem 3.1 ([8]). Let x 7→ g(x) := 1− x2. For every n ∈ N:

1 =
1

2n + 1
[

n∑

j=0

T̂ 2
j + g

n−1∑

j=0

Û2
j ](3.1)

=
1

2n + 1
[vn(x)

TMn(φ)
−1vn(x)(3.2)

+ g(x)vn−1(x)
TMn−1(g · φ)−1vn−1(x) ] , ∀x ∈ R(3.3)

= Λφ
n(x)

−1 + g(x)Λg·φ
n−1(x)

−1 , ∀x ∈ R .(3.4)

So Theorem 3.1 states that the constant polynomial “1” has a distin-
guished certificate of positivity on S = [−1, 1]. Among all of its possible
Putinar’s representations (2.1), the one in (3.1)-(3.4) is directly related to

the equilibrium measure dφ = dx/π
√
1− x2 of the interval [−1, 1]. In ad-

dition, as we next show, this distinguished certificate satisfies an extremal
property.
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Lemma 3.1 ([5]). The couple of Gram matrices (A∗,B∗) with A∗ :=
Mn(φ)

−1 and B∗ := Mn−1((1−x2) ·φ)−1, is the unique optimal solution of
the convex optimization problem:

sup
A,B≻0

{ log det(A) + log det(B) :

s.t. 2n+ 1 = vn(x)
TAvn(x)︸ ︷︷ ︸
σ0(x)

+g(x) vn−1(x)
TBvn−1(x)︸ ︷︷ ︸
σ1(x)

∀x ∈ R } .

The proof of Lemma 3.1 in [5] combines (1) a duality result of Nesterov
[9] which establishes a one-to-one correspondence between the interiors of
the convex cone of polynomials Qn(g) and its dual Qn(g)

∗, and (ii) the
generalized Pell’s equation (3.1)-(3.2) which allows to identify the element
φ = (φj)j≤2n+1 in Qn(g)

∗ associated with 1 ∈ Qn(g), to be moments of the

equilibium measure dφ = dx/π
√
1− x2 of the interval [−1, 1].

Partition of unity. Observe that the polynomials {(Ti)i≤n/n+1, (g Uj/n+

1)j≤n−1} or {(T̂i)i≤n/2n+ 1, (g Ûj/2n+ 1)j≤n−1}, form a partition of unity
of the interval [−1, 1]. Lemma 3.1 establishes that it maximizes an entropy
criterion among all possible polynomial partitions of unity in the form σ0 +
g σ1 (a certificate of positivity on S = [−1, 1] for the polynomial “1”).

3.2. Bernstein polynomials and Lebesgue measure on [0, 1]. Let S =

[0, 1] and s(n) :=
(2+n

n

)
. The family of Bernstein polynomials Bn,j ⊂ R[x]

is defined by:

x 7→ Bn,j(x) :=

(
n

j

)
xj (1− x)n−j , ∀j ≤ n , n ∈ N .

Among their numerous properties, they form a basis of R[x]n, they are
nonnegative on [0, 1], bounded by 1, and in addition:

(3.5) 1 =
n∑

j=0

Bn,j(x) , ∀x ∈ R , ∀n ∈ N ,

so that they form a partition of unity of the interval [0, 1]. Moreover,

(3.6)

∫ 1

0
Bn,j(x) dx =

1

n+ 1
, ∀j = 0, . . . , n , ∀n ∈ N .

Interestingly, the envelope fn of the Bernstein polynomials Bn,j is the Cheby-
shev density

fn(x) :=
1

n
· 1√

2πx(1− x)
.

Next, for n ∈ N fixed and S = [0, 1], consider the convex cones Cn and its
dual C ∗

n defined by:

Cn = {
∑

(i,j)∈N2
n

cij x
i (1− x)j : c ≥ 0 } ⊂ R[x]n

C
∗
n = {φ ∈ R[x]∗n : φ(xj (1− x)j) ≥ 0 , ∀(i, j) ∈ N

2
n } ⊂ R[x]∗n .
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Remark 3.1. In view of Bernstein’s Theorem 2.2, we could also consider
the smaller convex cone

{
n∑

j=0

cj x
j (1− x)n−j : c ≥ 0 } ⊂ R[x]n ,

where all terms xj(1 − x)n−j have same degree n. But since in Theorem
2.3, Handelman’s Positivstellensatz requires to consider all positive linear
combinations of powers xi(1−x)j with i+ j ≤ n, we will rather consider Cn

as defined above.

Proposition 3.1. p ∈ int(Cn) if and only if there exists 0 < c = (cij)i+j≤n

such that

p =
∑

(i,j)∈N2
n

cij x
i(1− x)j , ∀x ∈ R .

Proof. Only if part: If p ∈ int(Cn) then p − ε ∈ Cn for ε > 0 sufficiently
small, that is,

p− ε =
∑

(i,j)∈N2
n

cij x
i(1− x)j , ∀x ∈ R .

for some c ≥ 0. Next, using (3.5) yields

n+ 1 =

n∑

j=0

j∑

k=0

(
j

k

)
xj(1− x)j−k , ∀x ∈ R ,

and therefore we obtain

p =
∑

(i,j)∈N2
n

cij x
i(1− x)j +

ε

n+ 1

n∑

j=0

j∑

k=0

(
j

k

)
xj(1− x)j−k , ∀x ∈ R

=
∑

(i,j)∈N2
n

(cij + εij︸ ︷︷ ︸
c̃ij>0

)xi(1− x)j , ∀x ∈ R ,

for some c̃ > 0.
If part: Let p =

∑
(i,j)∈N2

n
cij x

i(1 − x)j with c > 0, and let ε > 0 and

q ∈ R[x]n be such that ‖p− q‖ < ε. As (Bn,j)j≤n form a basis of R[x]n,

p− q =
∑

i+j=n

τij x
i(1− x)j ,

for some τ ∈ R
n+1 with supi+j=n |τij | < κε (for some κ > 0). Defining

τij := 0 whenever (i, j) ∈ N
2
n with i+ j < n, one obtains

q = p−
∑

i+j=n

τij x
i(1− x)j =

∑

(i,j)∈N2
n

(cij − τij︸ ︷︷ ︸
c̃ij

)xi (1− x)j ,

where c̃ = (c̃ij) ≥ 0 provided that ε > 0 is small enough. Therefore we
conclude that q ∈ Cn whenever ε is small enough, and so p ∈ int(Cn). �
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Lemma 3.2. Let p ∈ int(Cn) be fixed. Then the optimization problem

(3.7)

P : ρn = sup
c>0

{
∑

(i+j)∈N2
n

log cij :

s.t. p(x) =
∑

(i,j)∈N2
n

cij x
i (1− x)j , ∀x ∈ R }

,

is a convex optimization problem whose unique optimal solution c∗ > 0
satisfies

(3.8) 1/c∗ij = φ∗
p(x

i (1− x)j) , ∀(i, j) ∈ N
2
n ,

for some element φ∗
p ∈ C ∗

n , and therefore

(3.9) p(x) =
∑

(i,j)∈N2
n

xi (1− x)j

φ∗
p(x

i (1− x)j)
, ∀x ∈ R .

Proof. We first prove the ρn is finite. As p ∈ int(Cn), by Lemma 3.1 there
exists ĉ > 0 such that p =

∑
(i,j)∈N2

n
ĉij x

i(1 − x)j, and so Slater condition2

holds for P and ρn ≥ ∑
(i,j)∈N2

n
log ĉij > −∞. Therefore we may and will

consider only the (nonempty) subset of feasible solutions

∆ := { c ≥ 0 :
∑

(i,j)∈N2
n

log cij ≥
∑

(i,j)∈N2
n

log ĉij } .

Moreover, for any such feasible solution c ∈ ∆ of P, with x0 ∈ (0, 1) fixed,

p(x0) =
∑

(i,j)∈N2
n

cij x
i
0 (1− x0)

j ⇒ cij <
p(x0)

xi0(1− x0)j
, ∀(i, j) ∈ N

2
n ,

and therefore the set ∆ is compact, which in turn implies that P has an
optimal solution c∗ ∈ ∆ (hence with c∗ > 0). Next, the necessary Karush-
Kuhn-Tucker (KKT)-optimality conditions impose that there exists φ∗

p ∈ C ∗
n

such that (3.8) holds, which in turn yields (3.9). Then uniqueness of c∗

follows from the fact that the objective function is strictly concave. �

Lemma 3.2 is the analogue for the cones Cn and C ∗
n of Nesterov’s one-to-

one correspondence between the cones Qn(g) and Qn(g)
∗. Of course (3.9)

raises a natural question: What is the element φ∗
p ∈ C ∗

n associated with
p ∈ int(Cn)? We answer this question for the constant polynomial “1”.

Theorem 3.2. Let s(n) = (n+1)(n+2)/2 and let p ∈ R[x]n be the constant
polynomial x 7→ p(x) = s(n) for all x ∈ R. Then for every n ∈ N, the vector

c∗ ∈ R
s(n) with

1/c∗ij = φ∗
p(x

i(1− x)j) =

∫ 1

0
xi (1− x)j dx , ∀(i, j) ∈ N

2
n ,

2Slater condition holds for the convex optimization problem min{ f(x) : gj(x) ≤ 0 , j ∈
J} if there exists x0 such that gj(x0) < 0, for all j ∈ J .
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is the unique optimal solution of (3.7), and:

1 =
1

s(n)

∑

(i,j)∈N2
n

xi (1− x)j
∫ 1
0 xi(1− x)jdx

(3.10)

=
1

s(n)

∑

(i,j)∈N2
n

Bi+j,i(x)∫ 1
0 Bi+j,i(x)dx

, ∀x ∈ R .

That is, φ∗
p is the Lebesgue measure on [0, 1], and the polynomials ( (k+1)

s(n) Bk,j)

form a partition of unity of [0, 1].

Proof. From the proof of Lemma 3.2 we have seen that P in (3.7) is a
convex optimization problem with a unique optimal solution which satisfies
the KKT-optimality conditions (3.8). Next, since

n+ 1 =
n∑

k=0

k∑

j=0

Bkj(x) =
∑

(i,j)∈N2
n

ĉij x
i(1− x)j ,

with ĉ > 0, Slater condition holds for P. This in turn implies that the first-
order KKT optimality condition are not only necessary but also sufficient.
So let φ∗ be the Lebesgue mesure on [0, 1]. We next prove that c∗ = (c∗ij)

with 1/c∗ij := φ∗(xi(1− x)j), for all (i, j) ∈ N
2
n is feasible for P and hence is

the unique optimal solution of P. Indeed

1/c∗ij := φ∗(xi (1− x)j) =
φ∗(Bi+j,i)(

i+j
i

) =
1

(i+ j + 1) ·
(
i+j
i

) ,

and therefore:∑

(i,j)∈N2
n

c∗ij x
i (1− x)j =

∑

(i,j)∈N2
n

(i+ j + 1)Bi+j,i(x)

=

n∑

k=0

∑

(i,j)∈N2
n:i+j=k

(i+ j + 1)Bi+j,i(x)

=

n∑

k=0

(k + 1)

k∑

j=0

Bk,j(x)

=

n∑

k=0

(k + 1) =
(n+ 1)(n + 2)

2
= s(n) .

�

Remark 3.2. Theorem 3.2 reveals that the linear functional φ∗
p of Lemma

3.2 associated with the constant polynomial p = s(n), is the Lebesgue mea-
sure on [0, 1]. So (3.10) is indeed the analogue for Bernstein polynomials
and Lebesgue measure on S = [0, 1], of (3.1) for Chebyshev polynomials

and the equilibrium measure dx/π
√
1− x2 on S = [−1, 1]. Both resulting

partitions of unity maximize an entropy criterion of a very similar flavor.
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4. Extension to the canonical simplex

In [6] we have proved a similar (but only partial) result for the 2-dimensional
canonical simplex S := {(x, y) : x + y ≤ 1 ; x, y ≥ 0 } whose equilibrium

measure is dφ(x, y) = dx dy/π
√

x y (1− x− y).

Namely let s(n) :=
(
2+n
2

)
, and introduce the quadratic polynomials (x, y) 7→

g1(x, y) := x y, (x, y) 7→ g2(x, y) = x (1 − x − y), and (x, y) 7→ g3(x, y) :=
y (1− x− y). For n = 1, 2, 3, in [6] we have obtained

(4.1) s(n) + s(n− 1) = Λφ
n(x, y)

−1 +

3∑

i=1

gi(x, y)Λ
gi·φ
n−1(x, y)

−1 ,

for all (x, y) ∈ R
2, and indeed, (4.1) is a perfect analogue for the simplex,

of (3.4) for the interval [−1, 1].
We next prove the analogue of (3.10) for the d-dimensional simplex, and

n = 1, 2. We will use the following known (intermediate) result.

Proposition 4.1. Let φ∗ be the uniform probability measure on S = {x ∈
R
d
+ :

∑
i xi ≤ 1 }, with moments φ∗ = (φ∗

α
)
α∈Nd. Then

(4.2) φ∗
α

= φ(xα) =
d!α1! · · ·αd!

(d+ |α|)! , ∀α ∈ N
d .

Next, for each n ∈ N, let ŝ(n) :=
(
d+1+n

n

)
, i.e., ŝ(n) is the dimension of

R[x1, . . . , xd+1]n as a vector space. Let x 7→ gj(x) := xj , j = 1, . . . , d, and

x 7→ gd+1(x) := 1 − ∑d
j=1 xj , so that S = {x ∈ R

d : gj(x) ≥ 0 , j =

1, . . . , d + 1 }. Next, for every α ∈ N
d+1, define the polynomial gα ∈ R[x]

by:

x 7→ g(x)α := g1(x)
α1 · g2(x)α2 · · · gd+1(x)

αd+1 .

Similarly define the convex cone Cn ⊂ R[x]n by:

Cn := {
∑

α∈N
d+1
n

cα g(x)α : c = (cα)
α∈N

d+1
n

≥ 0 } .

Its dual C ∗
n is the convex cone defined by:

C
∗
n := {φ ∈ R

s(n) : φ(gα) ≥ 0 , ∀α ∈ N
d+1
n } .

Theorem 4.1. Let φ∗ be probability with uniform distribution on the simplex
S. With n = 1, 2, the optimization problem:

(4.3) P : sup
c≥0

{
∑

α∈N
d+1
n

log cα : ŝ(n) =
∑

α∈N
d+1
n

cα g(x)α , ∀x ∈ R
d } ,

has a unique optimal solution 0 < c∗ ∈ R
ŝ(n) which satisfies 1/c∗

α
= φ∗(gα)

for all α ∈ N
d+1
α

, and

(4.4) 1 =
1

ŝ(n)

∑

α∈N
d+1
n

g(x)α

φ∗(gα)
, ∀x ∈ R

d .
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Therefore the ŝ(n) polynomials 1
ŝ(n) {

gα

φ∗(gα)}α∈N
d+1
n

provide the simplex S

with a partition of unity that maximizes an entropy criterion and is strongly
related to the uniform distribution φ∗ on S.

Proof. We will show that c∗ and φ∗ satisfy the KKT-optimality conditions
associated with P, and as Slater condition holds for the convex optimization
problem P, it implies that c∗ is an optimal solution of P. Uniqueness follows
from the fact that the objective function c 7→ ∑

α
log cα is strictly concave.

If c∗ > 0 is an optimal solution, the KKT-optimality conditions state that

1 =
1

ŝ(n)

∑

α∈N
d+1
n

c∗
α
g(x)α , ∀x ∈ R

d

1/c∗
α

= φ(gα) , ∀α ∈ N
d+1
n ,(4.5)

for some element φ ∈ R[x]∗n such that φ(gα) ≥ 0 for all α ∈ N
d+1
n . Con-

versely under Slater condition, if (4.5) holds then c∗ is an optimal solution of
P. So let φ∗ be the probability measure uniformly supported on the simplex
S (i.e. Lebesgue measure on S, scaled to a probability measure).

• With n = 1 and invoking Proposition 4.1, one obtains

1 +
(1−

∑d
i=1 xi)

φ∗(1−∑d
i=1 xi)

+

d∑

j=1

xi
φ∗(xi)

= 1 +
(1−

∑d
i=1 xi)

1/(d + 1)
+

d∑

j=1

xi
1/(d+ 1)

= 1 + d+ 1 = d+ 2 = ŝ(1) ,

which shows that P has a feasible solution with c > 0 (i.e., Slater condition
holds for P ), and (4.5) holds with φ = φ∗, the desired result.

• Similarly, with n = 2,

1 +
(1−∑d

i=1 xi)

φ∗(1−∑d
i=1 xi)

+
d∑

j=1

xi
φ∗(xi)

+
(1−∑d

i=1 xi)
2

φ∗((1−∑d
i=1 xi)

2)
+

d∑

j=1

x2i
φ∗(x2i )

+
∑

i<j

xi xj
φ∗(xixj)

+
∑

i

xi (1−
∑

j xj)

φ∗(xi (1−
∑

j xj))

= d+ 2 +
(d+ 2)(d + 1)

2
(1−

d∑

i=1

xi)
2 +

(d+ 1)(d + 2)

2

d∑

j=1

x2i

+(d+ 1)(d+ 2)
∑

i<j

xi xj + (d+ 1)(d + 2)
∑

i

xi (1−
∑

j

xj)

= d+ 2 +
(d+ 2)(d+ 1)

2
=

(d+ 3)(d + 2)

2
= ŝ(2) .

�

So again, and exactly as for the interval [0, 1], (4.4) provides the d-
dimensional simplex S with a polynomial partition of unity (of degree n = 1
et n = 2) simply expressed in terms of the generators {gα} of the cone Cn,
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scaled by 1/φ∗(gα), where φ∗ is the Lebesgue measure on S (scaled to a
probability measure).

5. Conclusion

We have shown that Chebyshev polynomials and Bernstein polynomials
are strongly related to respectively the equilibrium measure of S = [−1, 1]
and the Lebesgue measure on S = [0, 1]. Both provide a specific partition
of unity interpreted in terms of Putinar’s certificate of positivity for the
former and Handelman’s certificate of positivity for the latter, applied to
the constant polynomial “1”. In both cases the resulting specific partition
of unity maximizes an entropy criterion over all possible certificates of pos-
itivity for “1”. We have partially extended this result (and comparison) to
the d-dimensional canonical simplex for degrees n = 1, 2, and extension to
higher degrees remains to be proved. Finally, extension to arbitrary convex
polytopes in also a topic of further investigation.
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