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Introduction

Consider the Polynomial Optimization Problem:

pPOPq : f ˚" min x t f pxq : x P Ω u,
where Ω Ă R n is a compact basic semi-algebraic set. For the hierarchy of upper bounds discussed below, Ω is restricted to be a "simple" set like e.g. a box, an ellipsoid, a simplex, a discrete-hypercube, or their image by an affine transformation (Ω " R n `or Ω " R n is also permitted). Indeed, to define an SOS-hierarchy of upper bounds converging to the global minimum f ås described in e.g. [START_REF] Lasserre | A new look at nonnegativity on closed sets and polynomial optimization[END_REF][START_REF] Lasserre | Connecting optimization with spectral analysis of tri-diagonal matrices[END_REF][START_REF] Slot | Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets[END_REF], one uses a measure µ whose support is exactly Ω, and for which all moments µ α :" ş Ω x α dµ, α P N n , can be obtained numerically or in closed-form. For instance if Ω is a box, an ellipsoid or a simplex, µ can chosen to be the Lebesgue measure restricted to Ω. On the hypercube t´1, 1u n µ one may choose for µ the counting measure, etc.

2 Moment-SOS hierarchies

Notation and definition

Let Rrxs " Rrx 1 , . . . , x n s be the ring of real polynomials in the variables x 1 , . . . , x n and let Rrxs t Ă Rrxs be its subspace of polynomials of degree at most t. Let N n t :" tα P N n : |α| ď tu where |α| " ř i α i . Denote by Σrxs t Ă Rrxs 2t he convex cone of sums-ofsquares (SOS) polynomials of degree at most 2t. Let v t pxq :" px α q αPN n t be the vector of the monomial basis. up to degree t. For an arbitrary Borel subset X of R n , denote by M pX q `the convex cone of finite Borel measures on X Ă R n , and by PpX q is subset of probability measures on X .

Riesz functional. Given a sequence y " py α q αPN n , let L y : Rrxs Ñ R be the linear functional

f p" ÿ α f α x α q Þ Ñ L y pf q :" ÿ α f α y α . (1) 
A sequence y " py α q αPN n has a representing measure if there exists a finite Borel measure φ on R n such that y α " ş x α dφ for all α P N n . Observe that L y pf q " ş f dµ whenever y has a representing measure µ.

Moment and localizing matrices. Given an sequence y " py α q αPN n and a polynomial g P Rrxs, x Þ Ñ gpxq :" ř γ g γ x γ , the localizing matrix M t pg yq associated with g and y is the real symmetric matrix with rows and columns indexed by α P N n t and with entries M t pg yqpα, βq :"

ÿ γ g γ y α`β`γ , α, η P N n t . (2) 
If gpxq " 1 for all x then M t pg yq p" M t pyqq is called the moment matrix.

If y has a representing measure supported on tx : gpxq ě 0u then M t pyq ľ 0 and M t pg yq ľ 0 for all t P N. The converse is not true in general; however, the following important result is at the core of the Moment-SOS hierarchy.

Theorem 1 (Putinar [START_REF] Putinar | Positive polynomials on compact semialgebraic sets[END_REF]) Let g j P Rrxs, j " 0, . . . , m with g 0 pxq " 1 for all x, and let G :" tx P R n : g j pxq ě 0, j " 1, . . . , m u be compact. Moreover, assume that for some M ą 0, the quadratic polynomial x Þ Ñ M ´}x} 2 can be written in the form ř m j"0 ψ j g j , for some SOS polynomials ψ 0 , . . . ψ m .

Then a sequence y " py α q αPN n has a representing measure on G if and only if M t pg j yq ľ 0 for all t P N, and all j " 0, . . . , m.

Orthonormal polynomials. Let Ω Ă R n be the compact basic semi-algebraic set defined in (4), assumed to have a nonempty interior. Let µ be a finite Borel (reference) measure whose support is exactly Ω and with associated sequence of orthonormal polynomials pT α q αPN n Ă Rrxs. That is:

ż Ω T α T β dµ " δ α"β , @α, β P N n .
For instance, if Ω " r´1, 1s n and µ is the uniform probability distribution on Ω, one may choose for the family pT α q the tensorized Legendre polynomials. Namely if pT j q Ă Rrxs is the family of univariate Legendre polynomials, then

T α pxq :" n ź j"1
T αj px j q , α P N n .

For every t P N, the mapping K t : Ω ˆΩ Ñ R, px, yq Þ Ñ K t px, yq :" ÿ |α|ďt T α pxq T α pyq , x, y P Ω is called the Cristoffel-Darboux kernel associated with µ. An important property of K t is to reproduce polynomials of degree at most t, that is, for all p P Rrxs t :

ppxq " ż Ω ppyq K t px, yq dµpyq @x P R n . (3) 
This is why K t is called a reproducing kernel, and Rrxs t viewed as a finite-dimensional vector subspace of the Hilbert space L 2 pΩ, µq, is called a Reproducing Kernel Hilbert Space (RKHS). For more details on the theory of orthogonal polynomials, the interested reader is referred to e.g. [START_REF] Dunkl | Orthogonal Polynomials of Several Variables[END_REF] and the many references therein. Define the basic semi-algebraic set

Ω :" t x P R n : g j pxq ě 0 j " 1, . . . , m u , (4) 
for some polynomials g j P Rrxs, j " 1, . . . , m. Let g 0 pxq " 1 for all x, and let d j :" rdegpg j q{2s, j " 0, . . . , m. In the rest of the paper, and as Ω Ă R n is compact, one also assumes for convenience that Ω is contained in a Euclidean ball of radius M , and that g 1 pxq :" M ´}x} 2 (so that the constraint g 1 pxq ě 0 is redundant).

A hierarchy of lower bounds

Observe that the global minimum f ˚also reads:

f ˚" inf φPM pΩq`t ż Ω f dφ : φpΩq " 1 u . (5) 
To approximate f ˚from below, consider the hierarchy of semidefinite programs indexed by t P N:

ρ t " inf y t L y pf q : y 0 " 1 ;
M t´dj pg j yq ľ 0 , j " 0, . . . , m u .

Of course ρ t ď f ˚for all t because the constraints of ( 6) are only necessary conditions for y to have a representing measure φ supported on Ω. Hence ( 6) is a semidefinite-relaxation of ( 5). Its dual reads:

ρ t " sup λ ,σj t λ : f ´λ " m ÿ j"0 ψ j g j ;
ψ j P Σrxs t´dj , j " 0, . . . , m u .

Theorem 2 Let Ω Ă R n be as in (4) with nonempty interior. Then (6) has an optimal solution and ρ t " ρ t .

In addition, ρ t Ò f ˚as t increases, and generically the convergence is finite, in which case a global minimizer can extracted from an optimal solution of (6).

The sequence of semidefinite programs [START_REF] Lasserre | An Introduction to Polynomial and Semi-Algebraic Optimization[END_REF] and their duals [START_REF] Lasserre | Connecting optimization with spectral analysis of tri-diagonal matrices[END_REF], both indexed by t, forms what is called the Moment-SOS hierarchy initiated in the early 2000's. For more details on the Moment-SOS hierarchy and its numerous applications in and outside optimization, the interested reader is referred to [2-4, 6, 9].

A hierarchy of upper bounds

Let µ be a finite Borel measure whose support is exactly Ω, where now Ω is a "simple" set as mentioned earlier. (Hence all moments of µ are available in closed form.) To approximate f ˚from above, consider the hierarchy of semidefinite programs

τ t " inf σ t ż Ω f σ dµ : ż Ω σ dµ " 1 ; σ P Σrxs t u . ( 8 
)
That τ t ě f ˚is straightforward since

f ě f ˚on Ω ñ ż Ω f σ dµ ě f ˚żΩ σ dµ " f ˚,
for any feasible SOS σ. The dual of ( 8) is quite simple as it reads

τ t " sup λ t λ : M t pf µq ľ λ M t pµq u , (9) 
where M t pµq (resp. M t pf µq) is the moment matrix (resp. the localizing matrix) associated with µ and f .

Theorem 3 ( [5])

Let Ω Ă R n be a simple set and µ an arbitrary finite Borel measure whose support is Ω and with all moments available (in closed-form or by simple computation). Then τ t " τ t Ó f ˚as t increases.

Observe that ( 9) is a standard generalized eigenvalue problem and an optimal SOS solution σ ˚of [START_REF] Lasserre | The Moment-SOS Hierarchy and the Christoffel-Darboux kernel[END_REF] is the eigenvector associated with the eigenvalue λ ˚(the optimal solution of ( 9)). In a series of papers, de Klerk, Laurent an co-workers have provided several rates of convergence of τ t Ó f ˚for several examples of sets Ω; typically a Op1{t 2 q rate of convergence takes place. For more details and results, the interested reader is referred to [START_REF] Slot | Near-optimal analysis of Lasserre's univariate measure-based bounds for multivariate polynomial optimization[END_REF][START_REF] Slot | Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets[END_REF][START_REF] Slot | Sum-of-squares hierarchies for binary polynomial optimization[END_REF] and references therein.

The meaning of ( 8) is clear if one recalls that

f ˚" inf φ t ż Ω f dφ : φpΩq " 1 ; φ P M pΩq `u, (10) 
where M pΩq `is the space of all finite Borel measures on Ω. Indeed in (8) one only considers the (restricted) subset of probability measures on Ω that have a density (an SOS of degree at most 2t) with respect to µ whereas in [START_REF] Putinar | Positive polynomials on compact semialgebraic sets[END_REF] one considers all probability measures on Ω. In particular, the Dirac measure φ :" δ ξ at any global minimiser ξ P Ω belongs to M pΩq `but does not have a density with respect to µ, which explains why the convergence τ t Ó f ˚as t increases, can be only asymptotic and not finite; an exception is when Ω is a finite set (e.g. Ω " t´1, 1u n and µ is the counting measure).

Main result

To compare the two hierarchies of upper and lower bounds one now expresses them in the same language of polynomial densities w.r.t. µ, expressed in the orthonormal basis pT α q, and described in [START_REF] Lasserre | Connecting optimization with spectral analysis of tri-diagonal matrices[END_REF] and [START_REF] Lasserre | The Moment-SOS Hierarchy and the Christoffel-Darboux kernel[END_REF].

Lemma 1 Let Ω Ă R n be as in (4) and let µ be a finite Borel (reference) measure whose support is exactly Ω and with associated sequence of orthonormal polynomials pT α q αPN n . Let f ˚" min tf pxq : x P Ωu. Then for every fixed t ě degpf q:

f ˚" min σPRrxst ż Ω f pzq σpzq dµpzq , (11) 
where the minimum is over all polynomials σ P Rrxs t of the form:

σ " ÿ |α|ďt σ α T α ; σ α " ż Ω T α dφ , @α P N n t , (12) 
for some φ P PpΩq.

In particular, f ˚" ş Ω f pzq σ ˚pzq dµpzq where σ ˚P Rrxs 2t in (12) satisfies: σ α " T α pξq for all α P N n t , and ξ is a global minimizer of f on Ω.

Proof Recalling (5):

f ˚" min φPPpΩq ż Ω f dφ " min φPPpΩq ż Ω ż Ω f pzq K t px, zq dµpzq dφpxq " min φPPpΩq ż Ω f pzq p ÿ |α|ďt p ż Ω T α pxq dφpxq loooooooomoooooooon σ φ α q T α pzqq dµpzq " min φPPpΩq ż Ω f pzq p ÿ |α|ďt σ φ α T α pzq looooooomooooooon σ φ t pzqPRrzst q dµpzq ,
where the second equality follows from Fubini-Tonelli interchange theorem valid in this simple setting. Finally, the last statement follows from the reproducing property of the Christoffel-Darboux kernel.

[ \ So solving [START_REF] Slot | Near-optimal analysis of Lasserre's univariate measure-based bounds for multivariate polynomial optimization[END_REF] is equivalent to searching for a signed measure σ dµ with polynomial (signed) density σ P Rrxs t that satisfies [START_REF] Slot | Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets[END_REF]. In particular the signed density z Þ Ñ σ ˚" ř αPN n t T α pξq T α pzq is an optimal solution. Then as done for (5), an obvious relaxation of the (difficult) moment constraint in [START_REF] Slot | Improved convergence analysis of Lasserre's measure-based upper bounds for polynomial minimization on compact sets[END_REF] reads:

ρ 2t " inf y t ż Ω f pxq p ÿ αPN n 2t L y pT α q T α pxqq dµpxq : y 0 " 1 ; M t´dj pg j yq ľ 0 , 0 ď j ď m u , ( 13 
)
where L y is the Riesz functional in (1).

Lemma 2

The semidefinite relaxation (13) of (11) reads: inf y t L y pf q : y 0 " 1 ;

M t´dj pg j yq ľ 0 , 0 ď j ď m u, ( 14 
)
which is exactly [START_REF] Lasserre | An Introduction to Polynomial and Semi-Algebraic Optimization[END_REF].

Proof Let D t be the lower triangular matrix for the change of basis of Rrxs 2t from the monomial basis v 2t pxq " px α q αPN n 2t of Rrxs 2t to the basis pT α q α , i.e., pT α q αPN n 2t " D t ¨px α q αPN n 2t " D t ¨v2t pxq (15)

and denote D 1 t the transpose of D t . The matrix D t is nonsingular with positive diagonal. Next, with f pxq " ř α f α x α " xf , v 2t pxqy, write f pxq "

ř αPN n
2t fα T α pxq in the basis pT α q αPN n 2t . Hence with f " p fα q one obtains x f , D t ¨v2t pxqy " xD

1 t f , v 2t pxqy " xf , v 2t pxqy ñ f " pD 1 t q ´1f . Then ż Ω f pxq p ÿ αPN n 2t
L y pT α q T α pxqq dµpxq " x f , pL y pT α qq α y " xpD 1 t q ´1f , D t ¨yy " xf , yy " L y pf q , which completes the proof.

[ \ Of course by reverting the process of the above proof, the semidefinite program ( 14) can be transformed to (13) once a reference measure µ with support exactly Ω is defined with its associated orthonormal polynomials pT α q. Indeed, once µ and the T α 's are defined, one may use the change of basis matrix D in (15) to pass from (14) to [START_REF] Slot | Sum-of-squares hierarchies for binary polynomial optimization[END_REF].

Observe the difference between (8) which provides an upper bound on f ˚, and ( 13) which provides a lower bound on f ˚. In the former one searches for a positive polynomial density of degree 2t (an SOS) while in the latter one searches for a signed polynomial density whose coefficients are pseudo-moments.

As the signed polynomial z Þ Ñ ř α T α pξq T α pzq (with ξ P Ω a global minimizer) is an optimal solution of (11), it is reasonable to expect that the hierarchy of lower bounds (13) (or, equivalently (6)) approximates f ˚faster than the hierarchy of upper bounds [START_REF] Lasserre | The Moment-SOS Hierarchy and the Christoffel-Darboux kernel[END_REF].

Corollary 1 Let Ω Ă R n be as in (4) and µ be a finite Borel (reference) measure whose support is exactly Ω and with associated sequence of orthonormal polynomials pT α q αPN n . Let f ˚be the global minimum on Ω.

Let t be such that the semidefinite relaxation (13) (or equivalently (14)) is exact, i.e., if ρ 2t " f ˚. If an optimal solution y ˚of (14) has a representing measure φ ˚P M pΩq `, then an optimal polynomial density σ ˚P Rrxs 2t of (13) satisfies:

σ ˚pξq " ÿ αPN n 2t T α pξq 2 " K 2t pξ, ξq ,
for all ξ P supppφ ˚q, that is, σ ˚pξq ´1 is the Christoffel function evaluated at the global minimizer ξ P Ω.

Proof If y ˚has a representing measure φ ˚P M pBq then necessarily f pξq " f ˚for all ξ P suppφ ˚q; see e.g. [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Lasserre | An Introduction to Polynomial and Semi-Algebraic Optimization[END_REF]. In particular, for every ξ P suppφ ˚q, the vector ŷ :" pξ α q αPN n 2t is also an optimal solution of (14). Then

σ ˚" D t ¨ŷ " D t ¨v2t pξq " » - - - T 0 pξq ¨¨T α pξq ¨¨¨fi ffi ffi fl ,
i.e., σ α " T α pξq for all α P N n 2t . Therefore,

x Þ Ñ σ ˚pxq " ÿ αPN n 2t T α pξq T α pxq " K 2t pξ, xq ,
and so σ ˚pξq " K 2t pξ, ξq, i.e., σ ˚pξq ´1 is the Christoffel function associated with µ, evaluated at ξ P Ω.

[ \ Discussion. Observe that the formulation [START_REF] Slot | Sum-of-squares hierarchies for binary polynomial optimization[END_REF] does not require that the set Ω is a "simple" set as it is required in §2.3. Indeed the orthonormal polynomials pT α q are only used to provide an interpretation of the hierarchy of lower bounds (14) (and its dual ( 7)). On the other hand, for the hierarchy of upper bounds [START_REF] Lasserre | The Moment-SOS Hierarchy and the Christoffel-Darboux kernel[END_REF], Ω indeed needs to be a "simple" set for computational purposes. Indeed one needs the numerical value of the moments of µ for practical implementation of (8). Lemma 2 shows that the Moment-SOS hierarchy described in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Lasserre | An Introduction to Polynomial and Semi-Algebraic Optimization[END_REF] amounts to compute a hierarchy of signed polynomial densities with respect to some reference measure µ with support exactly Ω. When the stept relaxation is exact (which takes place generically [START_REF] Nie | Optimality conditions and finite convergence of lasserre's hierarchy[END_REF]), the resulting optimal density σ ˚in Corollary 1 is nothing less than the polynomial x Þ Ñ K 2t pξ, xq where ξ is a global minimizer of f on Ω, and K 2t pξ, xq is the celebrated Cristoffel-Darboux kernel in approximation theory, and σ ˚pξq " K 2t pξ, ξq is the reciprocal of the Christoffel function evaluated at a global minimizer ξ.

A variant hierarchy of upper bounds

Consider the optimization problems ūt " inf

σPRrxs2t t ż Ω f pxq p ÿ αPN n 2t σ α T α pxqq dµpxq ; σ 0 " 1 ; ÿ α σ α T α " m ÿ j"0 ψ j g j , ψ j P Σrxs t´dj , j " 0, . . . , mu , (16) 
indexed by t P N. Notice that the upper bound ūt is stronger than the upper bound τ t in (8) (i.e., ūt ď τ t ). Indeed the condition that σ is an SOS in ( 8) is now relaxed to the weaker condition in (16) that σ has a Putinar's certificate of positivity on Ω. The dual of (16) reads:

ūt " sup λ,y t λ : f ´λ " ÿ αPN n 2t L y pT α q T α M t´dj pg j yq ľ 0 , j " 0, . . . , m u .

(17) Slater's condition holds for (16) so that ūt " ūt and (17) has an optimal solution pū t , y ˚q. Again ūt ą f ånd y ˚cannot have a representing measure φ which is the Dirac δ ξ at a global minimizer ξ P Ω. Indeed suppose the contrary. Then

f pξq ´ū t loooomoooon ă0 " ż Ω ÿ αPN n 2t T α pzq T α pξq dφpzq " K 2t pξ, ξq ą 0.
In the Table 1 below, a final summary of our comparison displays a remarkable symmetry.

Lower bounds

Upper bounds

Primal Primal inf y ż Ω f ¨pÿ α L y pT α q T α q dµ inf σ,ψ j ż Ω f ¨pÿ α σ α T α q dµ s.t. y 0 " 1; s.t. σ 0 " 1;
M t pg j yq ľ 0 , 0 ď j ď m. L y pT α q T α ψ j P Σrxs t´d j M t pg j yq ľ 0 , 0 ď j ď m Table 1 Comparing hierarchies of upper and lower bounds

Conclusions

The two Moment-SOS hierarchies of lower and upper bounds on the global minimum are both interpreted as searching for a polynomial density of increasing degree with respect to an arbitrary reference measure with support Ω. In the former one searches for a signed polynomial density whose coefficients are moments of the Dirac measure at some global minimizer, and the global optimum eventually is reached at some (in general early) step of the hierarchy. In contrast, in the latter one searches for a positive polynomial density and the convergence cannot be finite; surprisingly, good Op1{t 2 q rates of convergence can be achieved but its practical implementation requires to know all moments of the reference measure, and therefore is limited to simple sets (e.g., box, ellipsoid, Euclidean sphere or unit ball, simplex, discrete hypercube, or their image by an affine map). On the other hand, if practice reveals fast (and even finite) convergence of the lower bound hierarchy, good rates of convergence are still not available (except in the special case of the unit Euclidean sphere).
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