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1 Introduction

Consider the Polynomial Optimization Problem:

pPOPq : f˚ “ min
x
t fpxq : x P Ω u,

where Ω Ă Rn is a compact basic semi-algebraic set.

For the hierarchy of upper bounds discussed below, Ω

is restricted to be a “simple” set like e.g. a box, an el-

lipsoid, a simplex, a discrete-hypercube, or their image

by an affine transformation (Ω “ Rn` or Ω “ Rn is

also permitted). Indeed, to define an SOS-hierarchy of

upper bounds converging to the global minimum f˚

as described in e.g. [5, 7, 12], one uses a measure µ

whose support is exactly Ω, and for which all moments

µα :“
ş

Ω
xα dµ, α P Nn, can be obtained numerically or

in closed-form. For instance if Ω is a box, an ellipsoid

or a simplex, µ can chosen to be the Lebesgue measure

restricted to Ω. On the hypercube t´1, 1un µ one may

choose for µ the counting measure, etc.
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2 Moment-SOS hierarchies

2.1 Notation and definition

Let Rrxs “ Rrx1, . . . , xns be the ring of real polyno-

mials in the variables x1, . . . , xn and let Rrxst Ă Rrxs
be its subspace of polynomials of degree at most t. Let

Nnt :“ tα P Nn : |α| ď tu where |α| “
ř

i αi. De-

note by Σrxst Ă Rrxs2t he convex cone of sums-of-

squares (SOS) polynomials of degree at most 2t. Let

vtpxq :“ pxαqαPNnt be the vector of the monomial basis.

up to degree t. For an arbitrary Borel subset X of Rn,

denote by M pX q` the convex cone of finite Borel mea-

sures on X Ă Rn, and by PpX q is subset of probability

measures on X .

Riesz functional. Given a sequence y “ pyαqαPNn , let
Ly : Rrxs Ñ R be the linear functional

f p“
ÿ

α

fα xαq ÞÑ Lypfq :“
ÿ

α

fα yα . (1)

A sequence y “ pyαqαPNn has a representing measure if

there exists a finite Borel measure φ on Rn such that

yα “
ş

xα dφ for all α P Nn. Observe that Lypfq “
ş

fdµ

whenever y has a representing measure µ.

Moment and localizing matrices. Given an sequence

y “ pyαqαPNn and a polynomial g P Rrxs, x ÞÑ gpxq :“
ř

γ gγ xγ , the localizing matrix Mtpg yq associated with

g and y is the real symmetric matrix with rows and

columns indexed by α P Nnt and with entries

Mtpg yqpα, βq :“
ÿ

γ

gγ yα`β`γ , α, η P Nnt . (2)

If gpxq “ 1 for all x then Mtpg yq p“ Mtpyqq is called

the moment matrix.
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If y has a representing measure supported on tx :

gpxq ě 0u then Mtpyq ľ 0 and Mtpg yq ľ 0 for all

t P N. The converse is not true in general; however, the

following important result is at the core of the Moment-

SOS hierarchy.

Theorem 1 (Putinar [10]) Let gj P Rrxs, j “ 0, . . . ,m

with g0pxq “ 1 for all x, and let G :“ tx P Rn : gjpxq ě

0, j “ 1, . . . ,m u be compact. Moreover, assume that for

some M ą 0, the quadratic polynomial x ÞÑ M ´ }x}2

can be written in the form
řm
j“0 ψj gj, for some SOS

polynomials ψ0, . . . ψm.

Then a sequence y “ pyαqαPNn has a representing

measure on G if and only if Mtpgj yq ľ 0 for all t P N,

and all j “ 0, . . . ,m.

Orthonormal polynomials. Let Ω Ă Rn be the com-

pact basic semi-algebraic set defined in (4), assumed

to have a nonempty interior. Let µ be a finite Borel

(reference) measure whose support is exactly Ω and

with associated sequence of orthonormal polynomials

pTαqαPNn Ă Rrxs. That is:

ż

Ω

Tα Tβ dµ “ δα“β , @α, β P Nn .

For instance, if Ω “ r´1, 1sn and µ is the uniform prob-

ability distribution on Ω, one may choose for the fam-

ily pTαq the tensorized Legendre polynomials. Namely

if pTjq Ă Rrxs is the family of univariate Legendre poly-

nomials, then

Tαpxq :“
n
ź

j“1

Tαj pxjq , α P Nn .

For every t P N, the mapping Kt : ΩˆΩ Ñ R,

px,yq ÞÑ Ktpx,yq :“
ÿ

|α|ďt

TαpxqTαpyq , x,y P Ω

is called the Cristoffel-Darboux kernel associated with

µ. An important property of Kt is to reproduce poly-

nomials of degree at most t, that is, for all p P Rrxst:

ppxq “

ż

Ω

ppyqKtpx,yq dµpyq @x P Rn . (3)

This is why Kt is called a reproducing kernel, and Rrxst
viewed as a finite-dimensional vector subspace of the

Hilbert space L2pΩ, µq, is called a Reproducing Kernel

Hilbert Space (RKHS). For more details on the the-

ory of orthogonal polynomials, the interested reader is

referred to e.g. [1] and the many references therein.

Define the basic semi-algebraic set

Ω :“ tx P Rn : gjpxq ě 0 j “ 1, . . . ,m u , (4)

for some polynomials gj P Rrxs, j “ 1, . . . ,m. Let

g0pxq “ 1 for all x, and let dj :“ rdegpgjq{2s, j “

0, . . . ,m. In the rest of the paper, and as Ω Ă Rn is

compact, one also assumes for convenience that Ω is

contained in a Euclidean ball of radius M , and that

g1pxq :“M ´ }x}2 (so that the constraint g1pxq ě 0 is

redundant).

2.2 A hierarchy of lower bounds

Observe that the global minimum f˚ also reads:

f˚ “ inf
φPM pΩq`

t

ż

Ω

f dφ : φpΩq “ 1 u . (5)

To approximate f˚ from below, consider the hierarchy

of semidefinite programs indexed by t P N:

ρt “ inf
y
tLypfq : y0 “ 1 ;

Mt´dj pgj yq ľ 0 , j “ 0, . . . ,m u .
(6)

Of course ρt ď f˚ for all t because the constraints of

(6) are only necessary conditions for y to have a rep-

resenting measure φ supported on Ω. Hence (6) is a

semidefinite-relaxation of (5). Its dual reads:

ρ˚t “ sup
λ ,σj

tλ : f ´ λ “
m
ÿ

j“0

ψj gj ;

ψj P Σrxst´dj , j “ 0, . . . ,m u .

(7)

Theorem 2 Let Ω Ă Rn be as in (4) with nonempty

interior. Then (6) has an optimal solution and ρt “ ρ˚t .

In addition, ρt Ò f
˚ as t increases, and generically the

convergence is finite, in which case a global minimizer

can extracted from an optimal solution of (6).

The sequence of semidefinite programs (6) and their

duals (7), both indexed by t, forms what is called the

Moment-SOS hierarchy initiated in the early 2000’s. For

more details on the Moment-SOS hierarchy and its nu-

merous applications in and outside optimization, the

interested reader is referred to [2–4,6, 9].

2.3 A hierarchy of upper bounds

Let µ be a finite Borel measure whose support is

exactly Ω, where now Ω is a “simple” set as mentioned

earlier. (Hence all moments of µ are available in closed

form.) To approximate f˚ from above, consider the hi-

erarchy of semidefinite programs

τt “ inf
σ
t

ż

Ω

f σ dµ :

ż

Ω

σ dµ “ 1 ; σ P Σrxst u . (8)
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That τt ě f˚ is straightforward since

f ě f˚ on Ω ñ

ż

Ω

f σ dµ ě f˚
ż

Ω

σ dµ “ f˚ ,

for any feasible SOS σ. The dual of (8) is quite simple

as it reads

τ˚t “ sup
λ
tλ : Mtpf µq ľ λMtpµq u , (9)

where Mtpµq (resp. Mtpf µq) is the moment matrix

(resp. the localizing matrix) associated with µ and f .

Theorem 3 ( [5]) Let Ω Ă Rn be a simple set and

µ an arbitrary finite Borel measure whose support is Ω

and with all moments available (in closed-form or by

simple computation). Then τ˚t “ τt Ó f
˚ as t increases.

Observe that (9) is a standard generalized eigenvalue

problem and an optimal SOS solution σ˚ of (8) is the

eigenvector associated with the eigenvalue λ˚ (the op-

timal solution of (9)). In a series of papers, de Klerk,

Laurent an co-workers have provided several rates of

convergence of τt Ó f
˚ for several examples of sets Ω;

typically a Op1{t2q rate of convergence takes place. For

more details and results, the interested reader is re-

ferred to [11–13] and references therein.

The meaning of (8) is clear if one recalls that

f˚ “ inf
φ
t

ż

Ω

f dφ : φpΩq “ 1 ; φ P M pΩq` u, (10)

where M pΩq` is the space of all finite Borel measures

on Ω. Indeed in (8) one only considers the (restricted)

subset of probability measures on Ω that have a den-

sity (an SOS of degree at most 2t) with respect to µ

whereas in (10) one considers all probability measures

on Ω. In particular, the Dirac measure φ :“ δξ at any

global minimiser ξ P Ω belongs to M pΩq` but does

not have a density with respect to µ, which explains

why the convergence τt Ó f
˚ as t increases, can be only

asymptotic and not finite; an exception is when Ω is

a finite set (e.g. Ω “ t´1, 1un and µ is the counting

measure).

2.4 Main result

To compare the two hierarchies of upper and lower

bounds one now expresses them in the same language

of polynomial densities w.r.t. µ, expressed in the or-

thonormal basis pTαq, and described in [7] and [8].

Lemma 1 Let Ω Ă Rn be as in (4) and let µ be a fi-

nite Borel (reference) measure whose support is exactly

Ω and with associated sequence of orthonormal polyno-

mials pTαqαPNn . Let f˚ “ min tfpxq : x P Ωu. Then for

every fixed t ě degpfq:

f˚ “ min
σPRrxst

ż

Ω

fpzqσpzq dµpzq , (11)

where the minimum is over all polynomials σ P Rrxst
of the form:

σ “
ÿ

|α|ďt

σα Tα ; σα “

ż

Ω

Tα dφ , @α P Nnt , (12)

for some φ P PpΩq.

In particular, f˚ “
ş

Ω
fpzqσ˚pzq dµpzq where σ˚ P

Rrxs2t in (12) satisfies: σ˚α “ Tαpξq for all α P Nnt , and

ξ is a global minimizer of f on Ω.

Proof Recalling (5):

f˚ “ min
φPPpΩq

ż

Ω

f dφ

“ min
φPPpΩq

ż

Ω

ż

Ω

fpzqKtpx, zq dµpzq dφpxq

“ min
φPPpΩq

ż

Ω

fpzq p
ÿ

|α|ďt

p

ż

Ω

Tαpxq dφpxq
loooooooomoooooooon

σφα

qTαpzqq dµpzq

“ min
φPPpΩq

ż

Ω

fpzq p
ÿ

|α|ďt

σφα Tαpzq

looooooomooooooon

σφt pzqPRrzst

q dµpzq ,

where the second equality follows from Fubini-Tonelli

interchange theorem valid in this simple setting. Fi-

nally, the last statement follows from the reproducing

property of the Christoffel-Darboux kernel. [\

So solving (11) is equivalent to searching for a signed

measure σ dµ with polynomial (signed) density σ P Rrxst
that satisfies (12). In particular the signed density z ÞÑ

σ˚ “
ř

αPNnt
TαpξqTαpzq is an optimal solution.

Then as done for (5), an obvious relaxation of the

(difficult) moment constraint in (12) reads:

ρ2t “ inf
y
t

ż

Ω

fpxq p
ÿ

αPNn2t

LypTαqTαpxqq dµpxq :

y0 “ 1 ; Mt´dj pgj yq ľ 0 , 0 ď j ď m u ,

(13)

where Ly is the Riesz functional in (1).

Lemma 2 The semidefinite relaxation (13) of (11) reads:

inf
y
tLypfq : y0 “ 1 ;

Mt´dj pgj yq ľ 0 , 0 ď j ď m u,
(14)

which is exactly (6).
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Proof Let Dt be the lower triangular matrix for the

change of basis of Rrxs2t from the monomial basis v2tpxq “

pxαqαPNn2t of Rrxs2t to the basis pTαqα, i.e.,

pTαqαPNn2t
“ Dt ¨ px

αqαPNn2t
“ Dt ¨ v2tpxq (15)

and denote D1
t the transpose of Dt. The matrix Dt is

nonsingular with positive diagonal. Next, with fpxq “
ř

α fα xα “ xf ,v2tpxqy, write fpxq “
ř

αPNn2t
f̃α Tαpxq

in the basis pTαqαPNn2t . Hence with f̃ “ pf̃αq one obtains

xf̃ ,Dt ¨ v2tpxqy “ xD1
t f̃ ,v2tpxqy “ xf ,v2tpxqy

ñ f̃ “ pD1
tq
´1f .

Then
ż

Ω

fpxq p
ÿ

αPNn2t

LypTαqTαpxqq dµpxq “ xf̃ , pLypTαqqαy

“ xpD1
tq
´1f ,Dt ¨ yy

“ xf ,yy “ Lypfq ,

which completes the proof. [\

Of course by reverting the process of the above proof,

the semidefinite program (14) can be transformed to

(13) once a reference measure µ with support exactly Ω

is defined with its associated orthonormal polynomials

pTαq. Indeed, once µ and the Tα’s are defined, one may

use the change of basis matrix D in (15) to pass from

(14) to (13).

Observe the difference between (8) which provides

an upper bound on f˚, and (13) which provides a lower

bound on f˚. In the former one searches for a posi-

tive polynomial density of degree 2t (an SOS) while in

the latter one searches for a signed polynomial density

whose coefficients are pseudo-moments.

As the signed polynomial z ÞÑ
ř

α TαpξqTαpzq (with

ξ P Ω a global minimizer) is an optimal solution of

(11), it is reasonable to expect that the hierarchy of

lower bounds (13) (or, equivalently (6)) approximates

f˚ faster than the hierarchy of upper bounds (8).

Corollary 1 Let Ω Ă Rn be as in (4) and µ be a finite

Borel (reference) measure whose support is exactly Ω

and with associated sequence of orthonormal polynomi-

als pTαqαPNn . Let f˚ be the global minimum on Ω.

Let t be such that the semidefinite relaxation (13)

(or equivalently (14)) is exact, i.e., if ρ2t “ f˚. If an

optimal solution y˚ of (14) has a representing measure

φ˚ P M pΩq`, then an optimal polynomial density σ˚ P

Rrxs2t of (13) satisfies:

σ˚pξq “
ÿ

αPNn2t

Tαpξq
2 “ K2tpξ, ξq ,

for all ξ P supppφ˚q, that is, σ˚pξq´1 is the Christoffel

function evaluated at the global minimizer ξ P Ω.

Proof If y˚ has a representing measure φ˚ P M pBq`
then necessarily fpξq “ f˚ for all ξ P suppφ˚q; see

e.g. [3,6]. In particular, for every ξ P suppφ˚q, the vector

ŷ :“ pξαqαPNn2t is also an optimal solution of (14). Then

σ˚ “ Dt ¨ ŷ “ Dt ¨ v2tpξq “

»

—

—

–

T0pξq

¨ ¨ ¨

Tαpξq

¨ ¨ ¨

fi

ffi

ffi

fl

,

i.e., σ˚α “ Tαpξq for all α P Nn2t. Therefore,

x ÞÑ σ˚pxq “
ÿ

αPNn2t

TαpξqTαpxq “ K2tpξ,xq ,

and so σ˚pξq “ K2tpξ, ξq, i.e., σ˚pξq´1 is the Christoffel

function associated with µ, evaluated at ξ P Ω. [\

Discussion. Observe that the formulation (13) does

not require that the set Ω is a “simple” set as it is

required in §2.3. Indeed the orthonormal polynomials

pTαq are only used to provide an interpretation of the

hierarchy of lower bounds (14) (and its dual (7)). On

the other hand, for the hierarchy of upper bounds (8),

Ω indeed needs to be a “simple” set for computational

purposes. Indeed one needs the numerical value of the

moments of µ for practical implementation of (8).

Lemma 2 shows that the Moment-SOS hierarchy

described in [3, 6] amounts to compute a hierarchy of

signed polynomial densities with respect to some refer-

ence measure µ with support exactly Ω. When the step-

t relaxation is exact (which takes place generically [9]),

the resulting optimal density σ˚ in Corollary 1 is noth-

ing less than the polynomial x ÞÑ K2tpξ,xq where ξ

is a global minimizer of f on Ω, and K2tpξ,xq is the

celebrated Cristoffel-Darboux kernel in approximation

theory, and σ˚pξq “ K2tpξ, ξq is the reciprocal of the

Christoffel function evaluated at a global minimizer ξ.

2.5 A variant hierarchy of upper bounds

Consider the optimization problems

ūt “ inf
σPRrxs2t

t

ż

Ω

fpxq p
ÿ

αPNn2t

σα Tαpxqq dµpxq ;

σ0 “ 1 ;
ÿ

α

σα Tα “
m
ÿ

j“0

ψj gj ,

ψj P Σrxst´dj , j “ 0, . . . ,mu ,

(16)

indexed by t P N. Notice that the upper bound ūt is

stronger than the upper bound τt in (8) (i.e., ūt ď τt).

Indeed the condition that σ is an SOS in (8) is now

relaxed to the weaker condition in (16) that σ has a
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Putinar’s certificate of positivity on Ω. The dual of (16)

reads:

ū˚t “ sup
λ,y

tλ : f ´ λ “
ÿ

αPNn2t

LypTαqTα

Mt´dj pgj yq ľ 0 , j “ 0, . . . ,m u .
(17)

Slater’s condition holds for (16) so that ūt “ ū˚t and

(17) has an optimal solution pūt,y
˚q. Again ūt ą f˚

and y˚ cannot have a representing measure φ which

is the Dirac δξ at a global minimizer ξ P Ω. Indeed

suppose the contrary. Then

fpξq ´ ūt
loooomoooon

ă0

“

ż

Ω

ÿ

αPNn2t

TαpzqTαpξq dφpzq “ K2tpξ, ξq ą 0.

In the Table 1 below, a final summary of our comparison

displays a remarkable symmetry.

Lower bounds Upper bounds

Primal Primal

inf
y

ż

Ω
f ¨ p

ÿ

α

LypTαqTαq dµ inf
σ,ψj

ż

Ω
f ¨ p

ÿ

α

σα Tαq dµ

s.t. y0 “ 1; s.t. σ0 “ 1;

Mtpgj yq ľ 0 , 0 ď j ď m.
ÿ

σ

σα Tα “
m
ÿ

j“0

ψj gj .

ψj P Σrxst´dj

Dual Dual

sup
λ,ψj

λ : sup
λ,y

λ :

s.t. f ´ λ “
m
ÿ

j“0

ψj gj s.t. f ´ λ “
ÿ

αPNn
2t

LypTαqTα

-
ψj P Σrxst´dj Mtpgj yq ľ 0 , 0 ď j ď m

Table 1 Comparing hierarchies of upper and lower bounds

3 Conclusions

The two Moment-SOS hierarchies of lower and up-

per bounds on the global minimum are both interpreted

as searching for a polynomial density of increasing de-

gree with respect to an arbitrary reference measure with

support Ω. In the former one searches for a signed

polynomial density whose coefficients are moments of

the Dirac measure at some global minimizer, and the

global optimum eventually is reached at some (in gen-

eral early) step of the hierarchy. In contrast, in the

latter one searches for a positive polynomial density

and the convergence cannot be finite; surprisingly, good

Op1{t2q rates of convergence can be achieved but its

practical implementation requires to know all moments

of the reference measure, and therefore is limited to sim-

ple sets (e.g., box, ellipsoid, Euclidean sphere or unit

ball, simplex, discrete hypercube, or their image by an

affine map). On the other hand, if practice reveals fast

(and even finite) convergence of the lower bound hier-

archy, good rates of convergence are still not available

(except in the special case of the unit Euclidean sphere).
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