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Exact collision detection along paths: Optimization
and proof of convergence

Diane Bury, Joseph Mirabel, Florent Lamiraux, Marc Gouttefarde, and Pierre-Elie Hervé

Abstract—This paper presents an exact collision detection
algorithm capable of determining the presence or absence of
collisions along a path. For every pair of rigid bodies, using a
known upper bound on their relative velocity along the path, if
lower bounds on the distance between them can be computed
at certain parameters along the path, portions of the path can
then be validated. The algorithm proceeds by dichotomy until
the whole path is validated or a collision is found. A proof of
convergence of the algorithm is proposed, guaranteeing that any
path can be validated or invalidated in finite time, except for
one singular case. Three changes to this algorithm are then
proposed, and are shown through experimental validation to
reduce significantly the number of iterations needed to validate
a path. The algorithm is also shown to perform better than a
discretized collision detection method in terms of computation
times, while missing no collision. Moreover, the method can be
extended to take into accounts other types of constraints than
those related to collision avoidance, and can be applied to various
types of robots.

Index Terms—Collision detection, continuous collision check-
ing, motion planning

I. INTRODUCTION

EXACT collision detection along paths is an important
issue in robotics as well as in physics simulation [1].

The problem consists in determining whether along a given
continuous path, a collision occurs between two links of the
robot, or between a link of the robot and a static obstacle
of the environment. Before actually executing a motion on a
robot, this test is obviously critical. The word exact is used in
opposition to discretized collision checking where only sample
configurations along the path are checked for collision. Exact
collision detection is an essential component of any motion
planning algorithm, and especially algorithms derived from
PRM (Probabilistic Roadmap) [2], [3], [4] or RRT (rapidly
exploring random trees) [5], [3], [6]. In [7], the authors use
a combination of discretized and exact collision checking.
These algorithms develop graphs called roadmap in the free
configuration space of the robot. Nodes are collision-free
configurations and edges are collision-free paths. Moreover,
discretized collision checking may validate a path and later
on find a collision on a portion of this path simply because
different sample configurations have been tested. This may
make some iterative path optimization method like [8] fail

Diane Bury, Joseph Mirabel and Florent Lamiraux are with LAAS-CNRS,
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since the latter method validates several times the same portion
of a path that is iteratively shortened.

In the early 2000, Schwarzer et al. [9] proposed a method
based on bisection that validates intervals for each pair of
objects possibly colliding. Either the whole path interval is
validated for each pair, or a collision is detected between a
pair of objects somewhere along the path. Since then this
algorithm has been widely used. The method is based on the
computation of upper bounds of the velocities of the points of
a rigid-body object in the reference frame of another object.
If at a given time along the path, the two objects are at
a positive distance to each other, this upper bound trivially
defines a collision-free interval of time centered on the time
where the positive distance has been computed. Intensively
using our implementation of this algorithm [10], we noticed
that for some pairs of objects, the computed intervals are
very small although the distance between them is rather large.
Investigating the underlying issue, it turns out that the used
upper bound on the maximum of the velocities of the points
of an object A in the reference frame of an object B is
usually different from the upper bound on the maximum of
the velocities of the points of object B in the reference frame
of A. We propose a change in the algorithm to overcome this
issue.

The rest of the paper is organized as follows. Section II
presents the related works. Section III describes the initial
algorithm as proposed in [9]. Section V presents the im-
provements we propose to make the method more efficient in
some common situations. Section IV introduces a convergence
analysis of the method. Section VI provides some experimental
results that show the importance of the proposed optimizations.
Section VII concludes the paper.

II. RELATED WORKS

Continuous collision detection (CDD) for articulated robots
and freeflying objects has generated a lot of attention in the
2000s.

In [11], an algorithm to compute the time of collision
of convex objects moving in a dynamic simulation setting
is proposed. The motion of the objects are determined by
physics laws. Almost at the same time as [9], [12] proposed a
method to detect collisions between rigid objects moving along
arbitrary discretized motions. As in [9], the motion between
sample configurations is assumed to be a linear interpolation.
Unlike in [9] however, interval arithmetic is used to compute
collision times by bisection. They also speed up static collision
tests by using a hierarchy of object oriented bounding boxes.
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Although the method is applied to pairs of rigid objects, it can
be easily extended to kinematic chains. Recently, [13] refined
the method of [9] in the specific case of spherical and revolute
joints. In [14], Pan et al exploit a similar idea that they call
conservative advancement.

[15] proposed a method of continuous collision detection for
kinematic chains based on interval analysis and swept volume
computation. This latter method however does not take into
account collisions between the links of the kinematic chain.
[16] improves [12] by replacing interval analysis by Taylor
expansion where the rest is an interval. This method provides
much better approximations of sine and cosine functions and
therefore increases the bisection efficiency. Interval analysis is
also used for CCD, in [17] and [18] for parallel robots, and
in [19] for closed-loop robots.

[20] introduces FCL (Flexible Collision Library), a library
which performs proximity queries based on hierarchical rep-
resentations. Its flexible architecture and performance make
FCL one of the most used libraries for collision detection.
[21] applies continuous collision checking to the problem of
trajectory smoothing by iteratively replacing random portions
of an initial piecewise affine trajectory by cubic B splines.
They extend continuous collision detection to spline motions,
which is also implented in FCL. [22] proposed to apply linear
transformations in the 3D space to optimize exact collision
checking between rigid objects moving along a screw motion.

Recently, [23] proposed a differential cost for continuous
collision avoidance that can be used with optimization-based
trajectory planners. This cost is based on a harmonic potential
field and uses [12] for CCD. Considering CDD for multiple
robots, [24] tackles the problem of velocity uncertain motions,
for which disjoints paths are required to consider the motion
safe. Using a Lipschitz constant, they determine if two robot
paths are disjoints, i.e. if their respective swept volumes
are disjoints. Like the present paper, [24] is inspired by
Conservative Advancement [25].

With respect to these previous works, the contribution of
the present paper is twofold:

1) A simple yet important improvement of the initial CDD
algorithm from [9] is proposed. It consists in choosing
for each body pair the best upper bound for the relative
velocity of the two bodies. Two other changes to the
algorithm are also proposed.

2) The convergence of the algorithm is proved. Such a proof
is not provided in [9].

III. INITIAL METHOD

A. Algorithm

This section describes the basic CCD algorithm as proposed
in [9]. Our formulation is slightly different – though equivalent
– from this previous paper. In the rest of this paper, we
consider a robot (or several robots) as a rigid-body system.
The configuration space CS is the Cartesian product of the
configurations space of each robot and object, which means
that the robots and objects are considered as one single
kinematic tree. A path is a function from an interval [0, T ] ∈ R
to the configuration space CS , and describes the movement of

Algorithm 1 Validation of a path using the dichotomy method

1: function VALIDATEPATH(p)
2: T ← LENGTH(p)
3: t← T/2
4: ∆t← +∞
5: for each pair of bodies (a, b) do
6: d← COMPUTEDISTANCE(a, b, t)
7: V max ← GETMAXRELATIVEVELOCITY(a, b)
8: ∆t(a,b) ← d/V max

9: ∆t← min(∆t,∆t(a,b))
10: end for
11: if ∆t = 0 then
12: return False
13: else if ∆t > T/2 then
14: return True
15: else
16: p1 valid← VALIDATEPATH(p([0, T/2−∆t]))
17: p2 valid← VALIDATEPATH(p([T/2 + ∆t, T ]))
18: return p1 valid ∧ p2 valid
19: end if
20: end function

a robot in the environment. T is the length (or duration) of the
path. A collision occurs for a configuration q ∈ CS when the
distance between two bodies (among the bodies of the robots
and the obstacles) is non-positive.

The presented method can determine if a path is continu-
ously valid — i.e. there is no collision along the path — or
if there is a collision somewhere on the path for a pair of
bodies. This algorithm is exact and always finds a collision if
one exists.

The algorithm is based on the following two requirements.
• For each joint of the robot, the norms of the joint

linear and angular velocities must have known upper
bounds. The latter are used to compute, for each pair
of bodies, an upper bound on their relative velocity
along the path — this corresponds to the function
GetMaxRelativeVelocity in Algorithm 1.

• For each pair of bodies, at any configuration along
the path, a lower bound on the distance between them
can be computed. This corresponds to the function
ComputeDistance in the algorithm. This function
must return zero if and only if there is a collision between
the two bodies.

∆t∆t

T
20 T

Fig. 1: Testing an interval of length T

The algorithm, detailed as pseudo-code in Algorithm 1, is
dichotomous and recursive. To validate a path, it recursively
validates an interval centered on the middle of the path for
every pair of bodies. This is done by computing the distance
between the two bodies at the time parameter T/2 (line 6
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of Algorithm 1), and by dividing this distance by the known
upper bound on their relative velocity (line 8 of Algorithm 1).
For each pair of bodies (a, b), a value ∆t(a,b) is thereby com-
puted in such a way that the interval [T2 −∆t(a,b),

T
2 +∆t(a,b)]

is guaranteed to be collision-free for this pair. If ∆t(a,b) = 0,
then there is a collision for the pair (a, b) and the algorithm
stops. Otherwise, ∆t is obtained by taking the minimum of
all the ∆t(a,b) (line 9) and the interval [T2 − ∆t, T2 + ∆t]
is validated for all the body pairs. This means that the path
to validate has been separated into three intervals (Figure 1):
A validated interval centered on T

2 of length 2∆t and two
untested intervals on either side, of equal lengths T

2 − ∆t.
The algorithm is then called in a recursive manner on the
two untested intervals (lines 16-17), until either a collision is
found for one pair of bodies, or the whole path is validated.
Section IV provides a convergence analysis of the algorithm.

B. Computation of V max

Let us consider two links of the kinematic tree to test against
collisions, Ba and Bb. Together, they form the pair i. We want
to compute V max

i , an upper bound on the relative velocity
between Ba and Bb along the path. There exists a sequence of
bodies, and a sequence of corresponding links, linking Ba to
Bb. We note B0 = Ba, B1, . . . , Bk−1, Bk = Bb with k ≥ 1 the
successives bodies linking Ba and Bb. J0 is the frame fixed to
Ba, and for 1 ≥ j ≥ k, we note Jj the frame linked to body
Bj placed at the joint between bodies Bj−1 and Bj , as (as
shown in Fig. 2). We note Jk = Jb.

Ba

Bb

J0 = Ja

Jk = Jb

J1

Jk−1

...

Fig. 2: Representation of the kinematic chain between two
bodies

As stated in Section III-A, we suppose that for each joint n
of the robot, an upper bound on the norm of the joint velocity
is known. For each n ∈ [1, k], we denote by
• nvn−1 the linear velocity of the origin of Jn−1 with

respect to Jn, and nvn−1 an upper bound on ‖nvn−1‖,
• nωn−1 the angular velocity of Jn−1 with respect to Jn,

and nωn−1 an upper bound on ‖nωn−1‖.
Let P0 be a point of Ba, which means P0 is a fixed point

in the frame Ja = J0. The relation between the coordinate
vector m0 of P0 in J0 and its coordinate vector kP0 in Jk is
given by(

kP0

1

)
= kMk−1

k−1Mk−2 . . . 2M1
1M0

(
m0

1

)
(1)

where n+1Mn =

(
n+1Rn

n+1Tn

0 0 0 1

)
is the homogeneous

matrix representing the position and orientation of Jn with

respect to Jn+1, n+1Rn ∈ SO(3) is a rotation matrix and
n+1Tn ∈ R3 is a translation vector.
kP0 is the coordinate vector of a point of body Ba in the

frame of body Bb, since the frame Jk is fixed to Bb. To
compute V max, we must find an upper bound on the norm of
the time derivative of kP0. By differentiating (1) with respect
to time, we get:

(
kṖ0

0

)
=

( [
kωk−1

]
×
kRk−1

kvk−1

0 0 0 0

)
· · ·

· · · 1M0

(
m0

1

)
+ kMk−1

( [
k−1ωk−2

]
×
k−1Rk−2

k−1vk−2

0 0 0 0

)
· · ·

· · · 1M0

(
m0

1

)
+ · · ·

+ kMk−1 · · · 2M1

( [
1ω0

]
×

1R0
1v0

0 0 0 0

)(
m0

1

)

(2)

where [x]× is the 3x3 antisymmetric matrix representing the
cross product with vector x ∈ R3.

To bound the norm of kṖ0, we must first recall some
properties of rigid-body transformations.

Lemma 1. Consider the homogeneous matrices

M1 =

(
R1 T1

0 0 0 1

)
, M2 =

(
R2 T2

0 0 0 1

)
and

M3 =

(
R3 T3

0 0 0 1

)
so that M3 = M1M2. Then:

‖T3‖ ≤ ‖T1‖+ ‖T2‖ (3)

Proof. If M3 = M1M2, then:

M3 =

(
R1R2 R1T2 + T1

0 0 0 1

)
This means T3 = R1T2 + T1. Using the triangle inequality,

‖T3‖ ≤ ‖R1T2‖+ ‖T1‖
≤ ‖T2‖+ ‖T1‖

since R1 is a rotation matrix.

Lemma 2. Consider the homogeneous matrix M1 =(
R1 T1

0 0 0 1

)
, m ∈ R3, and p ∈ R3 so that(

p
1

)
= M1

(
m
1

)
. Then:

‖p‖ ≤ ‖m‖+ ‖T1‖ (4)

Proof.(
p
1

)
= M1

(
m
1

)
=

(
R1m + T1

1

)
⇒ p = R1m + T1.

Using the triangle inequality and since R1 is a rotation matrix,
we obtain the property: ‖p‖ ≤ ‖m‖+ ‖T1‖.
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Using the lemmas 1 and 2 with (2), we obtain:

‖kṖ0‖ ≤ ‖1v0‖+ ‖1ω0‖‖m0‖
+ ‖2v1‖+ ‖2ω1‖( ‖m0‖+ ‖1T0‖ )

+ ‖3v2‖+ ‖3ω2‖( ‖m0‖+ ‖1T0‖+ ‖2T1‖ )

+ . . .

+ ‖kvk−1‖+ ‖kωk−1‖( ‖m0‖
+ ‖1T0‖+ · · ·+ ‖k−1Tk−2‖ )

(5)

Let us define the radius r0 of the link Ba as the maximal
distance between the origin of frame Ja and all points of the
link:

r0 = max
m0∈Ba

‖m0‖ (6)

We denote by Dj the cumulative length of Jj :

D0 = 0

Dj =

j−1∑
t=0

‖t+1Tt‖ for j ≥ 1
(7)

Using (6) and (7) in (5), we obtain an upper bound on the
velocity of any point of Ba with respect to frame Jk = Jb for
pair i, which gives us V max

i :

‖kṖ0‖ ≤
k−1∑
t=0

t+1vt + t+1ωt( r0 +Dt ) = V max
i (8)

The variables written in red — t+1vt and t+1ωt — depend on
the path to be validated. The variables written in blue — r0

and Dk — depend on the kinematic chain of the robot.

IV. CONVERGENCE ANALYSIS

Let p : [0, T ] → CS be a path of length T . For each pair
of bodies i of the robot and the environment, we note di :
CS → R the distance function between the two bodies. For
a configuration q = p(t) , t ∈ [0, T ], the bodies of the pair
i are in collision if and only if di(q) = 0. A configuration
is valid if there is no collision for all the pair of bodies. We
define two types of collisions:

1) A collision interval: For a given pair of bodies, there
exists an interval Tc along the path so that ∀t ∈ Tc, p(t)
is in collision,

2) a contact: For a given pair of bodies, there exists a time tc
such that the two bodies are in collision at configuration
p(tc) but not in a neighborhoud of this configuration
along the path, i.e., there exists δt > 0 such that the
only collision in the interval [tc − δt, tc + δt] is at tc.

We want to prove the convergence of the dichotomous
collision detection algorithm introduced in Section III. There
are three different possible cases, as shown in Fig. 3:

A. Collision-free: There is no collision between any pair of
bodies along the path, which means the path is collision-
free (Section IV-A, Fig. 3a),

δ

d(q(t))

0
T

(a) Collision-free path

d(q(t))

Tc0
T

(b) Path with a long collision in-
terval

T

d(q(t))

0
Tc

(c) Path with a short collision in-
terval

0

d(q(t))

tc

T

(d) Path with a single collision

Fig. 3: Distance functions for four example paths

B. collision interval: There is at least one collision interval
for at least one pair of bodies (Section IV-B, Fig. 3b and
3c),

C. single collision: There is at least one contact collision for
one pair of bodies, and there is no collision interval along
the path (Section IV-C, Fig. 3d).

We will show that the algorithm always validates or inval-
idates the path in a finite time, in Cases A and B, while the
algorithm may fail to finish in Case C. When the algorithm
finishes in finite time, we will provide an upper bound on
the number of tests needed. Testing an interval consists in
testing its middle configuration for collisions and determining
the half-length ∆t of a valid interval centered on this config-
uration.

A. If the path is collision-free

Let us consider that the path p is collision-free. This means
that for every pair of bodies i, ∀t ∈ [0, T ], di(p(t)) > 0. Since
the functions di are continuous on [0, T ], using the extreme
value theorem, there exists δ > 0 so that

∀t ∈ [0, T ] ,∀i , di(p(t)) ≥ δ (9)

as shown in an example in Figure 3a.
For each pair, a maximum relative velocity along the path

V max
i is computed. If V max

i = 0, the case is trivial. If V max
i > 0,

at each iteration k, the algorithm computes for each pair i

∆tik =
di(p(tk))

V max
i

(10)

Using (9) we have the following inequality:

∆tik ≥
δ

V max
i

> 0 (11)
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At each iteration k, the algorithm validates an interval of
length at least 2 ∗∆tk where ∆tk is the minimum of all ∆tik.
Since V max

i does not depend on k, we define ∆t as

∆t =
δ

V max > 0 (12)

with V max = maxi V
max
i . At each iteration k, the validated

interval is at least of length 2 ∗∆t. Let us consider a certain
depth k of the recursive algorithm, as illustrated in Figure 4.
The first call to the algorithm is the depth k = 0. The calls
to validate the two untested intervals around the validated
interval (lines 16-17 of Algorithm 1) correspond to the depth
1. We will prove the following statement by recursion.

Lemma 3. At depth k, before testing, there are at most 2k

disjoint intervals needing to be tested, and each of these
intervals has a length of at most Tk with:

Tk =
T

2k
−
k−1∑
j=0

∆t

2j
(13)

Proof. At the start of the algorithm, for k = 0, we have the
whole path to validate. We have 20 = 1 interval and this
interval is of length T = T

20−
∑j=k−1
j=0

∆t
2j = T0. The statement

is thus true for k = 0.
Suppose the statement is true at k. We will prove that it is

true at k+1. The statement is true at k means that at depth k,
before testing, we have at most 2k disjoint intervals. The tests
at depth k consist in testing each interval and either validating
it whole or dividing it into two smaller intervals to be tested.
This means that after depth k, and before depth k+1, there is
at most 2 ∗ 2k = 2k+1 intervals, thus validating the first part
of the statement.

The statement being true for k also means that each interval
at depth k before testing has a length of at most Tk. Each
interval is tested and an interval of length at least 2 ∗ ∆t is
validated at the middle of the interval. This means that the two
smaller intervals left to be validated have lengths of at most
Tk

2 −∆t.

Tk
2
−∆t =

1

2

 T

2k
−
k−1∑
j=0

∆t

2j

−∆t (14)

=
T

2k+1
−
k−1∑
j=0

(
∆t

2j+1

)
−∆t (15)

=
T

2k+1
−

k∑
j=1

(
∆t

2j

)
−∆t (16)

=
T

2k+1
−

k∑
j=0

∆t

2j
(17)

= Tk+1 (18)

The statement is proved.

t0 = T
2

T

∆t0depth
0

1

2

3

Fig. 4: Visualization of the validation of a collision-free path

We can reformulate Tk using the formula for the finite sum
of a geometric series:

Tk =
T

2k
−
(

2− 1

2k−1

)
∆t (19)

Tk =
T + 2∆t

2k
− 2∆t (20)

Using (20), we can determine the depth K at which point
Tk reaches zero, which means that there is no interval left to
test and the path has been entirely validated. Thus, the smallest
integer K such that TK ≤ 0 is computed as follows:

K =

⌈
log2

(
T

2∆t
+ 1

)⌉
(21)

At each depth k, 2k tests are executed at most. The maxi-
mum number N of tests done from the start of the algorithm
up to depth K is thus

N =

K−1∑
j=0

2j = 2K − 1 (22)

N = 2dlog2( T
2∆t +1)e − 1 (23)

We proved that for a collision-free path, N is an upper
bound on the number of tests required to validate it. According
to (12) and (23), it depends on the minimum distance to
collision δ and the maximum relative velocity between the
pairs of bodies, V max. In Big-O notation, we can say that the
algorithm is in O(TV

max

δ ).

B. If the path has a collision interval for one pair of bodies

In this case, for a body pair i, there exists a collision
interval Tc = [t1, t2] ⊂ [0, T ] with t2 > t1 so that
∀t ∈ Tc, di(p(t)) = 0.

First, let us remark that if Tc has a length equal to or greater
than T/2 (Figure 3b), then the configuration q = p(T/2) is
guaranteed to correspond to a collision. Since the algorithm
starts by testing this configuration in the middle of the path,
the path is invalidated at the first iteration.

Let us now suppose that the collision is a collision interval
Tc of any length (Figure 3c). As in the collision-free case, we
consider the length of the different intervals to be tested at each
depth of the recursive algorithm. Let Tk be an upper bound
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on the length of an interval at depth k, before testing. We can
re-use the proof of the previous section and the formula (13),
but with δ = 0, since there is a collision somewhere on the
path.

Tk =
T

2k
(24)

Tk being an upper bound on the length of an interval at
depth k, Tc

Tk
is a lower bound on the ratio of the length of the

collision interval to the length of an interval at depth k, and
can be written as

Tc
Tk

= 2k
Tc
T

(25)

This lower bound is doubled at each iteration, i.e., the ratio
of the length of the collision interval to the length of an interval
at depth k is at least doubled at each iteration. At a certain
depth K, this ratio becomes equal to or greater than 1

2 , which
means that the collision interval has a length equal to or greater
than half the length of the considered interval. The collision is
then guaranteed to be found since the middle of the considered
interval lies necessarily in the collision interval. K is thus the
smallest integer such that

2K
Tc
T
≥ 1

2
(26)

K =

⌈
log2

T

2Tc

⌉
(27)

This means that the collision is found after the tests at depth
K. Similarly to (22), we can claim that the algorithm takes at
most N iterations to find the collision, with

N =

K∑
j=0

2j = 2K+1 − 1 (28)

N = 2dlog2
T

2Tc
e+1 − 1 (29)

This upper bound depends on the lengths of the path to be
validated, and of the collision interval. As can be expected,
small collision intervals may take more time to find than
larger ones. In the case of a path with more than one collision
interval, an upper bound for the maximum iterations can be
written using (29) for the largest collision interval.

C. If the path has a single collision

In this case, there is at least one collision between two
bodies, reduced to a single configuration tc ∈ [0, T ] (Fig-
ure 3d), and there is no interval collision along the path. In this
particular case, the computation may never end. If there exists
a collision interval somewhere else along the path, then the
path corresponds to Case B and the computation is guaranteed
to end as proved in the previous section.

Let us consider the following 2-dimensional case with two
triangles A1B1C1 and A2B2C2, as shown in Figure 5. Along
the path, at parameter t, we denote by δ(t) the shortest distance

v

L(t)

δ(t)
αA2 A1

initial goal

B1 C1

B2C2

1

22

Fig. 5: Example of a single collision. Each body is a triangle
AiBiCi. Along the path, the triangle 1 (yellow stripes) is
static. The triangle 2 (blue dots) moves from its initial position
to its goal position with a constant velocity v. Along the path,
the lines (B1C1), (B2C2) and (A1A2) are parallel. There
is a single collision during the motion, which the algorithm
generally fails to find.

between the two triangles, and by L(t) the distance between
A1 and A2. The angle α does not vary along the path (at the
collision parameter tc, α is not defined).

cosα =
δ(t)

L(t)
(30)

Since the relative velocity between both triangles is constant
along the path, V max = ‖v‖. At each iteration, the validated
interval is of length δ(t)

V max . At parameter t, the remaining time
before collision is L(t)

V max . Thus, at each iteration, the algorithm
validates a portion of the remaining interval, which is δ(t)

L(t) =
cosα < 1. This ratio is constant along the path. The algorithm
validates intervals of smaller and smaller lengths, and can only
end if at one iteration, it considers an interval centered on tc.
Otherwise, the computation never ends.

V. IMPROVEMENTS ON THE INITIAL METHOD

As stated in the introduction, we propose a change to the
algorithm, consisting in choosing for a pair of bodies the best
upper bound on their relative velocity (Section V-A). Two
other changes aiming to decrease the computation time are
also proposed in Section V-B and Section V-C, respectively.

A. Choosing the best V max

An expression of an upper bound V max of the maximal
relative velocity of all points of Ba in the reference frame of
Bb, is given by (8). However, this expression is not symmetric
and switching Ba and Bb does not yield the same value
of V max, even though both values are upper bounds on the
relative velocity between the bodies. This can be shown by
the following example, illustrated in Figure 6: A box (Ba) lies
immobile on the ground while a mobile robot moves at a linear
velocity of norm v. The frame Jr is fixed on the robot at its
virtual planar joint. Bb is a body linked to the mobile robot by
a revolute joint and Jb is a frame attached to Bb which moves
with an angular velocity of norm ω. We denote by ra and rb
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the radii of Ba and Bb, respectively. We denote by d = ‖rTa‖
the distance between the origins of Ja and Jr.

5

Bb

Ja

Jr

d

rbra

Jb

Ba

Fig. 6: Example of a situation where (8) gives two significantly
different upper bounds on the relative velocity between two
bodies V max

Using (8), we obtain V max
a→b and V max

b→a, two upper bounds
on the relative velocity of bodies Ba and Bb computed by
considering the velocity of points of Ba in the reference frame
of Bb and the velocity of points of Bb in the reference frame
of Ba, respectively.

V max
a→b = rva + rωa(ra)

+ bvr + bωr(ra + ‖rTa‖)
= v + ω(ra + d) (31)

V max
b→a = rvb + rωb(rb)

+ avr + aωr(rb + ‖rTb‖)
= ωrb + v (32)

When the distance d between the robot and the object is
large, V max

a→b given by (31) can be much larger than V max
b→a given

by (32). Thus, to improve the performance of the algorithm, for
each body pair, we compute the two different relative velocity
upper bounds and choose the smallest one. With a smaller
V max, the intervals validated at each step are larger, and the
algorithm needs fewer iterations and less time to finish.

B. Memory of the validated intervals

The algorithm presented in Section III-A is recursive. To
avoid unnecessary computations, at each iteration, the algo-
rithm keeps a memory of every validated intervals for each
pair of bodies. When searching for a valid interval around
a configuration along the path, the algorithm finds a valid
interval for each body pair and keeps the intersection of the
valid intervals. If a pair has in memory a validated interval
larger than the interval the algorithm is testing, then the
distance computation is not performed for this pair. With this
improvement, we limit the number of calls to the distance
computation function. For example, if at the first iteration, the
whole path is validated for one pair of bodies, then this pair
will never be tested again at any future iteration.

Fig. 7: Visualization of Tiago holding a drill next to an airplane
part

C. Order of validation of the collision pairs

At each test of an interval, every collision pair is tested to
determine the half-length ∆t(a,b) of a valid interval for this
pair (Algorithm 1, line 8). The order in which all the pairs
are tested can be arbitrary or chosen to optimize the tests. We
optimize the order of validation as follows. Once every pair
has been tested, the pair which yielded the smallest ∆t(a,b)
is relatively close to a collision since it will probably yield
a small ∆t(a,b) at the next iteration. This pair is put at the
beginning of the list of pairs, so that it will be the first one
tested at the next iteration and yield a small interval ∆t(a,b).
Paired with the fact that each pair retains a memory of the
previously validated intervals, no test will be needed for the
pairs which have already validated a larger interval containing
this small interval.

VI. EXPERIMENTAL RESULTS

A. Impact of the proposed improvements

The continuous validation method presented in this paper
has been applied to the generation of movements of the robot
Tiago [26]. Tiago is a modular robot with a differential-drive
mobile base. In our case, Tiago has one 7-DOF arm and a
5-finger actuated hand. The test is divided in two parts. First,
full-body random paths for Tiago are generated and tested
with each of five variants of the continuous validation method
(Random Test Case). Then, we solve an industrial test case
(Deburring Test Case) using a planning algorithm and the same
variants of the continuous validation method. This industrial
test case is representative of the typical use of a robot like
Tiago in an industrial setting. The performance of the algo-
rithm is measured using the number of iterations performed
for the validation of each path. One iteration corresponds to
one computation of the distance between one pair of bodies.
This indicator is independent of the computational power of
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the machine used. The computation time of the algorithm is
discussed in Section VI-B.

We define five variants of the continuous validation method
corresponding to the different improvements presented in
Section V. First, the ”Basic” variant, corresponding to the
initial method presented in Section III. Then, one variant
corresponding to the initial method with the addition of one
of the three proposed improvements:
• ”Vmax” variant for the improvement proposed in Sec-

tion V-A, where two possible values of V max are com-
puted and the smallest one is kept.

• ”Memory” for the improvement from Section V-B, where
each pair of bodies keeps a memory of the parts of the
path already validated.

• ”Sorting” for the improvement from Section V-C, where
the pair of bodies which produced the smallest valid
interval is put at the beginning of the list of pairs to be
tested at the next iteration.

Finally, the ”Complete” variant corresponds to the initial
method with the addition of each of the three improvements.

For the Deburring Test Case, as shown in Fig. 7, the robot
Tiago holds an electric drill in its hand, and next to the robot
is a table with an aircraft part lying on it. Tiago must reach
each screw hole of the airplane part and perform a deburring
task by inserting the tool into the hole. We assume that the
positions of the holes are known. For the application in real
life, AprilTags markers are placed on the part and next to the
end-effector of the drill, and used to re-plan in real-time the
movements for a better accuracy.

A RRT-like motion planning algorithm is used to generate
a path resulting in Tiago reaching every screw hole. The
algorithm generates random paths, for which an upper bound
on the relative velocity is known for every pair of bodies.
Every path the algorithm generates must be checked against
collisions — self-collisions between Tiago’s bodies as well as
collisions between Tiago and the environment. The room in
which Tiago moves is fully modeled and is also taken into
account for the collision avoidance. The algorithm discards
the non-valid paths and keeps only the valid paths in order to
generate the final global path. A traveling salesman problem is
formulated and solved to determine the order in which Tiago
reaches the holes.

Collision detection between pairs of bodies is performed by
hpp-fcl, a variant of FCL that provides a lower bound on
the distance between two objects when the objects are not in
collision, at no additional cost.

We use each variant as the validation method to test the
random paths and to solve the test case. For each variant, we
record the number of iterations of the validation algorithm
and use it as an indicator of the efficiency of the algorithm.
The results are shown in Fig. 8. For both cases, we test
for both self-collisions and collisions with the environment.
Figures 8a and 8b show the results when 1000 paths are
randomly generated and each path is tested with every variant
of the continuous validation algorithm. To generate each path,
two valid configurations are sampled in the workspace and a
linear interpolation is made between the two configurations to
obtain a path. The same airplane part on a table is present in

the environment as an obstacle. Figures 8c and 8d show the
results for one run of the path planning algorithm to solve the
deburring test case.

When tested on the same path, the different variants of
the continuous validation method all return the same result
concerning the validity of the path. However, when the path
is not valid, the variants may find the collision at different
parameters on the path. The first valid interval of the non-
valid path is used in the RRT algorithm, and may differ for
each variant. It would be very difficult to obtain the exact same
run of the RRT algorithm for the different variants, even when
using the same seed in the random generator. This explains the
different numbers of paths validated for each method during
the Deburring Test Case in Fig. 8.

For every method, we observe the presence of some paths
with very high numbers of iterations compared to the mean
(represented by black dots in Fig. 8a and Fig. 8c). This means
that some paths are more ”difficult” and need considerably
more iterations than others to be validated: Paths that are
valid but close, or almost tangent, to collisions. Each im-
provement in the algorithm (variants Sorting, Vmax, Memory)
corresponds to an improvement of the mean of the number
of iterations. The Complete variant has the lowest mean of
all the variants. The maximum number of iterations for the
Complete variant is reduced by a factor 100 compared to the
Basic variant, while the mean is reduced by a factor of almost
20. The different improvements reduce the standard deviation
of the data. Since the improvements deal better with those
”difficult” path, the data is more packed.

During the Deburring Test Case, the planning algorithm
finds paths that avoid the obstacles while staying close to them.
Those paths are ”difficult” to test, and this explains the higher
standard deviation for the Basic method when compared to
the Random Test Case. The randomly generated paths are
in average farther away from the obstacles than the paths
generated in the Deburring Test Case, and thus are ”easier” to
validate. This also explains the difference in efficiency for the
Sorting variant between the two tests. Considering the results
of Figures 8a and 8b, the Sorting variant does not improve
much from the Basic variant for the Random Test Case.
However, when solving the Deburring Test Case, the Sorting
variant reduces significantly the number of iterations per path.
Indeed, there are more ”difficult” paths in the Deburring Test
Case for which at least one pair of bodies is close to a collision.
By putting the pair closest to collision in the first place of the
test list, the Sorting variant accelerates the validation of these
”difficult” paths. Because there are not many ”difficult” paths
in the Random Test Case, the Sorting algorithm does not have
such a significant impact as for the Deburring Test Case.

The results show that the Complete variant is the most
efficient in terms of number of iterations per path. In terms
of computation time, solving the Deburring Test Case takes
in average almost 2 hours using the Basic variant, and around
20 minutes using the Complete variant. It should be noted
that for those results, the whole room is modeled and used
for the collision detection, as well as the airplane part, the
table, the screwdriver and every part of the robot. Without the
room model, which is relatively complex, the computations

https://github.com/humanoid-path-planner/hpp-fcl
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(a) Random Test Case: Box plot (log scale) of the number of
iterations per path

Method Basic Sorting Vmax Memory Complete

Nb of paths 1 000 1 000 1 000 1 000 1 000

Mean 9 852 9 850 7 572 1 291 592
StDev 13 849 13 848 6 495 1 771 357
Minimum 44 41 44 43 41
Median 7 360 7 360 6 480 1 005 569
Maximum 244 118 244 081 54 840 30 273 2 948

(b) Random Test Case: Table of the number of iterations per path
for five variants of the CCD algorithm. The mean, standard deviation
(StDev), minimum, median and maximum number of iterations are
indicated for the data set of each variant.

(c) Deburring Test Case: Box plot (log scale) of the number of
iterations per path

Method Basic Sorting Vmax Memory Complete

Nb of paths 23 297 5 240 10 110 54 718 20 722

Mean 3 441 2 113 1 493 565 201
StDev 23 893 15 837 8 263 1 564 323
Minimum 1 1 1 1 1
Median 116 168 144 111 96
Maximum 871 676 261 144 132 480 76 984 7 986

(d) Deburring Test Case: Table of the number of iterations per path
for five variants of the CCD algorithm. The mean, standard deviation
(StDev), minimum, median and maximum number of iterations are
indicated for the data set of each variant.

Fig. 8: Number of iterations needed to validate a path using the different variants of the CCD algorithm for the Random Test
Case and the Deburring Test Case. For the Random Test Case (Figures 8a and 8b), 1000 random full-body paths are generated
for Tiago and tested. The Deburring Test Case (Figures 8c and 8d) corresponds to the solving of the industrial deburring test
case with Tiago. For both tests, all five variants of the validation algorithm are used. Each of the variants Sorting, Vmax and
Memory consists of the basic algorithm with one improvement. The Complete variant has all three improvements. We record
the number of iterations necessary to validate each path. One iteration corresponds to one computation of the distance between
one pair of bodies (Algorithm 1, line 6). In Figures 8a and 8c, the orange line represents the median, while the green diamond
marker represents the mean and the black dots represent the outliers values.

are faster by a factor of 10.

The test case has been tested in real life and a video of
the movement is available [27], with the use of the AprilTag
markers to improve the precision of the position of the end-
effector.

B. Comparison with a discretized method

The Random Test Case presented in the previous section
has also been performed using a discretized collision detection
method. When given a time step and a path to be tested, the
discretized method samples the path with the given time step
and tests each sampled configuration by performing an exact
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Method Complete Discretized, τc = 0.12

Nb of paths 1 000 1 000

Mean 0.20 0.23
StDev 0.26 9.8 ×10−2

Minimum 9.4 ×10−3 8.9 ×10−3

Median 0.14 0.22
Maximum 3.6 0.64

Paths found valid 756 760

TABLE I: Random Test Case: Table of the computation time
(in seconds) per path for the Complete variant of the CDD
algorithm and the discretized method with the corresponding
time step τc = 0.12 for 1000 random paths. The mean,
standard deviation (StDev), minimum, median and maximum
computation times are indicated for the data set of each
method.

collision test for each pair of bodies. For such a discretized
method, the average computation time is loosely proportional
to the inverse of the time step.

We compare the computation times obtained with the dis-
cretized method and the Complete CCD method. The computer
used to run the software HPP is an ”Intel(R) Core(TM) i7-
7600U CPU @ 2.80GHz” with 4,096 KB of cache memory
and 16 GB of RAM.

The Random Test Case is performed for different time steps,
in order to obtain a linear regression between the time step and
the average computation time per path. Using this regression,
we obtain the time step τc which gives an average computation
time per path close to the one obtained with the Complete
continuous validation method. We obtain τc = 0.12.

The results are shown in Table I. As shown in the last
line of the table, for the same set of 1000 random paths, the
discretized method finds more valid paths than the continuous
method. Indeed, for 4 paths out of 1000, the discretized
method fails to detect collisions that are found by the con-
tinuous method. In order for the discretized method to find
those collisions, the time step would have to be smaller than
τc, and consequently the discretized method would have a
higher average computation time than the Complete method.
This means that the Complete CCD method outperforms the
discretized method in this test case.

In summary, compared to the non-continuous discretized
method, the CCD method presented in this paper has the
following advantages:
• The CCD method provides a validity certificate that a

non-continuous method cannot offer.
• The CCD method eliminates the need to determine an

appropriate time step for every robot and situation.
• The CCD method performs better in terms of computation

times than the discretized method.
The presented algorithm also has the advantage of ver-

satility. Although this paper has presented only the case of
collision avoidance, any other type of constraint can be taken
into account. To be acceptable, a constraint must be separable
into several elements — like the pair of bodies for the collision
avoidance — and it must be possible to validate each element
around a given configuration on the path. For example, the
algorithm has been extended to take into account collision

avoidance for cable-driven parallel robots [28], as well as
the constraints associated with the tensions of the cables of
such robots [29]. For the cable-driven-parallel robot CoGiRo
in [28], the continuous validation algorithm applied to collision
detection also performs significantly better than the discretized
method. Indeed, the collisions that include cables are difficult
to find using the discretized method due to the small radius
of the cables, and the CCD method validates the paths faster
while missing no collision.

VII. CONCLUSION

This paper has reformulated an existing continuous colli-
sion validation method able to exactly validate or invalidate
a path. Unlike discretized validation methods, this method
guarantees to find a collision along the path if any exists.
The algorithm proceeds in a dichotomous manner, considering
successive configurations along the path and finding valid
intervals centered on these configurations. Every pair of bodies
is considered, and for each, a known upper bound on the
relative velocity between the bodies is used to compute the
valid intervals. This paper has also presented a proof of the
convergence of the algorithm. In every case, except the case
of a collision reduced to a single configuration, the algorithm
is able to determine the validity of the path in finite time.
Expressions of upper bounds on the number of iterations
needed to validate a path have also been introduced.

Three changes can be easily made to the algorithm to
reduce the number of iterations per validation. The first change
consists in choosing the smallest of two possible values of the
upper bound on the relative velocity between two bodies. The
second change consists in keeping in memory, for every pair
of bodies, every interval already validated, to avoid redundant
computations. The third change consists in putting in first
position, in the list of the pair of bodies to be tested, the
pair most prone to being the closest to collision.

The different variants have been used to solve an industrial
test case where the robot Tiago must perform a deburring task
on an airplane part. Through this experimental validation, we
show that each of these changes improve the algorithm by
reducing the average number of iterations needed to validate
a path. The final method incorporates all three improvements
and constitutes a complete and versatile validation method,
which can take into account pairs of bodies for collision
detection, but may also take into account other types of
constraints for more complex robots or different situations.
This final method is exact and performs better in terms of
computation times than a discretized method.
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