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Abstract

The structural investigation of intrinsically disordered proteins (IDPs) requires ensemble models
describing the diversity of the conformational states of the molecule. Due to their probabilistic na-
ture, there is a need for new paradigms that understand and treat IDPs from a purely statistical
point of view, considering their conformational ensembles as well-defined probability distributions.
In this work, we define a conformational ensemble as an ordered set of probability distributions and
provide a suitable metric to detect differences between two given ensembles at the residue level, both
locally and globally. The underlying geometry of the conformational space is properly integrated, one
ensemble being characterized by a set of probability distributions supported on the three-dimensional
Euclidean space (for global-scale comparisons) and on the two-dimensional flat torus (for local-scale
comparisons). The inherent uncertainty of the data is also taken into account to provide finer esti-
mations of the differences between ensembles. Additionally, an overall distance between ensembles
is defined from the differences at the residue level. We illustrate the interest of the approach with
several examples of applications for the comparison of conformational ensembles: (i) produced from
molecular dynamics (MD) simulations using different force fields, and (ii) before and after refinement
with experimental data. We also show the usefulness of the method to assess the convergence of MD
simulations, and discuss other potential applications such as in machine-learning-based approaches.
The numerical tool has been implemented in Python through easy-to-use Jupyter Notebooks available
at https://gitlab.laas.fr/moma/WASCO.

1 Introduction

The comparison of protein structures is a crucial problem in structural biology. In the early works [1,2],
the use of root-mean-square deviation (RMSD) was introduced and discussed as a metric between confor-
mations of folded proteins, and later extended to its ensemble version [3]. More recently, Lindorff-Larsen
and Ferkinghoff-Borg [4] defined three metrics that allow overall comparison between ensembles of or-
dered/structured systems, with stronger mathematical guarantees, but using RMSD as a distance between
individual conformations, which complicates its extension to disordered structures. Cazals et al. [5] used
a graph-based representation of the conformational space based on a set of low-energy conformations (i.e.
local minima of the potential energy landscape) and compared them with the more suitable Wasserstein
distance. To do so, they used the least-RMSD as ground metric between conformations. The methods
presented in [4] and [5] are well suited to examine conformational ensembles of molecules that present
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a well-characterized energy landscape. However, their application to molecules with energy landscapes
where low-energy conformations are difficult to identify, as it is the case of IDPs, is inappropriate.

A few recent works have dealt with the comparison of conformational ensembles of IDPs. Huihui and
Ghosh [6] focused on averaged conformational properties over ensembles as informative descriptors of
their function. They proposed a sequence-decoration metric that classifies IDPs using only their primary
structure together with their charge configuration. The same idea of comparing average descriptors was
applied by Lazar et al. [7], who proposed an ensemble comparison tool based on differences between
average pairwise distances. Due to the huge conformational variability of IDPs, it is, however, important
to take into account both the average properties as well as the distribution around those averages.
Describing IDP conformations as being drawn from probability distributions determining their structure
may yield to an important loss of information (or even misleading results) if the whole distribution
is reduced to its mean. Even when comparing two (possibly multivariate) Gaussian distributions, the
difference between the two depends both on the means and variances [8,9]; thus, methods for comparing
ensembles should ideally include also higher order moments of the probability distributions. This is why a
statistical approach that integrates the entire probability law defining an ensemble is crucial to correctly
capture the existing differences between disordered ensembles.

The probability distributions describing the ensembles need to be compared using a suitable metric,
well-adapted to the geometric features of the underlying spaces. The Wasserstein distance [10], sometimes
called “earth mover’s distance”, integrates the geometry of the space where the distributions are supported
and provides strong mathematical guarantees. Moreover, it has a physical interpretation, as it is defined
as the minimum transportation cost needed to reconfigure the mass of one probability distribution to
recover the other. All this makes Wasserstein distance substantially preferable to other metrics currently
used in the literature (e.g. Kullback-Leibler divergence, Helliger distance), as discussed in Section 2.

In this work, we define a set of probability distributions that characterize at local and global level the
highly variable conformations in an ensemble of disordered proteins, and to which we can have access
in practice. These probability laws can then be compared using the Wasserstein distance, allowing the
identification of residue-specific and overall discrepancies. We also propose an approach to integrate the
intrinsic uncertainty of the data within the metric, which enables a more clear identification of the relevant
differences between the ensembles. The method has been implemented inside a purely non-parametric
framework, avoiding model assumptions, dimensionality reduction or further simplifications that may
yield significant loss of information.

In the following sections, we provide an overall description of the proposed methodology, which is
further detailed in the Supplementary Information (SI), together with several cases of applications that
illustrate how our method identifies residue-specific and overall discrepancies between conformational
ensembles of IDPs or flexible peptides generated for example by molecular dynamics simulations or
stochastic sampling techniques. Finally, we discuss current limitations and possible extensions of WASCO,
as well as the great potential interest of this type of metric for its integration in machine-learning-based
(ML-based) methods applied to generate or to refine conformational ensembles of IDPs.

2 Methods

Due to the intrinsic probabilistic nature of IDPs, descriptors of their conformational ensembles should
be conceived from a purely statistical point of view. To do so, we seek to locally and globally describe
conformational ensembles using well-defined probability distributions and to develop statistical tools
allowing their comparison. The main questions to answer are therefore: (1) which is the best way to
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define those probability distributions? and (2) how these distributions have to be compared to provide
quantitative information about similarities and differences between ensembles?

2.1 Defining conformational ensembles as a set of probability distributions

IDP ensembles can be described at both local and global scales, providing complementary information.
We aim at defining an ordered set of probability distributions that account for the highly variable structure
of the ensemble and, above all, that can be estimated in practice from a set of sampled conformations.

The most important aspects of the local structure can be described by the dihedral angles (φ,ψ)
for each amino acid residue along the sequence. Therefore, for each residue, the ensemble is locally
characterized by a two-dimensional random variable (φ,ψ) or, in other words, by a probability distribution
supported on the two-dimensional flat torus T2 [11,12]. If we denote such distribution as P l

i , for the residue
at the i-th position, we define the local structural descriptor of an ensemble as the L-tuple

(P l
1, . . . , P

l
L), P l

i ∈ P(T2) for all i = 1, . . . , L, (1)

where L is the sequence length and P(T2) denotes the space of probability distributions supported on
T2.

Describing the global structure is a less trivial task. The use the absolute positions of the atoms and
an absolute reference frame for the entire ensemble is not an appropriate description as it is sensitive
to rigid-body motions. Therefore, our approach uses the relative positions of all pairs of residues along
the sequence, which are invariant under rigid-body motion. More precisely, we define the position of
a given residue as the position of its Cβ atom when it exists and of its Cα atom otherwise. If i, j ∈
{1, . . . , L}, i ̸= j, denote two different sequence positions, let −−→

Ri,j be the three-dimensional random
variable determining the relative position of j-th residue with respect to the i-th one. If we denote P g

i,j

the probability distribution associated to −−→
Ri,j , we define the global structural descriptor of an ensemble

as the (L(L− 1)/2)-tuple

(P g
1,2, P

g
1,3, . . . , P

g
L−1,L), P g

i,j ∈ P(R3) for all i = 1, . . . , L− 1, j = i+ 1, . . . , L, (2)

where L is the sequence length and P(R3) denotes the space of probability distributions supported on
the three-dimensional Euclidean space.

2.2 Accessing empirical probability distributions from sampled conformations

Estimating the local structural descriptor (1) is immediate as we have direct access to dihedral angles
(φ,ψ) from the sample of conformations. Therefore, the local structural descriptor will be estimated by
its empirical counterpart

(P l
1;n, . . . , P

l
L;n), (3)

where each P l
i,n, i = 1, . . . , L, is the empirical probability distribution of P l

i , and n is the number of con-
formations constituting the sample. Such empirical probability distributions are commonly represented
through Ramachandran maps [13].

Obtaining a sample of −−→
Ri,j from the set of conformations is less direct. To compute a set of comparable

−−→
Ri,j vectors from all conformations, their coordinates must be expressed on the same reference system.
To do so, we first define a reference frame at the i-th residue, using only the positions of the i-th C ′, Cα
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(a) (b)

Figure 1: Illustration of how samples of global structural descriptors are obtained, for a pair of positions
i, j along the sequence. In (a), the reference frame is built for every conformation at residue i. In (b),

all the frames are superimposed using this reference frame. Then, for any j ̸= i, the vectors −→ri,j

constitute a sample of −−→
Ri,j .

and NH atoms. This frame, whose construction is detailed in the Supplementary Information (SI), is a
meaningful representation of the spatial pose of each residue.

The reference frame associated to each residue i ∈ {1, . . . , L} allows to express the relative positions
of all residues j ̸= i with respect to i. Moreover, the definition of a reference system allows the superpo-
sition of all the conformations in the ensemble. This is illustrated in Figure 1, for three conformations.
Consequently, for every j ̸= i, we will have access to n realizations of the random variable −−→

Ri,j or, in other
words, to a point cloud in the three-dimensional Euclidean space, representing a sample drawn from the
distribution of P g

i,j . Therefore, the global structural descriptor of the ensemble (2) will be estimated by
its empirical counterpart

(P g
1,2;n, P

g
1,3;n, . . . , P

g
L−1,L;n), (4)

where P g
i,j,n is the empirical probability distribution of P g

i,j , for all i = 1, . . . , L− 1, j = i+ 1, . . . , L. An
example of a pair of samples of −−→

Ri,j is presented in Figure S8.

2.3 Distances between local and global structural descriptors

After defining the local and global structural descriptors of an ensemble as an ordered set of probability
distributions, the choice of a suitable metric allowing inter-ensemble comparisons becomes the subsequent
question to deal with. The basic properties that such a metric should have are:

1. Satisfying the mathematical properties that define a distance (i.e. being 0 if an only if the two
compared distributions are identical, symmetry and triangle inequality),

2. Integrating the geometry of the underlying space.

The use of metrics between probability distributions is not new in structural biology. For instance,
Ting et al. [14] used Hellinger distance to detect differences between (φ,ψ) distributions. However,
this metric does not take into account the geometry of the underlying space (in particular here, its
periodicity). A symmetrized Kullback-Leibler (KL) or the Jensen-Shannon (JS) divergence was used
in [4, 15] to compare ensembles of ordered systems. This metric has a firm interpretation, based on
information theory (in particular the JS divergence is the square of a metric). However, it still misses
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the geometrical reliability and does not satisfy triangle inequality, which makes comparisons between
multiple ensembles difficult to interpret.

Besides satisfying conditions 1 and 2, the Wasserstein distance, derived from the theory of Optimal
Transport (OT), provides both strong theoretical guarantees [10] and attractive empirical performance
[16]. Informally, it represents the minimum transportation cost needed to reconfigure the mass of one
probability distribution to recover the other. A more technical definition is provided in SI, and we refer
to [16] for an in-depth introduction to OT. Most of the applications of OT are related to the very active
field of machine learning (ML), notably in the framework of generative networks [17], robustness [18]
or fairness [19], among others. With some notable exemptions [5, 20–23], Wasserstein distance has not
been widely used in structural biology. More related to our work, in [5], Cazals et al. used Wasserstein
distance to compare energy landscapes sampled from conformational ensembles. Recently, it was used
in [23] to define statistical tests assessing differences between (ϕ, ψ) distributions. The incorporation of
the underlying geometry to its definition makes it a well-adapted metric to measure distances between
local and global structural descriptors of the ensembles. Details and important considerations regarding
its practical computation are given in SI.

2.4 The comparison tool

Consider two ensembles A, B, associated to two protein sequences of equal length L, and let nA, nB be
their number of conformations, respectively. We define the differences between local structural descriptors
of A and B as the L-tuple of Wasserstein distances

(W l,A,B
1 , . . . ,W l,A,B

L ) =
(

W(P l,A
1;nA

, P l,B
1;nB

), . . . ,W(P l,A
L;nA

, P l,B
L;nB

)
)
, (5)

where P l,A
i;nA

(resp. P l,B
i;nB

) denotes the i-th distribution of the empirical local structural descriptor (3)
of ensemble A (resp. B). Statistical tests to assess whether any W l,A,B

i is significantly different from
zero have been recently defined in [23]. The second of the introduced techniques is better adapted to
our problem, as it only detects the more important discrepancies and accepts slight differences that may
arise from experimental or computational procedures. This is discussed in detail in [23]. Consequently,
together with the L-tuple (5) of distances comparing local structural descriptors, we are able to supply
a L-tuple of p-values (corrected for multiplicity [24]) accounting for the statistical significance of the
corresponding distances:

(pA,B
1 , . . . , pA,B

L ). (6)

Recall that a small p-value pA,B
i indicates strong evidence that the true distance that W l,A,B

i estimates is
different from zero. In other words, small p-values show significant differences between the corresponding
local structural descriptors. Therefore, the vector (6) enables the identification of those residues where the
differences are more important, and those residues for which differences can be assigned as non-significant.

Analogously, the difference between global structural descriptors ofA andB is defined as the (L(L− 1)/2)-
tuple

(Wg,A,B
1,2 , . . . ,Wg,A,B

L−1,L) =
(

W(P g,A
1,2;nA

, P g,B
1,2;nB

), . . . ,W(P g,A
L−1,L;nA

, P g,B
L−1,L;nB

)
)
, (7)

where P g,A
i,j;nA

(resp. P g,B
i,j;nB

) denotes the i, j distribution of the empirical global structural descriptor (4) of
ensemble A (resp. B). In this case, we are not able to provide a vector of p-values assessing the significance
of the global differences. This is due to the intrinsic limitations of the underlying mathematical theory
when the ground space has dimension d ≥ 3. Note that (7) can be more naturally represented as
a triangular (L − 1) × (L − 1) matrix W g,A,B , whose elements are given by (W g,A,B)ij = Wg,A,B

i,j .
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Graphically, the matrix W g,A,B is represented using a color scale to fill the coefficients according to
distance values. As the diagonal will remain empty, it will be filled with the local distances (5). This will
also allow to assess whether changes on local structural descriptors are related with changes in global
structural descriptors and to compare both scales within the same representation.

2.4.1 Accounting for uncertainty

The variability in experimental and simulated structures causes uncertainties and statistical noise that
may substantially bias the distance estimation. For example, when running a MD simulation, independent
replicas of the same simulation setup may results in non-negligible differences that distort the analysis
of the comparison matrices. The same may occur when comparing two uniformly chosen subsets of con-
formations from an ensemble generated by stochastic sampling techniques [25,26]. In order to soften the
effect of uncertainty and to obtain net estimates of the differences between a pair of ensembles, we will use
(if available) independent replicas of the same ensemble. These replicas may also be produced by uniform
subsampling of the set of conformations. However, special care must be taken when subsampling MD
trajectories as the convergence of the simulation must be ensured for the subsamples to be representative
of the entire ensemble.

Let A1, . . . , AnI
(resp. B1, . . . , BnI

) be nI independent replicas of ensemble A (resp. B). The corrected
difference between local structural descriptors of A and B is defined as the L-tuple

(W̃ l,A,B
1 , . . . , W̃ l,A,B

L ), (8)

where each corrected distance is defined as

W̃ l,A,B
i =

(
1
nI

nI∑
s=1

W l,As,Bs

i − 1
2(nI − 1)

nI∑
s=2

(
W l,A1,As

i + W l,B1,Bs

i

))
+

, for all i = 1, . . . , L, (9)

where, for any real number x, (x)+ = x if x > 0 and (x)+ = 0 otherwise. The first term in (9) is
an average of nI Wasserstein distances between nI paired independent replicas of A and B. As it was
shown in [27], an average of Wasserstein distances between sub-samples of the same population is a
pertinent estimate of the Wasserstein distance between the two entire populations that, in addition,
conserves the properties that mathematically define a distance. Therefore, this first term estimates the
Wasserstein distance between the entire populations of A and B (conceived as the union of all independent
replicas), softening the variability. To this brutto inter-ensemble difference, we subtract an average of
the Wasserstein distances between independent replicas of the same population (intra-ensemble). Note
that, for the sake of computational simplicity, we just compared the first replica of each ensemble with
the subsequent ones. This alignment is arbitrary and can be set otherwise. Of course, distances between
all pairs of replicas can be added to this term. The more combinations are added to (9), the finer
will be the estimate of the (unknown) true Wasserstein distance between the ensembles but, as replicas
are independent, different alignments for a given number of combinations should not yield substantial
discrepancies on the quality of this estimate. The same applies if nI is different for A and B; both terms
in (9) can be accordingly adapted. As it is illustrated in Section 3, the use of corrected distances (9)
contribute to reduce the noise coming from structural uncertainty and help to emphasize residue-specific
differences in the matrix representation. For the distances between global structural descriptors, the
correction is performed analogously.
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2.4.2 Setting an interpretable scale

When defining an absolute distance or score between conformational ensembles, providing the clues
to ease its interpretation is crucial. The problem of interpreting unbounded metrics with no intrinsic
reference values has been widely discussed since the introduction of RMSD for the comparison of pairs
of conformations [1, 2]. Here, we do not seek to define any cutoff to binarize the resulting matrices,
but to provide a more informative continuous scale. To do so, we aim at quantifying the magnitude of
the inter-ensemble distances compared to the intra-ensemble ones, using the uncertainty estimate as a
reference. If we denote as W l,A,B

inter (resp. W l,A,B
intra ) the first (resp. second) term in (9), the score

W̃ l,A,B
i

W l,A,B
intra

=

(
W l,A,B

inter − W l,A,B
intra

)
+

W l,A,B
intra

, (10)

corresponds to the relative difference between the inter-ensemble and intra-ensemble differences. Once
again, this score is analogously defined for differences between global structural descriptors.

2.4.3 An overall distance between ensembles

In some situations, it may be of interest to perform overall comparisons between multiple ensembles.
To do so, moving from a residue-specific analysis to a comparison at the whole structure level might be
preferable. The definition of a score for the overall ensemble has been addressed for ordered systems [4].
Here, we propose to define such a score by aggregating all the residue-specific distances computed using
the above-described methods. We recall that if d1, . . . , dL are L distances defined on L metric spaces
X1, . . . ,XL, the function

√
d2

1 + · · · + d2
L is a distance on the product space X1 × · · · × XL. Consequently,

OW l,A,B =
(

L∑
i=1

(
W l,A,B

i

)2
)1/2

(11)

is a distance on the product space of all dihedral angles along the sequence and, therefore, serves to
quantify the overall local discrepancy between a pair of ensembles. Analogously,

OWg,A,B =

L−1∑
i=1

L∑
j=i+1

(
wijWg,A,B

i,j

)2
1/2

, withwij > 0 for all i, j ∈ {1, . . . , L}, (12)

is a distance on the product space of all pairwise relative positions of the residues in both ensembles, and
serves to quantify the overall global discrepancy. Note that we have assigned a positive weight wij to each
global distance in (12). This allows to consider distances between specific residue pairs as more relevant
than the others when computing the overall discrepancy [28]. For instance, we can highlight differences
between global structural descriptors that appear for residue pairs that are far from each other in the
sequence, i.e. large |i− j|, and neglect distances between neighboring residue pairs, i.e small |i− j|. This
can be done by choosing wij as an appropriate increasing function of |i− j|, as

wij = w(i, j) = 1
tanh 1 tanh

((
|i− j|
L− 1

) 1
2
)
, (13)

which satisfies wi,i = 0 for all i and w1,L = wL,1 = 1.
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The drawback of this definition of the overall distance is that it does not take into account the
uncertainty discussed in Section 2.4.1. To solve this problem, the same strategy to define a global score
can be performed by replacing each W l,A,B

i (resp. Wg,A,B
i,j ) by its corresponding corrected distance W̃ l,A,B

i

(resp. W̃g,A,B
i,j ) in (11) (resp. (12)). However, this strategy makes the triangle inequality for the overall

metric no longer satisfied. Both scores can be implemented by the practitioner and used depending on
the specific comparison context.

2.5 The Jupyter Notebook

The WASCO comparison tool has been implemented through an easy-to-use Jupyter Notebook. It is
available at https://gitlab.laas.fr/moma/WASCO, together with its installation guidelines and detailed
implementation instructions. The notebook takes a pair of ensembles as input and returns the comparison
results through the matrix defined in Section 2.4, containing global and local differences. Users can choose
to correct the computed distances by uncertainty, as proposed in Section 2.4.1. When independent replicas
are not provided as input, subsampling is used to emulate them. If this correction is performed, results
are displayed in the interpretable scale defined in Section 2.4.2. The overall score defined in Section 2.4.3,
aggregating the corrected distances, is also returned by the tool.

Ensembles can be provided as input in several of the most common data formats. WASCO accepts
one .xtc file per replica, together with a .pdb file including the topology information of the molecule, one
multiframe .pdb file per replica or a folder per replica containing one .pdb file per conformation. The
user can also choose to compare ensembles for sequence segments (of equal length) instead of the entire
sequence. Details are provided in the notebook documentation.

Due to the large number of Wasserstein distances to be computed (L(L − 1)/2 + L per pair of
replicas), the computation time might be considerably high. The number of conformations constituting
the ensemble also has a significant impact, due to computational limitations of the existing OT algorithms
when sample sizes and dimension increase. In order to return results within a reasonable amount of time,
WASCO computes Wasserstein distances in parallel. The required CPU time depends on the number
of conformations, replicas and sequence length of the ensembles. For small proteins of L ∼ 30 and
ensembles of reasonable size nA, nB ∼ 104, the CPU time using 20 threads is less than 15 minutes
using a standard computing server. However, for larger proteins of L ∼ 150 and large ensembles with
nA, nB ∼ 105, the CPU time using 20 threads goes up to some hours. Additionally, comparing large
ensembles of substantially longer sequences (L ≫ 150) might cause memory problems, as all pairwise
relative positions for every conformation need to be stocked. Therefore, the suitability of the sizes of
the ensembles must be considered before launching WASCO. Adapting WASCO to longer sequences with
large conformational ensembles remains an objective for future work.

The output of WASCO is given through a matrix, whose entries are the values of the score (10)
computed for local and global distances, when independent replicas are provided. Otherwise, the matrix
depicts the values of the non-corrected inter-ensemble distances (5), (7). The values for the discrepancies
between the global structural descriptors (4) are provided in the lower triangle. The differences between
the local structural descriptors (3) are displayed along the diagonal. Details on the interpretation of the
matrix are given in Section S1.3 and illustrated in Figure S4. These guidelines are also presented in the
software documentation.
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3 Results

In this section, we present several applications to illustrate the different possibilities enabled by WASCO.
In all cases, the distances between local and global structural descriptors were corrected for uncertainty
using (9), as independent replicas were available. The results are depicted through the score (10),
representing the relative difference between the inter-ensemble distances and the uncertainty. Both overall
local and global discrepancies between pairs of ensembles were computed plugging the corrected distances
in (11) and (12), as discussed in Section 2.4.3. The weight function (13) was used to highlight differences
between residue pairs far from each other in the sequence and reduce differences between neighboring
amino acids. Note that this weighting is considered only to compute the overall distance (12), and not to
depict distance values in the matrix representation, which correspond to the interpretable scale defined
in Section 2.4.2. An additional analysis illustrating the application of WASCO to assess the convergence
of MD simulations is included in SI.

3.1 Comparison of ensembles produced by MD simulations using different force-fields

We applied WASCO to compare the results of MD simulations using different force-fields presented in [29]
for two flexible peptides showing a significant propensity to form poly-l-proline type II (PPII) structures.
Four different force-fields, having demonstrated relatively good performances to simulate IDPs were
applied: AMBER ff99SB-disp, AMBER ff99SB-ILDN, CHARMM36IDPFF, and CHARMM36m (details
and references to these force-fields can be found in [29]). For simplicity, we will refer to these force-fields
as disp, ildn, c36idp and c36m, respectively. As independent replicas for each simulation were available,
we could perform the correction for uncertainty (9).

Figure 2 presents the output of WASCO for several pairwise comparisons of conformational ensembles
of Histatin-5 (Hst5) obtained with the different force-fields. The matrices and the overall dissimilarities
suggest that the generated structures are closer (in Wasserstein distance) when they are simulated using
c36idp and c36m (which we can define as group-I), or disp and ildn (group-II). This is not surprising as
group-I are versions of CHARMM and group-II are versions of AMBER. Indeed, matrices (a) and (b),
comparing force fields inside group-I and inside group-II respectively, present overall global differences
which are small compared to those of panels (c) and (d), which compare force-fields of different groups.
The same conclusion can be reached by comparing the magnitude of the scales of both pairs of matrices.
The two remaining comparisons (ildn vs. ildn and c36m vs. disp) are not included in Figure 2 as the
corresponding matrices are qualitatively equivalent to (c) and (d). Similar observations have been made
when comparing ensembles of folded proteins generated using related force-fields [15,30].

Matrices returned by WASCO also allow a residue-specific analysis of the distances. In Figure 2,
panels (c) and (d) show that the most relevant global differences appear in regions close to the diagonal
(i.e. between residue pairs close in the sequence), where the inter-ensemble corrected distances rise up
to 6-7 times the intra-ensemble ones. This is not the case when comparing force-fields inside the same
group, as the largest differences appear in more internal matrix regions (i.e. between residue pairs more
distant in the sequence). However, these corrected differences represent less than the half of the intra-
ensemble distances. The information displayed on the diagonal allows the detection of the residues where
the local conformation change more abruptly between force-fields. These local changes are restricted to
smaller regions, contrary to the observed behaviour of global differences, which appeared for more extent
regions inside the lower triangle and not for isolated pairs of amino acids. In some cases, substantial
local distances appear in residues where global structure also changes (see, for example, residues next to
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Figure 2: Comparison of Molecular Dynamics simulations of Hst5 ensemble using different force-fields.
The color scale W̃/Wintra corresponds to the score (10), representing the relative difference between the

inter-ensemble distances and the uncertainty.
The coefficients in the lower-triangle (in red) correspond to the global differences. The coefficients along

the diagonal (in blue) correspond to the local differences. Blue stars indicate that the corresponding
local corrected distance is significantly different from zero (the associated p-value (6) is smaller than

α = 0.05). Note the different scales used in the different plots.

the N-terminus in (a,c)). However, this correspondence is not observed in all matrices. We repeated the
same analysis for MD simulations of PEP3 with the same force-fields. Results are presented in SI.

3.2 Structural impact of SAXS ensemble refinement

Using Hst5 as an example, we applied WASCO to evaluate the structural impact of SAXS refinement
with the Ensemble Optimization Method (EOM) [31] on the resulting ensemble. We first compared the
Hst5 ensemble simulated with Flexible-Meccano [25, 32] with the refined one using previously reported
SAXS data [33]. The results are presented in Figure 3. Note that a previous EOM analysis of these
data suggested that Hst5 in solution is slightly more extended that the random coil model generated
with Flexible-Meccano [33]. Small but significant differences were observed at the central part of the

10



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Residue number

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

Re
sid

ue
 n

um
be

r

Overall global dissimilarity = 9.581
Overall local dissimilarity = 3.816

0.5

1.0

1.5

2.0
R

3
W

 / 
W

in
tr

a

1

2

T2
W

 / 
W

in
tr

a

Histatin (pool - selected) Wasserstein matrix

Figure 3: Comparison of Hst5 ensemble before and after filtering with experimental SAXS data. The
color scale W̃/Wintra corresponds to the score (10), representing the relative difference between the

inter-ensemble distances and the uncertainty. The coefficients in the lower triangle (in red) correspond
to the global differences. The coefficients along the diagonal (in blue) correspond to the local

differences. Blue stars indicate that the corresponding local corrected distance is significantly different
from zero (the associated p-value (6) is smaller than α = 0.05).

peptide (from residues 6 to 13). Most probably, the SAXS-based refinement selected conformations with
an extended central region to account for the overall expansion of peptide in the solution [31]. Moreover,
we observed highly significant local distances that propagate towards the interior of the matrix. In
other words, these residues with large local distances conformationally influence their closest neighbours.
Intriguingly, this propagation seems to only occur towards the C-terminus.

We next assessed whether the direction in which conformations are built have a structural effect and
change the refined ensemble. To do so, we generated two Hst5 ensembles using a stochastic sampling
method similar to Flexible-Meccano but using a different strategy [26], where the chains were built
either from N-to-C or from C-to-N. When using these two ensembles to fit the experimental curve, the
resulting distance matrices displayed very similar features for local and global distances (Figures S9a
and S9b), suggesting that the chain-building direction does not have a relevant effect. In both cases,
a systematic increase in the distances is observed for the central residues, as observed in the previous
analysis (Figure 3).

In a recent study, ENCORE was used to show that refined ensembles were closer to each other
than different input ensembles [15]. This can also be illustrated using WASCO, by comparing the Hst5
ensembles generated in both directions before and after the filtering with SAXS data (Figures S9c and
S9d). These comparisons clearly showed that both global and local differences were smaller for the
refined ensembles than for the input ones, as observed when comparing the maximum values of the
corresponding color scales. As we were comparing very similar ensembles, we expected the distances to
be small. Nevertheless, we observe one significant local difference on the diagonal in Figure S9c that
disappeared after refinement.
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4 Discussion

We have presented a novel method to compare conformational ensemble models of highly flexible pro-
teins. WASCO is based on a non-parametric framework: local and global structural descriptors of the
conformational space are defined as distributions and do not rely on probabilistic or statistic models.
This allows capturing the entire variability of the ensemble without information loss. The distributions
are compared using the Wasserstein distance, which has strong mathematical guarantees and respects the
geometry of the underlying space. To this metric, we incorporated the structural uncertainty presented
in experimental and simulated ensembles. Using this strategy, WASCO highlights the relevant differences
between ensembles. We have illustrated several possible applications of WASCO as an additional tool
for the investigation of IDPs and flexible peptides. It provides complementary information with respect
to other tools to analyze and compare conformational ensembles based on global descriptors, such as
the radius of gyration [34] or secondary structure propensities [29]. Besides, the presented approach is
advantageous with respect to simpler comparison techniques based on average descriptors, such as the
difference of median distance matrices introduced in [7]. This is illustrated with an example in SI (Sec-
tion S2.3). Thanks to its accuracy to identify differences between ensembles, WASCO has great potential
interest for integration into ML-based methods for generating or refining conformational ensembles of
IDPs [35–37]. More precisely, metrics based on WASCO can be used to evaluate the performance of these
methods, or as a loss function when training neural network models.

WASCO has been implemented in an open-source Jupyter Notebook, which enables an easy use
of the methods as well as their adaptation or extension to particular needs. The main drawback of the
current implementation is its limitation to deal with considerably large ensembles of long IDPs. Adapting
WASCO to larger chains remains for future work. Other interesting directions for future work will be
the extension of WASCO to compare ensembles of multi-domain proteins, and to operate with coarse-
grained models. The extension of WASCO to compare ensembles for chains of different length is also
an interesting but challenging work. Note however that the Jupyter Notebook enables the user to select
sequence fragments of equal length for the comparison.
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