
Supplementary Information

WASCO: A Wasserstein-based statistical tool to compare
conformational ensembles of intrinsically disordered proteins

Javier González-Delgado1,2, Amin Sagar3, Christophe Zanon1, Kresten Lindorff-Larsen4,
Pau Bernadó3, Pierre Neuvial2 and Juan Cortés1

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.
2Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, Toulouse, France.
3Centre de Biologie Structurale, Université de Montpellier, INSERM, CNRS, Montpellier, France.
4The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark

S1 Methodology details

S1.1 Building a residue-specific reference frame

S1.1.1 Reference frame definition

We seek to define a reference frame that determines the global pose (position and orientation) of a given
residue and that allows to describe the relative pose of other residues along the sequence. As we want
this reference system to be universally defined (independently of the residue identity), we first define a
virtual atom C̃β , which exists also for glycines. The position of C̃β is an estimate of the position of the
true Cβ when it exists, but it is defined for every residue using only the atoms that are always present.
Its definition allows the construction of a universal frame that locally represents the geometry of the
backbone.

Let −→
C and −→

N be the vectors going from Cα to C and N atoms, respectively. If a Cβ atom is present,
let −→

Cβ denote the vector going from Cα to Cβ . In such case, −→
Cβ can be determined using the vectors −→

C ,
−→
N

and −→
C ×

−→
N together with their angles with respect to −→

Cβ , denoted θC , θN and θCN respectively. See
Figure S1a for an illustration. This can be done by solving the following linear system, whose unknown
variables are the three coordinates of Cβ .


∥
−→
N ∥ ∥

−→
Cβ∥ cos θN = −→

N ·
−→
Cβ

∥
−→
C ∥ ∥

−→
Cβ∥ cos θC = −→

C ·
−→
Cβ

∥
−→
C ×

−→
N ∥ ∥

−→
Cβ∥ cos θCN = (−→C ×

−→
N ) ·

−→
Cβ .

(1)

To define a universal Cβ , denoted C̃β , we will estimate fixed values for θN , θC and θCN from all
non-glycine residues of a set of protein structures and define the C̃β coordinates as the solution of (1),
independently of the residue identity. Details on angles estimation are given in the following section.
Consequently, for a given residue, the virtual atom C̃β is determined from the coordinates of its Cα, N
and C atoms. This allow us to define a reference system at each sequence position through the following
three vectors, where −−→

CN = −→
N −

−→
C .
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Figure S1: (a) Illustration of vectors and angles involved in the construction of the residue-specific
reference frame. The vector −→

Cβ can be determined from vectors −→
C and −→

N together with the angles θN

(the only depicted for simplicity), θC and θCN . (b) The three vectors {−→e1 ,
−→e2 ,

−→e3} defining the reference
frame, built from the virtual atom C̃β and vectors −→

C and −→
N .


−→e1 =

−→
C̃β/∥

−→
C̃ β∥

−→e2 = −−→
CN/∥

−−→
CN∥ × −→e1

−→e3 = −→e1 × −→e2 .

(2)

Once the reference system of the i-th residue, denoted Fi = {−→e1,i,
−→e2,i,

−→e3,i}, has been built, its origin
will be placed at the Cβ atom when it exists, or at the Cα otherwise. This allows the computation of
relative positions and distances with respect to Cβ atoms for all non-glycine residues.

S1.1.2 Estimation of θC , θN and θCN

We estimated three fixed values for θC , θN and θCN , to be replaced in the linear system (1). After
that, the vector

−→
C̃β is determined for each residue along the sequence by solving (1) after plugging in

the corresponding coordinates of Cα, C and N atoms. As mentioned in Section S1.1, this allows the
definition of a residue-specific reference frame, built independently of the residue identity.

To estimate the three angles, we used a set of 15177 experimentally-determined high-resolution struc-
tures of protein domains extracted from the SCOPe 2.07 release [1]. For each structure, θC , θN and θCN

were computed and stored for every non-glycine residue. The three corresponding histograms, together
with a kernel density estimate, are presented in Figure S2, for all residue types. The residue-specific
counterparts of Figure S2 did not show important fluctuations from the overall densities. Therefore, for
simplicity, we did not estimate three angles per residue type, but three universal values.

The three distributions of Figure S2 show that all the angle distributions are strongly concentrated
around their kernel density maximum. Consequently, these values were chosen as an estimate of θC , θN

and θCN . Due to the symmetry of the empirical distributions, choosing the mean would provide similar
estimates. Figure S2 depicts the theoretical angle values under the hypothesis that C, N , Cβ and H

(when present) are the vertices of a regular tetrahedron, with Cα as its centroid. One could think of using
these values as estimates, but the deviation from the experimental value of θCN is too high, showing how
the fluctuations from the regular polyhedron are not homogeneous along its faces.
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Figure S2: From left to right: empirical distributions of θC , θN and θCN respectively, extracted from a
set of 15177 protein structures, considering all non-glycine residues. The red line corresponds to a

kernel density estimate, whose maximum (vertical black dashed line) was used as angle estimate. The
blue dashed line depicts the theoretical value of each angle under the hypothesis that the four atoms

bound to the Cα form a regular tetrahedron.

S1.2 Wasserstein distance: definition and computation

S1.2.1 The Optimal Transport problem

Let P,Q be two probability distributions supported on an arbitrary1 space X . Let U(P,Q) denote the
space of probability distributions supported on X × X having P and Q as marginals on X . Finally, let
d : X × X → R+ be a cost function, usually a distance on X . A probability distribution π ∈ U(P,Q) is
said to be an optimal transport plan for the cost dp between P and Q if it solves, for p > 1,

Wp(P,Q) :=
(

inf
γ∈U(P,Q)

∫
X ×X

dp(x, y)dγ(x, y)
) 1

p

. (3)

The optimal value Wp(P,Q) is called the p-Wasserstein distance between P and Q. Indeed, Wp(P,Q)
is a distance on the space of probability distributions supported on X [2]. The Wasserstein distance
corresponds to the minimum transportation cost needed to reconfigure the mass of P to recover Q using
the transport plan given by the minimizer π of (3). Note that, for a pair of measurable sets A,B ⊂ X ,
π(A×B) represents the probability of sending to B the mass in A or, in other words, the proportion of
the mass in A that must be sent to B. The optimization problem (3) is the continuous version of the
so-called Kantorovich problem. When, instead of continuous probability distributions P,Q, we consider
their empirical counterparts Pn, Qm, built from a sample drawn from P and Q respectively, the problem
(3) is rewritten in terms of matrices and can be easily solved in practice for small dimensions. The
resulting optimal value is called the empirical p-Wasserstein distance. Under very mild assumptions, is a
good approximation of (in the sense that it converges in probability to) the Wasserstein distance between
the corresponding pair of continuous measures.

In our case, we set X to R3 and T2 for the global and local descriptors respectively, where the cost
function is the geodesic distance d in such spaces. Note that this makes (3) integrate the geometry of the
conformational space. We consider the 2-Wasserstein distance and refer to it simply as the Wasserstein
distance.

1X is only required to be a Polish space, i.e. complete, separable and metric. This is the case for the spaces of interest
in this work, namely Rd and Td, for any d > 1.
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S1.2.2 Practical implementation

The Wasserstein distance can be easily computed from a pair of samples drawn from the corresponding
probability distributions. However, a major drawback of the algorithms that compute the Wasserstein
distance is their inability to handle large datasets (≳ 103 points). The current implementations in Python
[3] or R [4] only admit datasets with ≲ 5 · 103 points, which is usually not enough for conformational
ensembles of IDPs. To the best of our knowledge, there are no existing algorithms that solve an OT
problem for large sample sizes and that are easily implementable, considerably fast (which, in our case,
is essential due to the large number of Wasserstein distances to compute), and that accept non-euclidean
ground distances (like the distance in the torus).

Here, we propose an approximation method to “simplify" the input empirical distributions and com-
pute the Wasserstein distance from a pair of smaller samples sizes. The efficiency of this approach in
terms of error is illustrated via simulations on real protein data, but we provide no theoretical bounds.
The proposed algorithm consists in clustering the original distribution and defining its clustered version
as a discrete probability distribution supported on the set of clusters whose mass is given by the propor-
tion of points assigned to each cluster. Then, the Wasserstein distance is computed between the pair of
clustered distributions, whose samples have admissible sizes. The method is implemented for both local
and global structural descriptors, which are empirical probability distributions supported on T2 and R3

respectively.
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Figure S3: From left to right (columns): relative and mean square error estimates of the Wasserstein
distance between the clustered distribution as an estimate of the Wasserstein distance between the
original datasets. In abscissas, the proportion of the number of clusters with respect to the entire
dataset size. The first row (a,b) corresponds to samples drawn from local structural descriptors

(dihedral angles) and the second (c,d) to samples drawn from global structural descriptors (pairwise
relative positions of residues).
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The accuracy in terms of relative and mean-square error is presented in Figure S3. Note that the
approximation algorithm has a considerably better performance when implemented for local structural
descriptors, which was expected due to the boundedness of the corresponding ground space. Accuracy
in R3 is slightly worse, as cloud points representing the relative position of residues are in general more
disperse, and therefore the clustered distribution needs a larger number of centroids to better capture its
variability. Nevertheless, we observe that, in both cases, the error estimates for a proportion of ∼ 10% of
clusters with respect to the entire dataset size (the proportion we will be using in practice) are accept-
able for our practical purposes. To enrich the interpretation, we performed the same accuracy analysis
but by computing the Wasserstein distance between subsamples drawn uniformly from the correspond-
ing datasets. As shown in Figure S3, the effect of clustering significantly improves the quality of the
approximation.

S1.3 The matrix representation

The result of the comparison analysis is represented through a matrix, W. We will denote by Wij the
entries of W, where i, j ∈ {1, . . . , L}. The matrix will be lower triangular (i.e. Wij = 0 if j > i). Figure
S4 illustrates the main elements of the matrix representation, which are described below.

1. The matrix is headed by a title describing the comparison, introduced by the user.

2,3. Below the title, the overall local and global discrepancies are depicted (equations (11) and (12) in
the main text). By default, they are computed by aggregating and weighting the corrected distances
as described in Section 2.4.3. These features can be modified by the user.

4,5. The matrix entries are represented using two independent color scales, for local and global differ-
ences. Both scales correspond to the score (10) defined in Section 2.4.2, which can be computed
when several independent replicas of each ensemble are available. Otherwise, distances cannot be
corrected by uncertainty and the scale will correspond to the (non-corrected) inter-ensemble local
and global distances (equations (5) and (7) in the main text).

6. The entries Wij for i < j correspond to the scores (10) computed for the i, j-th global structural
descriptors, i.e. the score comparing the relative position distribution of the i-th and j-th residues
in the two ensembles. If no independent replicas are available, the entry corresponds to the i, j-th
global distance in (7).

7. The entries Wii correspond to the scores (10) computed for the i-th local structural descriptors,
i.e. the score comparing the (ϕ, ψ) distribution of the i-th residue in the two ensembles. If no
independent replicas are available, the entry corresponds to the i-th local distance in (5).

8. The entries Wii are marked with a star if their associated p-value (6) is less than the significance
level α = 0.05.

9. The axes labels correspond to the residue position, counting from the N-terminal, relative to the
sequence segment that is being compared (and not to the absolute position in the entire sequence).
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Figure S4: Schematic representation of the output of WASCO. All the elements marked with numbers
are described in Section S1.3.

S2 Additional results

S2.1 Comparison of PEP3 ensembles produced by MD simulations using different force-
fields

We replicated the analysis described in Section 3.1 for MD simulations of PEP3 using the same force-
fields. Results are presented in Figure S5. Here, the discrimination between the two force-field families is
not observed. Nonetheless, we still observe that structures simulated with disp and ildn are very close in
Wasserstein distance (Figure S5b). Indeed, the overall global dissimilarity is substantially smaller than
these of the remaining comparisons. Only inter-ensemble corrected differences representing about 20% of
the intra-ensemble ones appear for residues at the C-terminus. The distances between c36idp and c36m
are now higher than for Hst5, and corrected differences of the same magnitude than the intra-ensemble
ones appear in the interior of the matrix. The same behavior is observed when comparing force-fields of
different groups for PEP3. See, for instance, that substantial differences arise between relative positions
of residues at opposite terminus in panel (d), which are highly weighted when computing the overall global
discrepancy. One intriguing observation is that while there are substantial differences between disp and
ildn (and between c36idp and c36m), simulations with c36idp and c36m used the same water model (the
CHARMM-modified TIP3P water model) and the disp and ildn simulations also used very similar water
models (TIP4P-D and a slightly variant of this) [5]. Overall, these results are complementary to those
presented in [5], which mainly focused on secondary structure differences among ensembles, and they
show the ability of WASCO to identify differences at both local and global scales.
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Figure S5: Comparison of Molecular Dynamics simulations of PEP3 ensemble using different force
fields. The color scale W̃/Wintra corresponds to the score (10), representing the relative difference

between the inter-ensemble distances and the uncertainty. The coefficients in the lower-triangle (in red)
correspond to the global differences. The coefficients along the diagonal (in blue) correspond to the
local differences. Blue stars indicate that the corresponding local corrected distance is significantly

different from zero (the associated p-value (6) is smaller than α = 0.05).

S2.2 Assessment of the convergence of MD simulations

Ensemble comparisons have previously been used to assess convergence in MD simulations of folded
proteins [6–8]. We here propose to use the overall ensemble distances (defined in Section 2.4.3) to
examine the convergence of an MD simulation of a disordered protein. Moreover, this can be done on-
the-fly to assess whether the simulation can be stopped. Let T denote the current simulation time and let
0 < t1 < t2 < · · · < tk = T be k time points. If we denote by At the conformational ensemble simulated
up to time t, we can compute the online overall distances

OW l
i = OW l,Ati−1 ,Ati , (4)
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defined in (11) of the main text, for all i = 2, . . . , k. Analogously, we compute the online overall global
distances

OWg
i = OWg,Ati−1 ,Ati , (5)

as defined in (12) of the main text.

For each i, OW l
i (resp. OWg

i ) corresponds to the overall local (resp. global) distance between the
ensemble from t = 0 to t = ti and the ensemble from t = 0 to t = ti−1. In other words, (4) (resp. (5)) is the
distance between the ensembles simulated up to time ti−i and up to time ti. Consequently, it quantifies
whether the new simulated trajectories between ti−1 and ti yielded a non-negligible contribution to the
ensemble structure (if (4) is not small) or, otherwise, whether proceeding the simulation up to ti does not
yield any substantial contribution (if (4) is close to zero). Then, the representation of OW l

i, OWg
i with

respect to the ti indicates whether the simulation has converged or not. Note that the distances OW l
i,

OWg
i can never be equal to zero, as they are empirical distances which converge to zero when the sample

size tends to infinity. Therefore, the profiles will approach a non-zero plateau under convergence, whose
ordinate will decrease when sample size increases. The criteria to assume convergence will be therefore
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Figure S6: (a) Online convergence analysis for PEP3 ensemble simulated with force-fields c36idp, c36m,
disp and ildn. (b) Online convergence analysis for K-18 domain of Tau ensemble simulated with

AMBER ff99SB*-ILDN and TIP4P-D water model. In abscissas, the percentage of simulation time,
divided in 20 equally spaced time intervals. In ordinates, the overall distances between the ensembles

simulated at the extremes of the time intervals. The left (resp. right) column presents the evolution of
OWg

i (resp. OW l
i) with respect to time.
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the reach of such a plateau at a reasonable ordinate, meaning that it must be small enough if sample sizes
are considerably large. Nevertheless, this criteria provides a stronger evidence of non-convergence, as the
achievement of an asymptote for (5), even if necessary, may not be sufficient to guarantee convergence.
If we resolve that the simulation must keep going until time T ′ > T , it suffices to add OW l,AT ,AT ′ and
OWg,AT ,AT ′ to each curve and recheck.

Figure S6a presents the evolution of the online overall distances for PEP3 simulated with the four
force-fields introduced in Section 3.1. We observe that all the curves exhibit an asymptote at a value
close to zero after 80% of simulation time, which is compatible with convergence in all cases. This is
not the case for the simulation in Figure S6b, corresponding to a 1,000 ns simulation of the K-18 domain
of Tau using the AMBER ff99SB*-ILDN force-field and the TIP4P-D water model (Sthitadhi Maiti and
Matthias Heyden, unpublished). Here, we clearly observe that curves do not reach an asymptote and
present a decreasing behavior during all the time evolution. This result was expected due to the length
of the protein (129 amino acids) and the reduced simulated time.

S2.3 Comparison of ensembles using distance matrices

As it is discussed in Section 1, the use of average descriptors to compare IDP ensembles may yield a
substantial loss of information when the underlying distributions describing their structure exhibit a high
and complex variability. The work presented in [9] computes the median Cα-Cα distance for every pair of
residues i < j, denoted d̄ij , as well as its corresponding standard deviation, denoted σij . If d̄A

ij , σA
ij (resp.

d̄B
ij , σB

ij) denote the previously defined descriptors for ensemble A (resp. B), the difference between both
ensembles is given by a matrix with entries Mij , where

Mij =


∆d̄ij = |d̄A

ij − d̄B
ij | if i < j,

∆σij = |σA
ij − σB

ij | if j > i,

0 otherwise.
(6)

In [9], the entries Mij are neglected if they are not significantly different from zero (according to a Mann-
Whitney-Wilcoxon test for the distance distributions). Here, we skipped this step for simplicity. We
computed the matrix with entries Mij for the comparison analysis presented in Section 3.1, using one
replica per ensemble. The counterpart of Figure 2 is depicted in Figure S7. As could be anticipated,
the conclusions stated in Section 3.1 are difficult to extract from the matrices in Figure S7. First, the
overall behaviour between force-fields suggested by Figure 2 is not observed in the distance matrices,
as the corresponding color scales do not present significant discrepancies in the distance magnitudes
between comparisons (see, on the contrary, the differences between rows in Figure 2). When looking at
the differences located in the interior of the matrices, some similarities might arise between Figures 2
and S7 for the top left comparison (c36idp vs. c36m), where the more important discrepancies appear
between residues close to the N-terminus. However, the remaining comparisons exhibit contradictory
behaviors between both methods, as the regions where the more relevant discrepancies appear differ.
See, notably, comparisons on the bottom row. In Figure 2, only residues close to each other present big
changes on their relative position, and no discrepancies are found in the interior region of the matrix. The
opposite behavior is found in Figure S7. The fact that the distance matrix (6) ignores the uncertainty
(intra-ensemble distances) might partially explain the encountered discrepancies between methods.

9



0

5

10

15

20

25
0 5 10 15 20 25

Residue position i

R
es

id
ue

 p
os

iti
on

 j

Hst5 (c36idp − c36m)
0

5

10

15

20

25
0 5 10 15 20 25

Residue position i

R
es

id
ue

 p
os

iti
on

 j

Hst5 (disp − ildn)

0

5

10

15

20

25
0 5 10 15 20 25

Residue position i

R
es

id
ue

 p
os

iti
on

 j

Hst5 (c36idp − disp)
0

5

10

15

20

25
0 5 10 15 20 25

Residue position i

R
es

id
ue

 p
os

iti
on

 j

Hst5 (c36m − ildn)

∆σij

1
2
3
4

1
2
3
4

∆dij

Figure S7: Comparison of Molecular Dynamics simulations of Hst5 ensemble using different force-fields,
using the methodology described in [9]. The matrix entries correspond to the absolute differences

defined in (6).
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S3 Supplementary figures

Ensemble
hst5 - c36idp (run 0)

hst5 - disp (run 0)

Figure S8: Two samples of −→
R 3,10 corresponding to a pair of ensembles of Hst5 simulated with

force-fields CHARMM36IDPSFF (c36idp) and AMBER ff99SB-disp (disp). Each sample is represented
by a point cloud in the three-dimensional euclidean space.
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(d)

Figure S9: comparison of Hst5 ensembles before and after filtering with experimental SAXS data. The
ensemble was simulated from (a) N-to-C or from (b) C-to-N. (c) Comparison of Hst5 ensembles

generated from N-to-C and C-to-N. (d) comparison of the N-to-C and C-to-N SAXS refined. In all
matrices, The color scale W̃/Wintra corresponds to the score (10), representing the relative difference

between the inter-ensemble distances and the uncertainty. The coefficients in the lower triangle (in red)
corresponds to the global differences. Coefficients along the diagonal (in blue) correspond to the local
differences. Blue stars indicate that the corresponding local corrected distance is significantly different

from zero (the associated p-value (6) is smaller than α = 0.05).
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