N

N

Leveraging Demonstrations for Learning the Structure
and Parameters of Hierarchical Task Networks
Philippe Hérail, Arthur Bit-Monnot

» To cite this version:

Philippe Hérail, Arthur Bit-Monnot. Leveraging Demonstrations for Learning the Structure and
Parameters of Hierarchical Task Networks. The 36th International FLAIRS Conference, May 2023,
Clearwater Beach, Florida, United States. 10.32473/flairs.36.133327 . hal-04063794v2

HAL Id: hal-04063794
https://laas.hal.science/hal-04063794v2
Submitted on 1 Aug 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-04063794v2
https://hal.archives-ouvertes.fr

Leveraging Demonstrations for Learning the Structure and Parameters of
Hierarchical Task Networks

Philippe Hérail, Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, INSA, CNRS, Toulouse, France
philippe.herail @laas.fr, abitmonnot @laas.fr

Abstract

Hierarchical Task Networks (HTNs) are a common
formalism for automated planning, allowing to lever-
age the hierarchical structure of many activities. While
HTNs have been used in many practical applications,
building a complete and efficient HTN model remains a
difficult and mostly manual task.

In this paper, we present an algorithm for learning
such hierarchical models from a set of demonstrations.
Given an initial vocabulary of tasks and accompanying
demonstrations of possible ways to achieve them, we
present how each task can be associated with a set of
methods capturing the knowledge of how to achieve it.
We focus on the algorithms used to learn the structure
of the model and to efficiently parameterize it, as well
as an evaluation in terms of planning performance.

Introduction

Hierarchical Task Networks (HTNs) (Erol, Hendler, and
Nau 1994) are an approach to automated planning that com-
bine a declarative action-based model for describing the
primitive actions achievable by a system with procedural
knowledge describing how those primitives can be com-
bined to achieve high-level tasks. Even though these hier-
archical models are a formalism that allows to plan more ef-
ficiently while remaining interpretable by human engineers,
it is cumbersome to design such models from scratch. This
difficulty stems from the quickly exploding number of pos-
sible contexts that need to be considered when carrying out
even basic tasks in a simple environment. To address this is-
sue, we intend to allow the agent to learn such HTN models
from previously observed execution traces, and in particular
the ones resulting from a tutor’s demonstration.

The goal of such a learning system would be to be able
to solve any previously demonstrated tasks through a solu-
tion of at least equivalent quality to the demonstrated one.
It should also be able to generalize the demonstrations to
solve new unseen tasks, or previously demonstrated tasks
in a new environment. This is done by learning, for any
given task in the considered domain, a set of methods that
achieve the high-level objectives associated to the task. This
set of methods should cover all possible ways of achieving
this task with the exception of clearly suboptimal ways. Any

Copyright © 2023 by the authors. All rights reserved.

method should be associated with a validity scope that de-
fines whether it is applicable in a given state. When applica-
ble, it should achieve the task.

Intuitively, if a learned hierarchical planning model has
these desirable properties, an automated planner facing a
task to achieve could greedily pick any applicable method
and have the guarantee that it will fulfill the objectives as-
sociated to the task. While this might lead to suboptimal
behavior, classical search mechanism would allow an auto-
mated planner to derive an optimal solution.

The objective of this paper, extending our previous work
(Hérail and Bit-Monnot 2022), is to present a method for
building parameterized hierarchical planning models based
on a set of demonstrations, each demonstration associating a
high-level task to an execution trace: a sequence of primitive
actions achieving it.

Related Work

Over the years, several approaches have been developed to
learn hierarchical planning models.

HTN-MAKER (Hogg, Muiioz-Avila, and Kuter 2008)
and HTNLearn (Zhuo, Mufioz-Avila, and Yang 2014) are
both approaches aiming at learning parameterized HTNs
from demonstrations, the latter of which was later extended
to support partial and disordered input traces (Zhuo, Peng,
and Kambhampati 2019). Both these methods require as in-
put, in addition to the demonstrations, demonstrated tasks
and subtasks annotated with preconditions and effects. The
first method learns the models through goal regression while
the second formulates the problem as one of maximal con-
straint satisfaction.

Other approaches exist that do not need subtasks as input,
such as the work by Li et al. (2014) or CircuitHTN (Chen et
al. 2021). These methods, however, learn HTNs structures
without parameters and method preconditions, limiting their
ability to generalize to new environments.

Recently, the learning of Hierarchical Goal Networks
(HGNs) structure instead of HTNs, has been proposed as a
preliminary work by Fine-Morris and Muiioz-Avila (2019),
leveraging a vector representation of the states and unsuper-
vised learning procedures to learn such networks while lim-
iting the burden of annotating demonstration data. The most
recent work in this area focuses on numeric goals and pre-
conditions (Fine-Morris et al. 2022)

Due to their similarities with HTNs, some work aiming
at learning grammars is relevant and in particular the work
on learning Combinatory Categorial Grammars (CCGs) for
plan and goal recognition (Geib and Goldman 2011; Kan-
tharaju, Ontafién, and Geib 2019). While the learned CCGs
are not practically usable for planning, the authors propose
several ideas for extracting interesting patterns from a set of
execution traces.

Learning Problem
Hierarchical Planning Model

We define a hierarchical planning model H as a lifted HTN
structure which can be written as a tuple H = (T, A, M)
where T is a set of abstract tasks, A a set of primitive actions
and M a set of possible methods decomposing the tasks ¢ €
T into subtasks {ty | t4 € {T" U A}}. Figure 1 shows a
simple task hierarchy as an illustration.

A primitive task (or action) @ € A models the ba-
sic acting capabilities of the agent, and represents di-
rectly executable primitives. They are represented using
an identifying symbol and a set of parameters, such as
a = action_name(arg,, ...,arg,). Actions are associated
with preconditions and effects that allow verifying the va-
lidity of a plan.

An abstract (or non-primitive) task ¢ € T is associated
with a set of methods M; that allow decomposing it and
possible postconditions representing the predicates that must
hold after executing ¢ for it to be considered a success. Simi-
lar to actions, they are represented using an identifying sym-
bol and a set of arguments.

A method m € M, is a tuple m = (Prey,, N,,), where
Pre,, are the preconditions of the method, and NV,, is a se-
quence of subtasks in {T" U A}, representing a possible de-
composition of t. This totally-ordered task network repre-
sents a way to achieve the task ¢ and is only applicable in
the current state if its preconditions Pre,, hold.

For a given a planning domain H, a planning problem
is an initial task network NN, representing the activity that
must be carried out and a initial state sy described by a set
of boolean state variables. We consider that at any instant,
the current state s is fully observable and that it only evolves
when a primitive action is executed (i.e. there are no exoge-
nous events).

Learning of a Planning Model

Inputs to the Learning Problem For the learning prob-
lem itself, we consider as input a fixed set A of primitive
actions as well as a vocabulary of non-primitive tasks 77.
For each primitive action, the learner knows its symbol and
parameters but is not given any knowledge of its precondi-
tions of effects.

For each task t; € T7, the agent is given a set Dy, of
demonstration traces from the tutor. Each trace d € D, is
an alternating sequence of states and tasks (either primitive
or non-primitive), starting from a given initial state and end-
ing in a final state in which the task ¢; has been successfully
achieved. d is considered optimal and maximally abstract

my (client, cup)

[gel lea(cup)]—[bring(cup? clienl)] [gel juz'ce(glass)Hbm'ng(glas&, clienl)]

ma(client, glass)

Figure 1: Structure of a simple task hierarchy with two alter-
native methods. Method preconditions omitted for clarity.

with regard to the initial task vocabulary: for every demon-
strated task, no other more abstract task from the initial vo-
cabulary 77 may be used to abstract a subsequence of d, and
each demonstration is optimal according to a chosen metric.
For a case where actions are uniform in cost, one may natu-
rally consider the total number of primitive actions required
to achieve ¢; as the optimality metric.

Learner Objectives The primary objective of the learn-
ing process is to produce a hierarchical model that is capa-
ble of solving planning problems that were not part of the
demonstrated set. This completeness property is intrinsic to
the model and defines whether the model is theoretically ca-
pable of solving any possible problem of the domain at hand.
The quality of a planning model H is however tightly cou-
pled with the ability of an automated planner to exploit it
to quickly derive solution plans. In particular, for any given
planner we are aiming at maximizing the efficiency of the
planner for solving a problem given H, which is typically
measured as the runtime of the planner. This leads us to de-
fine the coverage of a learned model as the ratio of solved
problems by a given planner under computational limits.

Approach to Model Learning
Requirements of Model Selection

Let us now give an initial intuition about the shape of mod-
els that could be learned and the implication for the learn-
ing process. Figure 2 presents several possible models (fig-
ures 2b-2e) that could be generated based on two example
sequences (figure 2a).

The first one (2b) allows the choice of any of the
four primitive actions {a, b, ¢, d}, each placed in a specific
method. This model relies on a recursive call to ¢ to re-
propose the same choice until the task’s postconditions are
achieved. While this model allows building any sequence
of actions it does not help the agent towards a meaningful
sequence based on demonstrations. The second model (2c)
takes the opposite approach and records each known trace
into a method. This model is obviously strongly tied to the
demonstration set and would fail to generalize to new prob-
lems. In between these two extremes, we have the models
(2d) and (2e) that present different options to abstract com-
mon subsequences. The former encodes the repeated a b se-
quence in a single method and relies on the recursive call to
complete the sequence. The latter delays the choice between
c and d to after the execution of a and b, using a synthetic
task t.

These four models are just a handful of examples among
the many possible models that could be generated. Denoting
as O the set of possible models, the objective of a learning

t—abc
t—abd

(a) Available demonstrations, showing that ¢ was once achieved with

my ma ms3 ma ms
OROnORCRORUR0

the a b c action sequence and once with the a b d action sequence. (b) Generic model where the planner might pick any of the primitive
Intermediate states (also available in the demonstration) are omitted. actions and rely on the recursive call to ¢ to continue if needed.

Jouy

Joy

my ms ms
®

(d) Intermediate model the common a b se-

(c) Model where each demonstration is fully quence is grouped. It relies on the recursive (e) Model where the a b sequence is shared,

encoded into a dedicated method.

call to t in m; to produce a full sequence.

requiring a synthetic task ¢

Figure 2: Illustration of the possible structures of the learned model for a simple learning task with two demonstration of how
to perform a task ¢. Note that for conciseness the parameters and preconditions or the task and methods are omitted.

system is to find, or at least approach, the optimal model
0* €O
0" = arg min cost(6)
0cO

where cost(6) is a function that measures the cost of a par-
ticular model and should typically account for the size of the
model as well as its capacity to solve both demonstrated and
unseen problems. With this in mind we now turn our atten-
tion to the characterization of the set of possible models ©.
In a later section, we will propose a cost function to evaluate
the models.

Generation of Candidate Planning Models

At a high level, the goal of the learning problem is to gen-
erate a model where some subtasks group together common
behaviors, with a sensible parameterization of methods de-
pending on the current task, as well as reasonable precondi-
tions to limit the search effort of the planning engine.

The overview of our process for achieving this goal from
a set D of demonstrations is presented in algorithm 1.

Algorithm 1 Planning Model Search

1: h < GENERATE BASE MODEL
while QUALITY(R) improves do
H. <+ GEN CANDIDATE MODELS STRUCTS(h, D)
for all h, € H. do
| he < EXTRACT MODEL PARAMETERS (h., D)
h < FIND BEST MODEL(H,. U {h})

SARANE AN

Structure Generation

Model structures are generated through the exploration of
the neighborhood of the current best model, using the fol-
lowing operators.

In order to quickly progress towards a useful struc-
ture, one of the operators is implemented using a proce-
dure similar to the one described in HTN-MAKER (Hogg,

Mufioz-Avila, and Kuter 2008). As we consider only opti-
mal demonstrations and totally ordered subtasks, we do not
need to consider a task’s postconditions, and consider that
each subsequence going up to the end of a demonstration of
a task ¢ is a way to achieve t. Furthermore, as the parame-
ters will be extracted in the next step, we only consider the
demonstration as a sequence of task symbols, removing the
need for complex method subsumption detection techniques,
replacing it with a removal of duplicate symbol sequences.

While this procedure does provide methods that will al-
ways be useful in some case for achieving the task for which
it was learned, it does not provide multiple hierarchy levels.
Therefore, we designed a new operator to allow grouping
some behaviors into new tasks. In order to focus the search
on relevant parts of the search space, we use frequent pat-
tern mining to generate the candidate subtasks. Frequent
patterns are extracted in a greedy fashion, using a proce-
dure inspired by the GoKrimp algorithm (Lam et al. 2014),
which is based on the Minimum Description Length (MDL)
(Griinwald 1996) concept, incrementally finding the patterns
that most compress the sequence dataset.

In our case, we extract patterns from a set of demonstra-
tions D through the function described in algorithm 2, with
three parameters [, k, n. € N. We consider again demonstra-
tions as sequences of task symbols, and try to extract pat-
terns as regular expressions (regexps). An example of map-
ping from a a regexp pattern to a hierarchical representation
is presented in figure 3b. len(p) is defined as the number of
symbols in p, excluding any regexp operator.

Patterns are extracted by incrementally building a set Py
of patterns (|Py| < k), each iteration extracting the most
compressing pattern p such that len(p) < [and then replac-
ing all the matches of p in D (see an example figure 3a).

The pattern generation function is detailed in algorithm
3. We define the COMPRESSED SIZE(D, p) function as the
function that returns the size of the demonstration set D
compressed using pattern p as in the work of Lam et al.
(2014), and the function CONCAT(p1,p2) as the one that
generates a new pattern by appending p» to p;.

Algorithm 2 GENERATE PATTERNS(D, k, 1, n.)

1: Pf «— 0
2: while |Pf| < k do
3: | p <~ MOST COMPRESSING PATTERN(D, [, n..)
4: Pf — Pf U {p}
5: | SUBSTITUTE PATTERN(D, p)
6: return Py
dirabecd di:pcd
X dg: abd dg: P d
D: ds:abec ? ds: pc
di:daab dy: d p

(b) Pattern p hierar-
(a) SUBSTITUTE PATTERN(D, p) example. chical representation.

Figure 3: Pattern substitution and hierarchical representation
example for p = a-+b.

Pattern generation starts by initializing a set P with the
task symbols in the demonstrations, the previously gener-
ated patterns and a set of choice patterns, as well as a set
R containing the standard regexp operators {7, %, +}. The
choice patterns are generated by taking a random set of n,
existing patterns and combining them together using the |
regexp operator. P is used to initialize the set of candidate
patterns P.

The set of candidate patterns is then extended by adding
possible regexp patterns (line 8), and this new set is then ex-
tended again by adding potential following task or patterns
(line 11). The best compressing pattern of the set is then kept
and the process is repeated until either the compression stops
improving anymore or the pattern length reaches the limit /.

Algorithm 3 MOST COMPRESSING PATTERN(D, [, n.)

P, < TASK SYMBOLS(D)

P, < EXISTING PATTERNS(D)

P, <~ GENERATE CHOICE PATTERNS(P,, n.)

P+ P,UP,UP,

P+ PR+ {7,%,+}

repeat

P P

for all (p,r) € P x Rdo

| P! <~ P"U{CONCAT(p,r)}

PII — PI

for all (p,p.) € P’ x P do

P + P" U {CONCAT(p, pe)}

p* < argmin, ., COMPRESSED SIZE(D, p)

P« {p*}

: until COMPRESSED SI1ZE(D, p*) stops improving OR
len(p*) > 1

: return p*

A A o e

_
w220

_—
AN

—_
(@)}

Model Structure Demonstration Matching

In order to use the demonstrations to parameterize a candi-
date model structure C, we need to find a hierarchical map-
ping between a given demonstration d and a top level task ¢,
through a decomposition of this task as defined in C'. This
matching is done through an adaptation of the technique us-
ing HTN planning for plan verification developed by Holler
etal. (2021).

Model Parameterization

For each method in the model, we need to identify the pa-
rameters that should be passed to its subtasks. Furthermore,
for synthetic tasks, we need to determine the tasks’ parame-
ters themselves.

The parameterization process is then as follows:

1. Identify a superset of the possible parameters for synthetic

tasks and methods from the primitive tasks’.

2. Express the parameterization problem into one of MAX-

SMT (Nieuwenhuis and Oliveras 2006) and solve it, with
the objective of minimizing the number of parameters in
the final model.

3. Add a new step to remove parameters not used to con-

strain methods instantiations, to reduce the search space
during the planning phase.

Parameter Generation To extract the set of possible pa-
rameters for a model, we start by splitting it into sub-models,
each comprised of a top-level non-primitive task, its meth-
ods and their direct subtasks (primitive and non-primitive).
Such a sub-model is presented in Figure 4a, where ¢ is a syn-
thetic task for which two methods m; and mq were learned.

Algorithm 4 PROPAGATE ARGS UPWARDS (hgyp)
1: for all m € M; do

2: | for all p € args(SUBTASKS(m)) do
3: | args(m) < args(m) U {p}

4 | ifm ¢ M, then

5: P (p, Mp U{m})

6: args(ty) < args(ty) U {p'}

To extract the arguments for the set of subhierarchies
Hgups corresponding to an HTN H, arguments are prop-
agated upwards from the subtasks to the top level task
for each subhierarchy, as described in algorithm 4. Non-
primitive subtasks in the subhierarchies are then updated to
keep a consistent signature. The process is repeated until a
fixed point is reached.

To enforce termination of the algorithm in the case of re-
cursive task definitions, we augment each parameter p with
the set of methods Mp it has been propagated through, defin-

ing p = (p, M,). We also define a condition to allow meth-
ods to act as filters (alg. 4 line 4), preventing methods from
crossing twice a given method boundary. This behavior is il-
lustrated in the example figure 4, where * and t superscripts
(associated with m; and mg respectively) are used to visu-

alize the set Mp for each parameter p. In figure 4d, A; ; and

t(A7, A5, B])

my ‘ mg ‘ mi (A, As) 771;(31)
a(Ay, Ay) b(B1) a(A;, Az) o b(B1)

(b) Iteration 1.
447, 45, B])

(a) Base sub-hierarchy.

mi(Ag, Az)
HAi A3 BLY)

m;(BL)
b(B1)

(c) Iteration 1 - Update subtasks.
t(A1, A3, B], BJ%)

mi(Ar, Az, AT, A3, Bl)
t(A7,, A3, B)

mi(By)
b(By)

(d) Iteration 2.
#(A1, A3, B}, BIY)

mj(Ay, Ay, A5, A5, B, BT)
H(ALy, A5, Bl Bl

m;(Bl)
b(B1)

(e) Iteration 2 - Update subtasks.

Figure 4: Parameter generation example.

As + are not propagated upwards from m, as they are origi-
nating from A; and As via method m;.

Parameter Deduplication The parameter generation pro-
cess aims at being exhaustive and covering all possible
cases, regardless of the demonstrations traces at hand. In
many cases, this results in many more parameters than actu-
ally needed to regenerate the traces. We cast the problem of
deduplicating arguments as MAX-SMT with equality logic
and uninterpreted functions, under the objective of maximiz-
ing the number of unifications permitted by the demonstra-
tion traces. At a high level, we have three kinds of con-
straints on the sub-hierarchies’ arguments, extracted from
the sub-hierarchies and examples:

* Structural hard constraints, to enforce consistency be-
tween a task reference definition (when considered as a
top level one) and its occurrences as methods’ subtasks.
These constraints are defined as in the equation below:

V(i,7) € |args(t)|, arg;(t) = argj(t)
= arg; (tsub) = argj (tsub)

¢ Inequality hard constraints, added when the demonstra-
tions show that two parameters must be distinct in a given
instantiation.

* Equality soft constraints, extracted from all the examples
that show two parameters that are identical in a given ex-
ample.

Figure 5 shows some constraints that can be extracted
through a combination of the structure of the hierarchy pre-
sented figure 4e and the information contained in a given set
of demonstrations. Figure 5c shows the extracted model af-
ter simplification using the demonstrations set D presented
figure 5a and solving the associated constraint system. Some
constraints are presented in figure 5b as an example.

Hard {A7#A5 A7#BJ,

di:t — a(z,y) b(y)
b
Soft{ A5=BI",

da:t — a(z,z)
ds:t — a(z,y) a(z,y) b(y)

(b) Partial constraints extracted
from ds.
HX,Y.Z)

mi(X,Y) ma(Z)
T

(c) Model simplified from D.

(a) Demonstration set D.

Figure 5: Parameter deduplication for the model figure 4e.

In a next step, we post-process the resulting model to re-
move task arguments that do not permit unifying part of the
instantiation of its subtasks, or that do not provide instantia-
tion information from some parent task in the hierarchy.

After extracting the tasks’ and methods’ parameters, pre-
conditions are extracted by taking the lifted intersection of
the states preceding the instantiation of each method m, con-
sidering only those that can be totally parameterized with the
parameters of m.

Model Quality Evaluation

To evaluate the quality of the learned model, we use the met-
ric described in our previous work (Hérail and Bit-Monnot
2022), based on the MDL principle (Griinwald 1996). This
metric exploits data compression as a way to drive the model
search towards abstracting redundant parts in the demon-
strations. The quality of a given planning model H is de-
fined as the weighted sum of the model size (Liogel(H))
and the demonstration dataset size, reconstructed using H
(Ldem(D|H)), as presented below:

L(H, D) = aLmodel(H) + Ldem(DlH) (D

At this point we have generated several models, each of
which has been parameterized. The metric above allows
choosing a single model among the candidates. This selected
model will be used as the baseline for the next iteration,
where it will typically be extended with new tasks and meth-
ods, to cover more demonstrations traces. The process stops
once this metric shows no improvement, meaning that the
model modifications stop improving the abstractions of the
demonstrations.

Learned Models Evaluation

In order to assess the validity of our approach we tested our
learner on a variety of planning domains:

CHILDSNACK A simple domain whose reference model
only contains one task with two alternative methods with
only primitive subtasks. The learning set consists of 50
demonstrations of the serving task.

TRANSPORT A standard deliver-with-trucks scenario. The
learning set for this domain consists of 20 demonstrations
of the delivery task.

Domain 10t
—— Reference

k213 a0.1

, — k21301 nopre
10° " — k13001
K0 @0.1

100

Planning time (s)
Planning time (s)

0.0 0.25 05 0.75 1.0 0.0 0.25
Proportion of solved instances

(a) CHILDSNACK domain.

0.5

Proportion of solved instances

(b) TRANSPORT domain.

10t Domain
— Reference
k0 a0.5
— koal

Domain
—— Reference
k313* 00.1 nopre
— k3I3* 0.1
— k313 00.1
k0 0.1 nopre 1072

Planning time (s)

0.75 1.0 0.0 0.25 05 0.75 1.0
Proportion of solved instances

(c) LOGISTICS domain.

Figure 6: Planning time distribution for the different domains using the Lilotane planner.

LOGISTICS A variant of the TRANSPORT domain, ex-
tended with several cities connected via airplanes, only
able to move to specific airport locations. This is the ver-
sion that was used in the development of HTN-MAKER
(Hogg, Muiioz-Avila, and Kuter 2008), modified to use
typing instead of predicates. The learning set consists of
60 demonstrations of the delivery task.

For each domain, the models were learned from traces ex-
tracted from a random subset of the 2020 International Plan-
ning Competition (IPC) (Behnke, Holler, and Bercher 2021)
instances or HTN-MAKER’s training set when applicable.
Trace selection was biased towards simple problems in or-
der to reduce learning times, which were all well under one
hour (wall-clock time) using 6 threads on a portable work-
station, equipped with 32 GB of RAM and an Intel Core i7-
10850H CPU (6/12 @ 2.70GHz). Demonstration traces used
for learning only decompose one single task, while the test
instances may require several instantiations of the learned
tasks to be solved to be considered a success.

Figure 6 shows planning times for unseen problems for
several learned models with the Lilotane (Schreiber 2021)
planner. Each model is a result of a different parameteriza-
tion of the learner, included in the graphs’ legend: £ is the
maximal number of patterns to extract, [is their maximal
length and « is the weight in the metric formula (eq. 1).
A star, as in k-l-%, means that repeating patterns were al-
lowed during the search while the nopre text indicates that
no method preconditions were learned. For each domain, we
include the performance of the Lilotane planner with a hand-
written reference domain.

These results show that for the simplest domain, CHILD-
SNACK, the best learned models solve a number of in-
stances similar to the reference IPC model. Analyzing the
learned model structures (not presented here due to space
constraints), they correspond closely to the IPC domain’s,
being identical for the model without abstraction (k=0).
This shows our learning algorithm is able to extract alter-
native methods for tasks. The extracted preconditions do ap-
pear to be relevant and provide guidance to the planner while
not over constraining the possibilities. A simple grouping of
tasks appear beneficial, which we conjecture is from a re-
duction of the number of some methods’ parameters.

Considering the TRANSPORT domain, a model providing

some abstraction stays in line with the performance of the
reference model. However, it appears that the extracted pre-
conditions are not specific enough to guide the search, lead-
ing to worse planning performance than without. The best
learned model has a multi-level structure that is similar to the
reference domain, showing the relevance of using a combi-
nation of pattern mining and regression through the actions.

The learned models on the LOGISTICS domain do not
reach the performance of an expertly handcrafted model in
terms of planning speed, but one is still able to solve as many
instances, given the right learning parameters. Models with
synthetic subtasks performed poorly and are not represented
on the graph for clarity. This is likely due to reaching local
minima early in the search process, leading to overly com-
plex models poorly capturing the domain structure.

Conclusion & Future Work

The proposed approach shows that it is possible to learn pa-
rameterized HTN domains that are close to handcrafted ones
in terms of planning performance on a subset of the domains
from the IPC competition.

Compared to other approaches such as HTN-MAKER
(Hogg, Muiioz-Avila, and Kuter 2008) or HTNLearn (Zhuo,
Muiloz-Avila, and Yang 2014), the work needed from the
tutor is limited, requiring only a limited number of demon-
strations and no annotated intermediate tasks. These inter-
mediate tasks are learned by abstracting common behav-
iors detected through frequent pattern mining, which our ap-
proach is then able to parameterize sensibly using the pro-
posed MAX-SMT approach.

Furthermore, the nature of the search process allows to
improve a learned model if new knowledge becomes avail-
able, by reusing the current model as the new starting point.

Despite the very limited information exploited by our
algorithm, our experiments show that the learned models
are already competitive with handwritten ones. Future work
shall focus on improving the addition of the frequent pat-
terns to the candidate structures during the search process in
order to extract efficient ones in more complex domains. The
parameter extraction process is also a planned improvement
avenue, as considering the surrounding states during the re-
finement of a task could provide useful insights for detecting
the most relevant parameters.

Acknowledgements

This work has been partially supported by AIPlan4EU, a
project funded by EU Horizon 2020 research and innovation
program under GA n.101016442.

References

Behnke, G.; Holler, D.; and Bercher, P., eds. 2021. Pro-
ceedings of the 10th International Planning Competition:
Planner and Domain Abstracts — Hierarchical Task Network
(HTN) Planning Track (IPC 2020).

Chen, K.; Srikanth, N. S.; Kent, D.; Ravichandar, H.; and
Chernova, S. 2021. Learning Hierarchical Task Networks
with Preferences from Unannotated Demonstrations. In Pro-
ceedings of the 2020 Conference on Robot Learning, 1572—
1581. PMLR.

Erol, K.; Hendler, J.; and Nau, D. 1994. HTN Planning:
Complexity and Expressivity. In AAAI Conference on Arti-
ficial Intelligence.

Fine-Morris, M., and Mufioz-Avila, H. 2019. Learning do-
main structure in HGNs for nondeterministic planning. In
Proceedings of the 2nd ICAPS Workshop on Hierarchical
Planning (HPlan 2019), 22-30.

Fine-Morris, M.; Floyd, M. W.; Auslander, B.; Pennisi, G.;
Gupta, K.; Roberts, M.; Heflin, J.; and Mufioz-Avila, H.
2022. Learning decomposition methods with numeric land-
marks and numeric preconditions. In Proceedings of the 5th
ICAPS Workshop on Hierarchical Planning (HPlan 2022),
29-37.

Geib, C. W., and Goldman, R. P. 2011. Recognizing plans
with loops represented in a lexicalized grammar. In Burgard,
W., and Roth, D., eds., Proceedings of the Twventy-Fifth AAAI
Conference on Artificial Intelligence, AAAI 2011, San Fran-
cisco, California, USA, August 7-11, 2011. AAAI Press.

Griinwald, P. 1996. A minimum description length ap-
proach to grammar inference. In Wermter, S.; Riloff, E.;
and Scheler, G., eds., Connectionist, Statistical and Sym-
bolic Approaches to Learning for Natural Language Pro-
cessing, 203-216. Berlin, Heidelberg: Springer Berlin Hei-
delberg.

Hérail, P., and Bit-Monnot, A. 2022. Learning Operational
Models from Demonstrations: Parameterization and Model
Quality Evaluation. In ICAPS Hierarchical Planning Work-
shop (HPlan).

Hogg, C.; Muiioz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: Learning HTNs with minimal additional knowl-
edge engineering required. In Proceedings of the 23rd
National Conference on Artificial Intelligence - Volume 2,
AAAT’08, 950-956. Chicago, Illinois: AAAI Press.

Holler, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2021.
Compiling HTN plan verification problems into HTN plan-
ning problems. In Proceedings of the 4th ICAPS Workshop
on Hierarchical Planning (HPlan 2021), 8-15.

Kantharaju, P.; Ontafién, S.; and Geib, C. W. 2019. Ex-
tracting CCGs for plan recognition in RTS games. In Guz-
dial, M.; Osborn, J. C.; and Snodgrass, S., eds., Proceedings
of the 2nd Workshop on Knowledge Extraction from Games

Co-Located with 33rd AAAI Conference on Artificial Intelli-
gence, KEG@AAAI 2019, Honolulu, Hawaii, January 27th,
2019, volume 2313 of CEUR Workshop Proceedings, 9-16.
CEUR-WS.org.

Lam, H. T.; Morchen, F.; Fradkin, D.; and Calders, T.
2014. Mining Compressing Sequential Patterns. Statistical
Analysis and Data Mining: The ASA Data Science Journal
7(1):34-52.

Li, N.; Cushing, W.; Kambhampati, S.; and Yoon, S. 2014.
Learning Probabilistic Hierarchical Task Networks as Prob-
abilistic Context-Free Grammars to Capture User Prefer-
ences. ACM Transactions on Intelligent Systems and Tech-
nology 5(2):32.

Nieuwenhuis, R., and Oliveras, A. 2006. On SAT Mod-
ulo Theories and Optimization Problems. In Biere, A., and
Gomes, C. P., eds., Theory and Applications of Satisfiabil-
ity Testing - SAT 2006, Lecture Notes in Computer Science,
156-169. Berlin, Heidelberg: Springer.

Schreiber, D. 2021. Lilotane: A Lifted SAT-based Approach
to Hierarchical Planning. Journal of Artificial Intelligence
Research 70:1117-1181.

Zhuo, H. H.; Mufioz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Artificial Intelligence 212:134—157.

Zhuo, H. H.; Peng, J.; and Kambhampati, S. 2019. Learn-

ing Action Models from Disordered and Noisy Plan Traces.
arXiv:1908.09800 [cs].

