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An enlargement of the Adaptive degrees of freedom χ 2 -statistics (ADFC) method to fault detection for nonlinear systems with mixed uncertainties (stochastic and bounded uncertainties) is presented in this paper. The ADFC approach, primarily developped for fault detection in case of linear systems, is then combined with the Reinforced likelihood box particle filter (RLBPF). A residual generator is used, followed by the adaptive amplifier coefficient (a.a.c.) concept in the decision making stage. Then, the proposed approach is applied to a nonlinear Magneto-Rheological damper model to illustrate the efficiency of the method.

INTRODUCTION

In modern control system, many important issues are required to be solved such as the availability, cost efficiency, reliability, operating safety, environmental protection,... Therefore, fault diagnosis becomes indispensable and one of the main solutions for these requirements. A fault must be diagnosed as early as possible, even if it may be tolerable, to prevent any serious consequence. The fault diagnosis consists in three tasks: fault detection (FD), fault isolation and fault estimation (or fault identification), in which FD is the first stage and building block of any further task. For all the above reasons, this paper is focusing on the developement of a reliable FD strategy.

Model-based FD approach applied to dynamical systems using analytical redundancy is widely used. It consists in two stages: residual generation and residual evaluation or decision making. The residual is normally a difference between a measured signal and an estimate of the later. It should be zero-valued in the fault-free case and diverge from zero in the faulty case. In the second stage, the residual (or its transformation via a function) is compared to a constant threshold or an adaptive threshold depending on the fault detection method. Especially, using observerbased concept, a filter or an observer is the core of the residual generator which provides the estimate quantity of interest to deduce the residual. This is the structure of the FD method proposed in the paper (Fig. 1). The most advantage of this structure is that it can easily combine filter/observer and decision making method (pre-existent or to be developed) for adapting to various contexts and purposes.

The challenge of the present work is twofold: the non linearity of the system and the mixed uncertainties context (bounded and stochastic uncertainties). Indeed, in the literature, most of researches about FD are devoted to linear system while fewer articles provide solution for non linear counterpart. Nonlinear systems are usually assumed to be smooth "enough" with mild conditions for a nice linearization, then techniques for the linear case can be applied. For instance, the Standard Kalman Filter (SKF) [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF] and its extensions (included Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Robust Kalman fitering, Interval Kalman Filter (IKF), Minimum Upper Bound of Variance Interval Kalman Filter (UBIKF), Optimal upper bounded Interval Kalman Filter (OUBIKF)) have been applied in residual generators of different FD schemes/methods. We refer to [START_REF] Zhong | A survey on model-based fault diagnosis for linear discrete time-varying systems[END_REF] which provides a survey on model-based fault diagnosis for linear discrete time-varying (LTV) systems with useful references concerning FD using SKF, EKF and UKF. Otherwise, [START_REF] Xiong | Fault detection using interval Kalman filtering enhanced by constraint propagation[END_REF] proposed FD method using IKF, [START_REF] Tran | Cadre unifié pour la modélisation des incertitudes statistiques et bornées -Application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation[END_REF] with FD using UBIKF, [START_REF] Lu | A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter[END_REF] with FD based on OUBIKF, while output observer (non interval case) for FD in linear systems can be found in [START_REF] Mohamadi | Output observer for fault detection in linear systems[END_REF]. Furthermore, also for linear system, setmembership methods in fault diagnosis are concerned in [START_REF] Puig | Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies[END_REF] while interval observer approach for FD is investigated, for instance, in [START_REF] Raka | Fault detection based on robust adaptive thresholds: A dynamic interval approach[END_REF]; [START_REF] Chevet | Robust sensor fault detection for linear parameter-varying systems using interval observer[END_REF]. Some of these works [START_REF] Xiong | Fault detection using interval Kalman filtering enhanced by constraint propagation[END_REF][START_REF] Tran | Cadre unifié pour la modélisation des incertitudes statistiques et bornées -Application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation[END_REF][START_REF] Lu | A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter[END_REF] deal with mixed un-certainties context while the remaining deal either with bounded or stochastic uncertainties only.

In the present paper, an enlargement of the Adaptive degrees of freedom χ 2 -statistics (ADFC) method [START_REF] Lu | A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter[END_REF] to FD for non linear system is proposed. The method combines the Reinforced likelihood box particle filter (RLBPF) developed in [START_REF] Lu | Reinforced likelihood box particle filter[END_REF] (versus OUBIKF for linear system) together with the adaptive amplifier coefficient (a.a.c.) concept in the decision making stage. In doing so, the twofold challenge of the issue is met. Interval analysis is a primary tool for computation of the method, no strict condition is required for (non linear) dynamic functions of the system.

The paper is organized as follows. Preliminaries are provided in Section 2, including used notations and essential of interval analysis. Section 3 presents main results with the extended FD method. Simulations based on the nonlinear Magneto-Rheological damper model are provided in Section 4. Finally, Section 5 provides conlusions and perspectives.

PRELIMINARY

Essential of interval analysis

A real interval [x] = [x, x] = {t ∈ R | x ≤ t ≤ x} is a closed connected subset of R and characterized by two extreme values x ≤ x. A real interval matrix [X] = ([x ij ]) of dimension p × q, also called an interval in R p×q , is a matrix with real interval components [x ij ], i ∈ {1, ..., p}, j ∈ {1, ..., q}. Write X ∈ [X] to indicate a point matrix X = (x ij ) belonging element-wise to [X]. Define: • sup([X]) △ = (sup([x ij ])) ≡ X, • inf([X]) △ = (inf([x ij ])) ≡ X, • mid([X]) △ = (X + X)/2 , • rad([X]) △ = (X -X)/2 , • width([X]) △ = X -X ,
which are called respectively (resp.) the largest matrix, the smallest matrix, the midpoint matrix, the radius matrix and the width matrix of [X]. Define the hull of a closed set S and the hull of two interval [X 1 ], [X 2 ] of the same dimension as follows: hull{∅}

△ = ∅, hull{S} △ = [inf(S), sup(S)] and hull{[X 1 ], [X 2 ]} △ = [inf{X 1 , X 2 }, sup{X 1 , X 2 }].
We also write an interval as:

[X] = [X, X] = mid([X]) ± rad([X]).
Basic interval operators ⋄ ∈ {+, -, ×, ÷} defined in [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF] can be used to compute directly all operations [u] ⋄ [v] and α ⋄ [u], for real intervals [u], [v] and α ∈ R, without any further approximation algorithm. Then, interval matrix computations are defined similarly to matrix computations using the basic operators while more general operators are constructed by means of inclusion function [f ] defined in Definition 1 below. In practice, the package Intlab [START_REF] Rump | INTLAB -INTerval LABoratory[END_REF] developed for Matlab (also existing in Octave and C/C++) is used for computations. Definition 1. Let f be any function from

D ⊆ R m to R n . An inclusion function of f is a function [f ] that maps any interval [x] in D to an interval [f ]([x]) in R n containing the image set f ([x]). Symbolically, [f ] : [x] → [f ]([x]) ⊃ f ([x]), ∀[x] ⊂ D, with [f ]([x]) is an interval in R n . The minimal inclusion function of f is a function [f ] * so that for every [x] ⊂ D, [f ] * ([x]) is the smallest interval containing f ([x]). □
If f is composed by a finite number of operators (+, -, ×, ÷) and elementary functions (exp, sin, cos, (.), ...) then a natural inclusion function of f is a function [f ] having the same expression of the former in which point variables are replaced by corresponding interval variables while operators and functions are replaced by their interval counterpart. There is other commonly used inclusion function such as centred inclusion function, mixed centred inclusion function, Taylor inclusion function,... (see [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF] for more details).

Other notations

A positive semidefinite matrix X is denoted by

X ⪰ 0. Let M, N ∈ R n×n , define N ⪯ M if M -N ⪰ 0, M is called an upper bound of N and N a lower bound of M . Let ∅ ̸ = Ω ⊂ R n×n , M is an upper bound (resp. lower bound) of Ω, denoted Ω ⪯ M (resp. M ⪯ Ω) , if X ⪯ M (resp. M ⪯ X), ∀X ∈ Ω. Denote also: S + ([X]) △ = X ∈ [X] : X = X T and X ⪰ 0 , I(x) = 1 if the conditions x are true and I(x) = 0 otherwise, mean(x) = n i=1 x i /n, ∀x ∈ R n .
The notation p : l : q (p ≤ q) is used for a range from p to q with step l. For l = 1, we write p : q. A sequence of variables can be noted interchangeably as w 1 , ..., w k or w 1 : w k or w 1:k .

MAIN RESULTS

Model and problem formulation

Consider the following system (1) with additive measurement noises : (Σ) :

x k = f k (x k-1 , u k , w k ) , y k = h k (x k , u k ) + v k + f s k , k ∈ N * , (1) 
where x k ∈ R nx and y k ∈ R ny represent state variables and measures respectively,

u k ∈ R nu inputs, w k ∈ R nx state disturbances/noises, v k ∈ R ny measurement noises, f s k ∈ R ny
additive sensor fault vectors. Each of its components corresponds to a sensor fault. Thus, the fault vector f s k can be of the multiple or single error type.

Assumptions (A) (A1) Given [x 0 ], [u k ], [w k ], [y k ], [µ k ], f k , h k , k ∈ N * . (A2) v k ∼ N (µ k , Σ k ) with unknown µ k and Σ k . (A3) x 0 ∈ [x 0 ], u k ∈ [u k ], w k ∈ [w k ], y k ∈ [y k ], µ k ∈ [µ k ] and Σ k ∈ [Σ k ]. (A4) [Σ k ] is unknown.
Remark 2. The measurements are given as intervals [y k ] due to the sensor precision. In many theoretical problems and applications, it is assumed that µ k ≡ [µ k ] ≡ 0 for simplicity. It is natural that [Σ k ] is unknown and the mention of this fact is necessary for the subsequent development. Assumptions (A3) are implicitly deduced that the belonging of unknown real (true) terms in their corresponding intervals are certain. This certainty can be understood as "with probability 1 ". System (1) with assumptions (A) can be adapted to a wide range of applications. The system is time varying, the uncertainties come from system disturbances or measurement noises with different kinds (stochastic/bounded uncertainties). □

To evaluate the fault detection performance, four indicators are introduced. Assume that system (1) is applied for N iterations among which faults occur in a time inteinte R with length l (0 ≤ l ≤ N ). Actually, R may be an interval or union of intervals but is called hereafter an error range for simplicity. Then, a detection signal is denoted by

π k which has values in {0; 1}. A signal π k = 1 is called a right detected signal if k ∈ R and a false detected signal if k ̸ ∈ R.
Then, the four indicators are defined as follows:

+ Detection Rate: DR = k∈R

I(π k =1) l × 100%, + False Alarm Rate: FAR = k̸ ∈R I(π k =1)
N -l × 100%, + Efficiency: EFF = DR -FAR, + No detection rate: NDR = 100% -DR.

Adaptive approach combining RLBPF to fault detection

In this section, the ADFC method is extended to a more general framework, including nonlinear dynamical systems. This approach has also the ability to combine with several set-membership estimation filters (w.r.t to some conditions in see Theorem 3). In the following, the proposed approach is applied with RLBPF and the extension is based on Theorem 3. Theorem 3. Consider system (Σ) with assumptions (A) and fault free case (f s k = 0, ∀k ∈ N * ). Let r k = y k -h k (x k , u k ) -µ k be the residual, [x k|k ] be interval estimates of an interval filter and

[x k+1|k ] △ = [f k+1 ] [x k|k ], [u k+1 ], [w k+1 ] , [r k+1 ] △ = [y k+1 ] -[h k+1 ] [x k+1|k ], [u k+1 ] -[µ k+1 ].
Then, for all k ≥ 1:

(a) y k |x k ∼ N (m k , Σ k ) where m k = h k (x k , u ) + µ k and
the notation y k |x k means for the stochastic variables y k given (or knowing) x k . When w k is a bounded disturbance, then x k is deterministic and

y k |x k ≡ y k . (b) r k ∼ N (0, Σ k ) where Σ k ∈ [Σ k ].
Consequently, a confidence interval of (more than) 99.7% of all admissible r k can be deduced as

CI(r k ) = ± 3. diag(Σ k ), with diag(A) = (a 11 , ..., a nn ) T , ∀A = (a ij ) ∈ R n×n .
Assuming further that x k ∈ [x k|k ] at every k ≥ 1, then:

(c) x k+1 ∈ [x k+1|k
] with certainty (probability 1), (d) r k+1 ∈ [r k+1 ] with certainty (probability 1). □

Proof. Knowing x k in either cases of w k (disturbance or stochastic noise), the term

h k (x k , u k ) is known (or deterministic). So, since v k ∼ N (µ k , Σ k ) then y k |x k = h k (x k , u k ) + v k is normally distributed with mean m k = h k (x k , u k ) + µ k and covariance Σ k .
Also, by the property of normal distribution, it concludes that r k ∼ N (0, Σ k ). So, statements (a) and (b) are proved.

To prove the statements (c) and (d), the inclusion function property is used, that is:

f (x) ∈ [f ]([x]), ∀x ∈ [x]
with certainty. By assumptions (A3) and x k ∈ [x k|k ], then 

• f k+1 (x k , u k+1 , w k+1 ) = x k+1 ∈ [x k+1|k ], • h k+1 (x k+1 , u k+1 ) ∈ [h k+1 ]([x k+1|k ], [u k+1 ]), • µ k+1 ∈ [µ
(%) = N k=1 I(x k ∈ [x k|k ])/N × 100% measuring the percentage of x k ∈ [x k|k
] greater than some level (e.g. 80% or 90%) can be suited to the FD procedure of the ADFC method, although it may cause certain false alarms. □

Principle of the method

Since r k ∼ N (0, Σ k ) then ξ k △ = r T k Σ -1 k r k is χ 2 -distributed with n y degrees of freedom (d.f.) (ξ k ∼ χ 2 (n y )). Thus, for any a k > 0 so that S + ([Σ k ]) ⪯ a k I ny , ξ k ≥ r T k a -1 k r k = r T k r k /a k ≡ ξk . However, r k is unknown and r k ∈ [r k ] with a computable [r k ]
. So, we aim at using the statistic

U k = sup{abs([r k ] T [r k ]/a k )} = sup{abs([ ξk ])},
(2) as proposed in [START_REF] Lu | A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter[END_REF] with the a k aforementioned. The statistic U k is approximated by a χ 2 -distributed random variable with an appropriate d.f. κ k n y by determining a k and using an a.a.c. κ k .

Explication.

Theoretically, for ensuring S + ([Σ k ]) ⪯ a k I ny , it is required that max{diag(Σ k )} < a k [START_REF] Lu | Optimally bounded interval kalman filter[END_REF]. The more a k is large, the more ξk is small and vice versa. Besides, note that r k ∈ [r k ] is with probability 1 (Theorem 3), where

r k ∼ N (0, Σ k ), Σ k ∈ [Σ k ] . This implies [r k ] ⊃ CI(r k )
and [r k ] must be greater considerably than the confidence interval in order to contain r k with such a certainty. Therefore, an appropriate (optimal) a k must ensure a compromise between [r k ] and CI(r k ), says a function of [r k ] and [Σ k ], provided that:

max{diag(Σ k )} < a k = ϕ k ([r k ], [Σ k ]) < max{r k }. (3)
In the development of this section, a simple proposition for a k is that

a k = λ 1 • mean{width([r k ])} so that S + ([Σ k ]) ⪯ a k I, (4 
) where λ 1 > 0 is a scaling factor changing depending on the considered application.

The a.a.c. κ k is involved with the threshold δ k to which U k is compared: P χ 2 (κ k n y ) > δ k = α, where α is a given significant level. So, U k ≈ χ 2 (κ k n y ) ≤ δ k with confident level 1 -α in the fault free case. κ k is chosen [START_REF] Lu | A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter[END_REF] as

κ k = mean{width([r k ])}. ( 5 
)
so that it is sensitive to the fault, large enough to obtain a small FAR (e.g. ≤ 5%) in the fault free case, sensitively affected by width([r k ]) as well as U k but it does not increase as fast as the later whenever a fault occurs and affects on the width([r k ]). This choice also provided a good performance fault detection with FAR < 3% in several scenarios of simulations presented in the referenced paper. Thus, in the present work, it is raised naturally that 6) is chosen for adapting to different applications and purposes by using different level parameters λ 2 > 0.

κ k = λ 2 • mean{width([r k ])} (
Thanks to the use of RLBPF with interval analysis properties, the enlarged method is provided without assumptions about dynamic functions f k and h k nor any linearization is required. Remark 6. In linear systems, residuals are determined by r k = y k -h k (x k , u k )-µ k where xk is an estimate of x k and h k is a linear function. Thus, r k can be computed explicitly at every time step as well as its distribution under the SKF assumptions. Consequently, with additional bounded uncertainties, the covariance of [r k ] is well determined as some computable matrix [Σ k ] and a k has a more accurate choice using Theorem 2 in [START_REF] Lu | A new scheme for fault detection based on Optimal Upper Bounded Interval Kalman Filter[END_REF] 

so that S + ([Σ k ]) ⪯ a k I ny . Evidently, if [Σ k
] is assumed to be known in assumption (A4), a k can be computed in the same manner. In this work, we consider

r k = y k - h k (x k , u k ) -µ k , although it is unknown, and compute [r k ] ensuring that r k ∈ [r k ] with certainty. □
The ADFC method is eventually enlarged to a more general framework of non linear system, as presented above. It can be summarized by the following algorithm.

Algorithm 1 ADFC method to nonlinear system

1: Initialization: α, λ 1 , λ 2 , [x 0|0 ] ≡ [x 0 ], f k , h k , [u k ], [w k ], [y k ], [µ k ], [Σ k ], k = 1, 2, ..., N . 2: for k = 1, 2, 3, ...N do 3: Use RLBPF to get: [x k-1|k-1 ] 4: [x k|k-1 ] = [f k ]([x k-1|k-1 ], [u k ], [w k ]) 5: [r k ] = [y k ] -[h k ]([x k|k-1 ], [u k ]) -[µ k ] 6: a k = λ 1 • mean{width([r k ])} 7: U k = sup{abs([r k ] T [r k ]/a k )} 8: κ k = λ 2 • mean{width([r k ])} 9: Find δ k s.t.: P(χ 2 (κ k n y ) > δ k ) = α. 10: Detection signal : π k = I(U k > δ k ). 11: end for 4. APPLICATION

Quarter vehicle model

The vertical quarter car model is often used to study the vertical behavior of a vehicle according to the suspension characteristic (passive or controlled) (Fig. 2). When controlled suspension is considered, the passive damper F c is removed and replaced by an actuator that provides a force u either active or semi-active depending on the chosen actuator (Fig. 3). In figures 2, the sprung mass m s and unsprung mass m us represent respectively the vehicle chassis and the vehicle wheel. z s and z us are respectively the relative vertical displacement of the vehicle chassis and the vehicle wheel with respect to the road. z r is considered as the road disturbance. Vertical efforts generated by the suspension and tire elements are nonlinear. Let recall that:

F tz = k t (z us -z r ) + c t ( żus -żr ) F sz = F k (z s -z us ) + F c ( żs -żus ) (passive suspension) F sz = F k (z s -z us ) + u (controlled suspension) (7) 
where k t and c t are the linear tire stiffness and damping factors, F tz the tire force usually assumed to be linear and F sz the suspension force. The vertical quarter car model is given by the following dynamical equations,

m s zs = -(F sz + F dz ) m us zus = F sz -F tz (8) 
where

• z def = (z s -z us ) is the suspension deflection,
• z s and z us are the chassis and unsprung masses bounce,

• m s and m us are sprung and unsprung masses,

• F k (.) is a nonlinear function of z def ,

• F c (.) is a nonlinear function of żdef ,

• F dz describes a vertical disturbance force (that can be caused by a load transfer, e.g. steering situation).

Then, according to the suspension model chosen, different kinds of quarter car models may be obtained:

• If u = F c ( żdef ), the suspension is passive. • If u = F c ( żdef , Ω), the suspension is semi-active,
where Ω is input parameter of the controlled damper that modifies the damping factor. • If u is an independent function, the quarter car is said to be active. Remark 7. In the vertical quarter vehicle model, the nonlinear phenomena come from the force description of the suspension elements and not from the equation structure. Therefore, the model can be set as a LPV system. The unsprung mass m us corresponds to the set of elements that compose the wheel, the suspension system and multiple links from the chassis to the"road". Without loss of generality, it is often referred to as the wheel since z us is the center of the wheel. □

Simulation

Consider the following nonlinear system modeling the MR (Magneto-Rheological) damper:

m s zs = -k s z def -F damper m us zus = k s z def + F damper -k t (z us -z r ) , (9) 
F damper = c 0 żdef + k 0 z def + f I tanh (c 1 żdef + k 1 z def ) ,
where c 0 , k 0 , c 1 , k 1 are constant chosen according to [START_REF] Nino-Juarez | Minimizing the frequency effect in a black box model of a magneto-rheological damper[END_REF] such that c 0 = 1500 (Nsm -1 ), c 1 = 129 (sm -1 ),

k 0 = 989 (Nm -1 ), k 1 = 85 (m -1
), and f I is a controllable force depending on the input current I and satisfying the dissipativity constraint 0 < f min ≤ f I ≤ f max . In this simulation, we consider f min = 1000 N/m and f max = 1500 N/m. Other parameter values used in the simulation are presented in Table 1 issued from [START_REF] Fergani | Robust multivariable control for vehicle dynamics[END_REF]. Comparing to the general system (8), in the MR damper model ( 9), assume that F dz = 0 and F tz = k t (z us -z r ).

Putting

• x = [z s , żs , z us , żus ] T as state variable under consideration and x(i), i ∈ {1, ..., 4}, are its components, • u = f I as controllable input, • w = z r , then x, u, w are functions of time t and the state-space representation of ( 9) is expressed in the form

ẋt = f (t, x t ) =    f 1 (t, x t ) f 2 (t, x t ) f 3 (t, x t ) f 4 (t, x t )    , (10) 
where

f 1 (t, x t ) = e T 2 x t , f 3 (t, x t ) = e T 4 x t , f 2 (t, x t ) = a T x t -u t tanh(b T x t ) /m s , f 4 (t, x t ) = c T x t + u t tanh(b T x t ) + k t w t /m us
, with e i 's are i-th column vectors of the corresponding identity matrix and

a =    -k s -k 0 -c 0 k s + k 0 c 0   , b =    k 1 c 1 -k 1 -c 1   , c =    k s + k 0 c 0 -k s -k 0 -k t -c 0   .
The system (10) will be discretized using the Fourth order Runge-Kutta method [START_REF] Kincaid | Numerical Analysis[END_REF] with a chosen sampling time T = 10 -4 (s). The resulted discrete time state dynamical system is denoted by:

x k = f (x k-1 , u k , w k ) + η k , k ∈ N * , (11) 
where η k is assumed to be Gaussian noise with zero mean and covariances 10 -8 I nx . The corresponding observed measurements are assumed to be z def at every time step, thus the measurement dynamical equation can be expressed in the form

y k = h(x k ) + v k = Cx k + v k , C = [1, 0, -1, 0] , (12) 
where v k is assumed to be Gaussian with mean

µ k ∈ [µ k ] = [-0.005, 0.005] and variance σ 2 k ∈ [σ 2 k ] = [1, 4] * 10 -6
. The precision of the sensors is assumed to be ±0.005 (m).

State and measurement simulation: Assume that the initial state is x 0 = (0, 0, 0, 0) T , the control force input is set to get its maximum value constantly (u = 1500) for all time instants and the road disturbance is set as w = 0.05 max{0, sin(πt)}. {x k , y k } k=1:N are then generated using ( 11) and ( 12) for N = 5000 steps. The measurements obtained will be intervals [y k ] = y k ± 0.005 because of sensor errors.

For the fault detection purpose, a fault of an amplitude of b = 0.02m is added to the simulated observed measurements in a range R with length l = 200 and the following choices are used: λ 1 = 0.02, λ 2 = 10, α = 0.03.

A simulation result is figured out in Figures 4 -6. In the error range, the residual deviate from 0 (Fig. 4) and most of the statistics U k (blue line) passe over the adaptive thresholds δ k (red line) (Fig. 5). 2). For a fault value b = 0.02m, the efficiency index (EFF) is about 66%. Table 2. ADFC method -Fault detection to a Quarter vehicle model.

CONCLUSION AND PERSPECTIVE

An adaptive approach of sensor fault detection applied to nonlinear discrete time dynamical system is proposed. The approach combines RLBPF with a hypothesis testing method using χ 2 -statistics with adaptive degrees of freedom. Theoretical framework is developed thanks to interval analysis. A great flexibility of adjusting several factors (parameters) makes the approach highly fitted to multiple applications.

Simulations are performed using the nonlinear Magneto-Rheological damper model. The results show the efficiency of the proposed method providing good performances w.r.t the fault magnitudes.

The method is developed however in the framework of (additive) sensor fault systems. Extend this method to deal with other kinds of fault (e.g. actuator faults) and with fault identification is a perspective of our future research.
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 1 Fig. 1. General structure of observer-based Fault detection.

  k+1 ] with certainty. Thus, it implies that r k+1 ∈ [r k+1 ] with certainty ensured by the inclusion function property. □ Remark 4. The notation [x k|k ], k ≥ 1, denotes the interval estimate provided by the corresponding interval filter at the end of the time instant k. [x k+1|k ] denotes the propagation box at the next iteration that allows to obtain [x k+1|k+1 ]. □ Remark 5. The assumption x k ∈ [x k|k ] at every k ≥ 1 is strong and related to the performance and convergence of the filter. Practically, an interval filter that has the O
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 2 Fig. 2. Quarter vehicle model

Fig. 4 .

 4 Fig. 4. ADFC method -Residual [r k ] for a Quarter vehicle model with sensor fault.

Fig. 6 .

 6 Fig. 6. ADFC method -Detection signal for a Quarter vehicle model. Then the fault detection procedure is replicated for L = 100 times where the error range R is chosen randomly and indicators DR, NDR, FAR, EFF are yielded as their corresponding means after L times of simulations (Table2). For a fault value b = 0.02m, the efficiency index (EFF) is about 66%.

Table 1 .

 1 Linearized Renault Mégane Coupé parameters of the quarter vertical model (front suspension).

	Symbol	Value	Unit	Signification
	ms	315	kg	sprung mass
	mus	37.5	kg	unsprung mass
	ks	29500	N/m suspension linearized stiffness
	kt	208000	N/m tire stiffness
	z def	[-0.09; 0.05] m	suspension bound (stroke limit)