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Fault detection combining adaptive degrees
of freedom χ2-statistics and interval
approach for nonlinear systems

Quoc Hung Lu ∗ Soheib Fergani ∗ Carine Jauberthie ∗

∗ LAAS-CNRS, 7 avenue du Colonel Roche, 31400 Toulouse, France
(e-mail: qhlu@laas.fr, sfergani@laas.fr, cjaubert@laas.fr).

Abstract: An enlargement of the Adaptive degrees of freedom χ2-statistics (ADFC) method
to fault detection for nonlinear systems with mixed uncertainties (stochastic and bounded
uncertainties) is presented in this paper. The ADFC approach, primarily developped for fault
detection in case of linear systems, is then combined with the Reinforced likelihood box particle
filter (RLBPF). A residual generator is used, followed by the adaptive amplifier coefficient
(a.a.c.) concept in the decision making stage. Then, the proposed approach is applied to a
nonlinear Magneto-Rheological damper model to illustrate the efficiency of the method.

Keywords: Adaptive Innovation-based method, Fault diagnosis, Adaptive amplifier coefficient,
Automotive quarter model.

1. INTRODUCTION

In modern control system, many important issues are re-
quired to be solved such as the availability, cost efficiency,
reliability, operating safety, environmental protection,...
Therefore, fault diagnosis becomes indispensable and one
of the main solutions for these requirements. A fault
must be diagnosed as early as possible, even if it may be
tolerable, to prevent any serious consequence. The fault
diagnosis consists in three tasks: fault detection (FD), fault
isolation and fault estimation (or fault identification), in
which FD is the first stage and building block of any fur-
ther task. For all the above reasons, this paper is focusing
on the developement of a reliable FD strategy.

Model-based FD approach applied to dynamical systems
using analytical redundancy is widely used. It consists in
two stages: residual generation and residual evaluation
or decision making. The residual is normally a difference
between a measured signal and an estimate of the later. It
should be zero-valued in the fault-free case and diverge
from zero in the faulty case. In the second stage, the
residual (or its transformation via a function) is compared
to a constant threshold or an adaptive threshold depending
on the fault detection method. Especially, using observer-
based concept, a filter or an observer is the core of the
residual generator which provides the estimate quantity
of interest to deduce the residual. This is the structure of
the FD method proposed in the paper (Fig.1). The most
advantage of this structure is that it can easily combine
filter/observer and decision making method (pre-existent
or to be developed) for adapting to various contexts and
purposes.

The challenge of the present work is twofold: the non
linearity of the system and the mixed uncertainties context
(bounded and stochastic uncertainties). Indeed, in the lit-
erature, most of researches about FD are devoted to linear

System

faults

uk yk

Filter/Observer Decision making

RESIDUAL GENERATOR

+− residual/

innovation

Detection signal

Fig. 1. General structure of observer-based Fault detection.

system while fewer articles provide solution for non linear
counterpart. Nonlinear systems are usually assumed to be
smooth “enough” with mild conditions for a nice lineariza-
tion, then techniques for the linear case can be applied.
For instance, the Standard Kalman Filter (SKF)(Kalman,
1960) and its extensions (included Extended Kalman Filter
(EKF), Unscented Kalman Filter (UKF), Robust Kalman
fitering, Interval Kalman Filter (IKF), Minimum Upper
Bound of Variance Interval Kalman Filter (UBIKF), Op-
timal upper bounded Interval Kalman Filter (OUBIKF))
have been applied in residual generators of different FD
schemes/methods. We refer to Zhong et al. (2018) which
provides a survey on model-based fault diagnosis for linear
discrete time-varying (LTV) systems with useful references
concerning FD using SKF, EKF and UKF. Otherwise,
Xiong et al. (2013) proposed FD method using IKF, Tran
(2017) with FD using UBIKF, Lu et al. (2021) with FD
based on OUBIKF, while output observer (non interval
case) for FD in linear systems can be found in Mohamadi
et al. (2016). Furthermore, also for linear system, set-
membership methods in fault diagnosis are concerned in
Puig (2010) while interval observer approach for FD is
investigated, for instance, in Raka and Combastel (2013);
Chevet et al. (2021). Some of these works (Xiong et al.,
2013; Tran, 2017; Lu et al., 2021) deal with mixed un-



certainties context while the remaining deal either with
bounded or stochastic uncertainties only.

In the present paper, an enlargement of the Adaptive
degrees of freedom χ2-statistics (ADFC) method (Lu et al.,
2021) to FD for non linear system is proposed. The
method combines the Reinforced likelihood box particle
filter (RLBPF) developed in Lu et al. (2022) (versus
OUBIKF for linear system) together with the adaptive
amplifier coefficient (a.a.c.) concept in the decision making
stage. In doing so, the twofold challenge of the issue is met.
Interval analysis is a primary tool for computation of the
method, no strict condition is required for (non linear)
dynamic functions of the system.

The paper is organized as follows. Preliminaries are pro-
vided in Section 2, including used notations and essential
of interval analysis. Section 3 presents main results with
the extended FD method. Simulations based on the non-
linear Magneto-Rheological damper model are provided
in Section 4. Finally, Section 5 provides conlusions and
perspectives.

2. PRELIMINARY

2.1 Essential of interval analysis

A real interval [x] = [x, x] = {t ∈ R |x ≤ t ≤ x} is
a closed connected subset of R and characterized by two
extreme values x ≤ x. A real interval matrix [X] = ([xij ])
of dimension p × q, also called an interval in Rp×q, is a
matrix with real interval components [xij ], i ∈ {1, ..., p},
j ∈ {1, ..., q}. Write X ∈ [X] to indicate a point matrix
X = (xij) belonging element-wise to [X]. Define:

• sup([X])
△
= (sup([xij ])) ≡ X,

• inf([X])
△
= (inf([xij ])) ≡ X,

• mid([X])
△
= (X +X)/2 ,

• rad([X])
△
= (X −X)/2 ,

• width([X])
△
= X −X ,

which are called respectively (resp.) the largest matrix, the
smallest matrix, the midpoint matrix, the radius matrix
and the width matrix of [X]. Define the hull of a closed set
S and the hull of two interval [X1], [X2] of the same dimen-

sion as follows: hull{∅} △
= ∅, hull{S} △

= [inf(S), sup(S)] and

hull{[X1], [X2]}
△
= [inf{X1, X2}, sup{X1, X2}]. We also

write an interval as: [X] = [X,X] = mid([X])± rad([X]).

Basic interval operators ⋄ ∈ {+,−,×,÷} defined in Jaulin
et al. (2001) can be used to compute directly all operations
[u] ⋄ [v] and α ⋄ [u], for real intervals [u], [v] and α ∈ R,
without any further approximation algorithm. Then, in-
terval matrix computations are defined similarly to matrix
computations using the basic operators while more general
operators are constructed by means of inclusion function
[f ] defined in Definition 1 below. In practice, the package
Intlab Rump (1999) developed for Matlab (also existing in
Octave and C/C++) is used for computations.

Definition 1. Let f be any function from D ⊆ Rm to Rn.
An inclusion function of f is a function [f ] that maps any
interval [x] in D to an interval [f ]([x]) in Rn containing
the image set f([x]). Symbolically,

[f ] : [x] 7→ [f ]([x]) ⊃ f([x]), ∀[x] ⊂ D,

with [f ]([x]) is an interval in Rn. The minimal inclusion
function of f is a function [f ]∗ so that for every [x] ⊂ D,
[f ]∗([x]) is the smallest interval containing f([x]). □

If f is composed by a finite number of operators (+, −,

×, ÷) and elementary functions (exp, sin, cos,
√

(.), ...)
then a natural inclusion function of f is a function [f ]
having the same expression of the former in which point
variables are replaced by corresponding interval variables
while operators and functions are replaced by their inter-
val counterpart. There is other commonly used inclusion
function such as centred inclusion function, mixed centred
inclusion function, Taylor inclusion function,... (see Jaulin
et al. (2001) for more details).

2.2 Other notations

A positive semidefinite matrix X is denoted by X ⪰ 0.
Let M,N ∈ Rn×n, define N ⪯ M if M − N ⪰ 0, M is
called an upper bound of N and N a lower bound of M .
Let ∅ ≠ Ω ⊂ Rn×n, M is an upper bound (resp. lower
bound) of Ω, denoted Ω ⪯ M (resp. M ⪯ Ω) , if X ⪯ M
(resp. M ⪯ X), ∀X ∈ Ω.

Denote also: S+([X])
△
=

{
X ∈ [X] : X = XT and X ⪰ 0

}
,

I(x) = 1 if the conditions x are true and I(x) = 0
otherwise, mean(x) =

∑n
i=1 xi/n, ∀x ∈ Rn. The notation

p : l : q (p ≤ q) is used for a range from p to q with step
l. For l = 1, we write p : q. A sequence of variables can be
noted interchangeably as w1, ..., wk or w1 : wk or w1:k.

3. MAIN RESULTS

3.1 Model and problem formulation

Consider the following system (1) with additive measure-
ment noises :

(Σ) :

{
xk = fk(xk−1, uk, wk) ,

yk = hk(xk, uk) + vk + fs
k ,

k ∈ N∗, (1)

where xk ∈ Rnx and yk ∈ Rny represent state variables and
measures respectively, uk ∈ Rnu inputs, wk ∈ Rnx state
disturbances/noises, vk ∈ Rny measurement noises, fs

k ∈
Rny additive sensor fault vectors. Each of its components
corresponds to a sensor fault. Thus, the fault vector fs

k can
be of the multiple or single error type.

Assumptions (A)

(A1) Given [x0], [uk], [wk], [yk], [µk], fk, hk, k ∈ N∗.

(A2) vk ∼ N (µk,Σk) with unknown µk and Σk.

(A3) x0 ∈ [x0], uk ∈ [uk], wk ∈ [wk], yk ∈ [yk], µk ∈ [µk]
and Σk ∈ [Σk].

(A4) [Σk] is unknown.

Remark 2. The measurements are given as intervals [yk]
due to the sensor precision. In many theoretical problems
and applications, it is assumed that µk ≡ [µk] ≡ 0
for simplicity. It is natural that [Σk] is unknown and
the mention of this fact is necessary for the subsequent
development. Assumptions (A3) are implicitly deduced
that the belonging of unknown real (true) terms in their
corresponding intervals are certain. This certainty can
be understood as “with probability 1”. System (1) with



assumptions (A) can be adapted to a wide range of
applications. The system is time varying, the uncertainties
come from system disturbances or measurement noises
with different kinds (stochastic/bounded uncertainties). □

To evaluate the fault detection performance, four indica-
tors are introduced. Assume that system (1) is applied for
N iterations among which faults occur in a time inteinte R
with length l (0 ≤ l ≤ N). Actually, R may be an interval
or union of intervals but is called hereafter an error range
for simplicity. Then, a detection signal is denoted by πk

which has values in {0; 1}. A signal πk = 1 is called a
right detected signal if k ∈ R and a false detected signal if
k ̸∈ R. Then, the four indicators are defined as follows:

+ Detection Rate: DR =
∑

k∈R
I(πk=1)

l × 100%,

+ False Alarm Rate: FAR =
∑

k ̸∈R
I(πk=1)
N−l × 100%,

+ Efficiency : EFF = DR− FAR,

+ No detection rate: NDR = 100%−DR.

3.2 Adaptive approach combining RLBPF to fault detection

In this section, the ADFC method is extended to a
more general framework, including nonlinear dynamical
systems. This approach has also the ability to combine
with several set-membership estimation filters (w.r.t to
some conditions in see Theorem 3). In the following,
the proposed approach is applied with RLBPF and the
extension is based on Theorem 3.

Theorem 3. Consider system (Σ) with assumptions (A)
and fault free case (fs

k = 0,∀k ∈ N∗).
Let rk = yk − hk(xk, uk) − µk be the residual, [x̂k|k] be
interval estimates of an interval filter and

[x̂k+1|k]
△
= [fk+1]

(
[x̂k|k], [uk+1], [wk+1]

)
,

[r̂k+1]
△
= [yk+1]− [hk+1]

(
[x̂k+1|k], [uk+1]

)
− [µk+1].

Then, for all k ≥ 1:

(a) yk|xk ∼ N (mk,Σk) where mk = hk(xk, uk) + µk and
the notation yk|xk means for the stochastic variables
yk given (or knowing) xk. When wk is a bounded
disturbance, then xk is deterministic and yk|xk ≡ yk.

(b) rk ∼ N (0,Σk) where Σk ∈ [Σk].
Consequently, a confidence interval of (more than)
99.7% of all admissible rk can be deduced as

CI(rk) = ± 3.

√
diag(Σk),

with diag(A) = (a11, ..., ann)
T ,∀A = (aij) ∈ Rn×n.

Assuming further that xk ∈ [x̂k|k] at every k ≥ 1, then:

(c) xk+1 ∈ [x̂k+1|k] with certainty (probability 1),

(d) rk+1 ∈ [r̂k+1] with certainty (probability 1). □

Proof. Knowing xk in either cases of wk (disturbance
or stochastic noise), the term hk(xk, uk) is known (or
deterministic). So, since vk ∼ N (µk,Σk) then yk|xk =
hk(xk, uk) + vk is normally distributed with mean mk =
hk(xk, uk) + µk and covariance Σk. Also, by the property
of normal distribution, it concludes that rk ∼ N (0,Σk).
So, statements (a) and (b) are proved.

To prove the statements (c) and (d), the inclusion function
property is used, that is: f(x) ∈ [f ]([x]),∀x ∈ [x] with
certainty. By assumptions (A3) and xk ∈ [x̂k|k], then

• fk+1(xk, uk+1, wk+1) = xk+1 ∈ [x̂k+1|k],

• hk+1(xk+1, uk+1) ∈ [hk+1]([x̂k+1|k], [uk+1]),

• µk+1 ∈ [µk+1]

with certainty. Thus, it implies that rk+1 ∈ [r̂k+1] with
certainty ensured by the inclusion function property. □

Remark 4. The notation [x̂k|k], k ≥ 1, denotes the interval
estimate provided by the corresponding interval filter
at the end of the time instant k. [x̂k+1|k] denotes the
propagation box at the next iteration that allows to obtain
[x̂k+1|k+1]. □

Remark 5. The assumption xk ∈ [x̂k|k] at every k ≥ 1 is
strong and related to the performance and convergence
of the filter. Practically, an interval filter that has the

O(%) =
∑N

k=1 I(xk ∈ [x̂k|k])/N × 100% measuring the
percentage of xk ∈ [x̂k|k] greater than some level (e.g. 80%
or 90%) can be suited to the FD procedure of the ADFC
method, although it may cause certain false alarms. □

Principle of the method

Since rk ∼ N (0,Σk) then ξk
△
= rTk Σ

−1
k rk is χ2-distributed

with ny degrees of freedom (d.f.) (ξk ∼ χ2(ny)). Thus, for
any ak > 0 so that S+([Σk]) ⪯ ak Iny

,

ξk ≥ rTk a
−1
k rk = rTk rk/ak ≡ ξ̂k.

However, rk is unknown and rk ∈ [r̂k] with a computable
[r̂k]. So, we aim at using the statistic

Uk = sup{abs([r̂k]T [r̂k]/ak)} = sup{abs([ξ̂k])}, (2)

as proposed in Lu et al. (2021) with the ak aforementioned.
The statistic Uk is approximated by a χ2-distributed ran-
dom variable with an appropriate d.f. κkny by determining
ak and using an a.a.c. κk.

Explication.

Theoretically, for ensuring S+([Σk]) ⪯ ak Iny
, it is required

that max{diag(Σk)} < ak (Lu et al., 2019). The more ak
is large, the more ξ̂k is small and vice versa. Besides, note
that rk ∈ [r̂k] is with probability 1 (Theorem 3), where
rk ∼ N (0,Σk), Σk ∈ [Σk] . This implies [r̂k] ⊃ CI(rk)
and [r̂k] must be greater considerably than the confidence
interval in order to contain rk with such a certainty.
Therefore, an appropriate (optimal) ak must ensure a
compromise between [r̂k] and CI(rk), says a function of
[r̂k] and [Σk], provided that:

max{diag(Σk)} < ak = ϕk([r̂k], [Σk]) < max{r̂k}. (3)

In the development of this section, a simple proposition
for ak is that

ak = λ1 ·mean{width([r̂k])} so that S+([Σk]) ⪯ akI, (4)

where λ1 > 0 is a scaling factor changing depending on
the considered application.

The a.a.c. κk is involved with the threshold δk to which Uk

is compared: P
(
χ2(κkny) > δk

)
= α, where α is a given

significant level. So, Uk ≈ χ2(κkny) ≤ δk with confident
level 1 − α in the fault free case. κk is chosen (Lu et al.,
2021) as

κk = mean{width([r̂k])}. (5)



so that it is sensitive to the fault, large enough to obtain
a small FAR (e.g. ≤ 5%) in the fault free case, sensitively
affected by width([r̂k]) as well as Uk but it does not
increase as fast as the later whenever a fault occurs and
affects on the width([r̂k]). This choice also provided a good
performance fault detection with FAR < 3% in several
scenarios of simulations presented in the referenced paper.
Thus, in the present work, it is raised naturally that

κk = λ2 ·mean{width([r̂k])} (6)

is chosen for adapting to different applications and pur-
poses by using different level parameters λ2 > 0.

Thanks to the use of RLBPF with interval analysis proper-
ties, the enlarged method is provided without assumptions
about dynamic functions fk and hk nor any linearization
is required.

Remark 6. In linear systems, residuals are determined by
rk = yk−hk(x̂k, uk)−µk where x̂k is an estimate of xk and
hk is a linear function. Thus, rk can be computed explicitly
at every time step as well as its distribution under the
SKF assumptions. Consequently, with additional bounded
uncertainties, the covariance of [rk] is well determined
as some computable matrix [Σk] and ak has a more
accurate choice using Theorem 2 in Lu et al. (2021) so
that S+([Σk]) ⪯ akIny

. Evidently, if [Σk] is assumed to
be known in assumption (A4), ak can be computed in
the same manner. In this work, we consider rk = yk −
hk(xk, uk)−µk, although it is unknown, and compute [r̂k]
ensuring that rk ∈ [r̂k] with certainty. □

The ADFC method is eventually enlarged to a more
general framework of non linear system, as presented
above. It can be summarized by the following algorithm.

Algorithm 1 ADFC method to nonlinear system

1: Initialization: α, λ1, λ2, [x̂0|0] ≡ [x0], fk, hk, [uk],
[wk], [yk], [µk], [Σk], k = 1, 2, ..., N .

2: for k = 1, 2, 3, ...N do
3: Use RLBPF to get: [x̂k−1|k−1]
4: [x̂k|k−1] = [fk]([x̂k−1|k−1], [uk], [wk])
5: [r̂k] = [yk]− [hk]([x̂k|k−1], [uk])− [µk]
6: ak = λ1 ·mean{width([r̂k])}
7: Uk = sup{abs([r̂k]T [r̂k]/ak)}
8: κk = λ2 ·mean{width([r̂k])}
9: Find δk s.t.: P(χ2(κkny) > δk) = α.

10: Detection signal : πk = I(Uk > δk).
11: end for

4. APPLICATION

4.1 Quarter vehicle model

The vertical quarter car model is often used to study the
vertical behavior of a vehicle according to the suspen-
sion characteristic (passive or controlled) (Fig. 2). When
controlled suspension is considered, the passive damper
Fc is removed and replaced by an actuator that provides
a force u either active or semi-active depending on the
chosen actuator (Fig. 3). In figures 2, the sprung mass ms

and unsprung mass mus represent respectively the vehicle
chassis and the vehicle wheel. zs and zus are respectively
the relative vertical displacement of the vehicle chassis and
the vehicle wheel with respect to the road. zr is considered
as the road disturbance.

Fig. 2. Quarter vehicle model

Fig. 3. Quarter vehical model - Passive (left) and Active
control (right) modes

Vertical efforts generated by the suspension and tire ele-
ments are nonlinear. Let recall that:{
Ftz = kt (zus − zr) + ct (żus − żr)
Fsz = Fk (zs − zus) + Fc (żs − żus) (passive suspension)
Fsz = Fk (zs − zus) + u (controlled suspension)

(7)
where kt and ct are the linear tire stiffness and damping
factors, Ftz the tire force usually assumed to be linear and
Fsz the suspension force.
The vertical quarter car model is given by the following
dynamical equations,{

msz̈s = − (Fsz + Fdz)
musz̈us = Fsz − Ftz

(8)

where

• zdef = (zs − zus) is the suspension deflection,
• zs and zus are the chassis and unsprung masses bounce,
• ms and mus are sprung and unsprung masses,
• Fk(.) is a nonlinear function of zdef ,
• Fc(.) is a nonlinear function of żdef ,
• Fdz describes a vertical disturbance force (that can be

caused by a load transfer, e.g. steering situation).

Then, according to the suspension model chosen, different
kinds of quarter car models may be obtained:

• If u = Fc(żdef ), the suspension is passive.
• If u = Fc(żdef ,Ω), the suspension is semi-active,

where Ω is input parameter of the controlled damper
that modifies the damping factor.

• If u is an independent function, the quarter car is said
to be active.

Remark 7. In the vertical quarter vehicle model, the non-
linear phenomena come from the force description of the
suspension elements and not from the equation structure.
Therefore, the model can be set as a LPV system.
The unsprung mass mus corresponds to the set of elements
that compose the wheel, the suspension system and mul-
tiple links from the chassis to the“road”. Without loss of



generality, it is often referred to as the wheel since zus is
the center of the wheel. □

4.2 Simulation

Consider the following nonlinear system modeling the MR
(Magneto-Rheological) damper:{

msz̈s = −kszdef − Fdamper

musz̈us = kszdef + Fdamper − kt(zus − zr) ,
(9)

Fdamper = c0żdef + k0zdef + fI tanh (c1żdef + k1zdef ) ,

where c0, k0, c1, k1 are constant chosen according to (Nino-
Juarez et al., 2008) such that

c0 = 1500 (Nsm−1), c1 = 129 (sm−1),

k0 = 989 (Nm−1), k1 = 85 (m−1),

and fI is a controllable force depending on the input
current I and satisfying the dissipativity constraint

0 < fmin ≤ fI ≤ fmax .

In this simulation, we consider fmin = 1000 N/m and
fmax = 1500 N/m. Other parameter values used in the
simulation are presented in Table 1 issued from (Fergani,
2014).

Symbol Value Unit Signification

ms 315 kg sprung mass
mus 37.5 kg unsprung mass
ks 29500 N/m suspension linearized stiffness
kt 208000 N/m tire stiffness
zdef [−0.09; 0.05] m suspension bound (stroke limit)

Table 1. Linearized Renault Mégane Coupé
parameters of the quarter vertical model (front

suspension).

Comparing to the general system (8), in the MR damper
model (9), assume that Fdz = 0 and Ftz = kt(zus − zr).

Putting

• x = [zs, żs, zus, żus]
T as state variable under consid-

eration and x(i), i ∈ {1, ..., 4}, are its components,
• u = fI as controllable input,
• w = zr,

then x, u, w are functions of time t and the state-space
representation of (9) is expressed in the form

ẋt = f(t, xt) =

f1(t, xt)
f2(t, xt)
f3(t, xt)
f4(t, xt)

 , (10)

where

f1(t, xt) = eT2 xt ,

f3(t, xt) = eT4 xt ,

f2(t, xt) =
(
aTxt − ut tanh(b

Txt)
)
/ms ,

f4(t, xt) =
(
cTxt + ut tanh(b

Txt) + ktwt

)
/mus ,

with ei’s are i-th column vectors of the corresponding
identity matrix and

a =

−ks − k0
−c0

ks + k0
c0

, b =

 k1
c1
−k1
−c1

, c =

 ks + k0
c0

−ks − k0 − kt
−c0

.

The system (10) will be discretized using the Fourth order
Runge-Kutta method (Kincaid and Cheney, 1991) with a
chosen sampling time T = 10−4(s). The resulted discrete
time state dynamical system is denoted by:

xk = f̃(xk−1, uk, wk) + ηk, k ∈ N∗, (11)

where ηk is assumed to be Gaussian noise with zero
mean and covariances 10−8Inx

. The corresponding ob-
served measurements are assumed to be zdef at every time
step, thus the measurement dynamical equation can be
expressed in the form

yk = h(xk) + vk = Cxk + vk , C = [1, 0,−1, 0] ,(12)

where vk is assumed to be Gaussian with mean µk ∈ [µk] =
[−0.005, 0.005] and variance σ2

k ∈ [σ2
k] = [1, 4] ∗ 10−6. The

precision of the sensors is assumed to be ±0.005 (m).

State and measurement simulation: Assume that
the initial state is x0 = (0, 0, 0, 0)T , the control force
input is set to get its maximum value constantly (u =
1500) for all time instants and the road disturbance is
set as w = 0.05max{0, sin(πt)}. {xk, yk}k=1:N are then
generated using (11) and (12) for N = 5000 steps. The
measurements obtained will be intervals [yk] = yk ± 0.005
because of sensor errors.

For the fault detection purpose, a fault of an amplitude
of b = 0.02m is added to the simulated observed measure-
ments in a range R with length l = 200 and the following
choices are used: λ1 = 0.02, λ2 = 10, α = 0.03.

A simulation result is figured out in Figures 4 - 6. In the
error range, the residual deviate from 0 (Fig. 4) and most
of the statistics Uk (blue line) passe over the adaptive
thresholds δk (red line) (Fig. 5).

Fig. 4. ADFC method - Residual [r̂k] for a Quarter vehicle
model with sensor fault.

Fig. 5. ADFC method - Fault detection to a Quarter
vehicle model.



Fig. 6. ADFC method - Detection signal for a Quarter
vehicle model.

Then the fault detection procedure is replicated for L =
100 times where the error range R is chosen randomly
and indicators DR, NDR, FAR, EFF are yielded as their
corresponding means after L times of simulations (Table
2). For a fault value b = 0.02m, the efficiency index (EFF)
is about 66%.

b DR(%) NDR(%) FAR(%) EFF (%)

0.02 67.715 32.285 1.2762 66.439

Table 2. ADFC method - Fault detection to a
Quarter vehicle model.

5. CONCLUSION AND PERSPECTIVE

An adaptive approach of sensor fault detection applied
to nonlinear discrete time dynamical system is proposed.
The approach combines RLBPF with a hypothesis test-
ing method using χ2-statistics with adaptive degrees of
freedom. Theoretical framework is developed thanks to
interval analysis. A great flexibility of adjusting several
factors (parameters) makes the approach highly fitted to
multiple applications.

Simulations are performed using the nonlinear Magneto-
Rheological damper model. The results show the efficiency
of the proposed method providing good performances w.r.t
the fault magnitudes.

The method is developed however in the framework of
(additive) sensor fault systems. Extend this method to deal
with other kinds of fault (e.g. actuator faults) and with
fault identification is a perspective of our future research.
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(2021). Robust sensor fault detection for linear
parameter-varying systems using interval observer.
In Proceedings of the 31th European Safety and
Reliability Conference. doi:https://doi.org/10.
3850/981-973-0000-00-0esrel2021. URL https://
www.sciencedirect.com/science/article/pii/
S0925231218304715.

Fergani, S. (2014). Robust multivariable control for vehicle
dynamics. PhD thesis, Grenoble INP, GIPSA-lab,
Control System dpt., Grenoble, France.

Jaulin, L., Kieffer, M., Didrit, O., and Walter, E. (2001).
Applied Interval Analysis, with Examples in Parameter

and State Estimation, Robust Control and Robotics.
Springer-Verlag, London.

Kalman, R. (1960). A new approach to linear filtering
and prediction problems. Transactions of the ASME–
Journal of Basic Engineering, 82(Series D), 35–45.

Kincaid, D. and Cheney, W. (1991). Numerical Analysis.
Brooks/Cole Publishing Company, Wadsworth, Inc.

Lu, Q.H., Fergani, S., and Jauberthie, C. (2021). A new
scheme for fault detection based on Optimal Upper
Bounded Interval Kalman Filter. IFAC-PapersOnLine,
54(7), 292–297. doi:https://doi.org/10.1016/j.ifacol.
2021.08.374. URL https://www.sciencedirect.com/
science/article/pii/S2405896321011484. 19th
IFAC Symposium on System Identification SYSID
2021.

Lu, Q.H., Fergani, S., and Jauberthie, C. (2022). Re-
inforced likelihood box particle filter. IEEE Control
Systems Letters, 7, 502–507. doi:10.1109/LCSYS.2022.
3194810.

Lu, Q.H., Fergani, S., Jauberthie, C., and Le Gall, F.
(2019). Optimally bounded interval kalman filter. In
2019 IEEE 58th Conference on Decision and Control
(CDC), 379–384. doi:10.1109/CDC40024.2019.9028918.

Mohamadi, L., Dai, X., Busawon, K., and Djemai, M.
(2016). Output observer for fault detection in linear
systems. In 2016 IEEE 14th International Conference
on Industrial Informatics (INDIN), 1262–1267. doi:
10.1109/INDIN.2016.7819361.

Nino-Juarez, E., Ramirez-Mendoza, R., Morales-
Menendez, R., Sename, O., and Dugard, L. (2008).
Minimizing the frequency effect in a black box model
of a magneto-rheological damper. In Mini conference;
11th, Vehicle system dynamics, identification and
anomalies, 733–742. Technical University of Budapest.

Puig, V. (2010). Fault diagnosis and fault tolerant control
using set-membership approaches: Application to real
case studies. International Journal of Applied Mathe-
matics and Computer Science, 20(4), 619–635.

Raka, S.A. and Combastel, C. (2013). Fault detection
based on robust adaptive thresholds: A dynamic inter-
val approach. Annual Reviews in Control, 37(1), 119–
128.

Rump, S. (1999). INTLAB - INTerval LABoratory. In
T. Csendes (ed.), Developments in Reliable Computing,
77–104. Kluwer Academic Publishers, Dordrecht. http:
//www.tuhh.de/ti3/rump/.

Tran, T. (2017). Cadre unifié pour la modélisation des
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