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Fault detection using Enhanced Adaptive
degrees of freedom χ2-statistics method for
Linear systems with mixed uncertainties
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∗ LAAS-CNRS, 7 avenue du Colonel Roche, 31400 Toulouse, France
(e-mail: qhlu@laas.fr, sfergani@laas.fr, cjaubert@laas.fr).

Abstract: This article is concerned with a fault detection enhancement method using adaptive
amplifier coefficients (a.a.c.) concept. It is developed for linear systems with mixed uncertainties
(stochastic and bounded uncertainties framework). The study provides, also, analysis and
discussions about the applicability and the efficiency of the enhanced method to several sensors
fault error types. Simulations on a vehicle bicycle model (validated by experimental tests on the
Renault Megane) are presented to emphasize on the performances of the developed method.

Keywords: Adaptive Innovation-based method, Fault diagnosis, Adaptive amplifier coefficient,
Automotive bicycle model.

1. INTRODUCTION

Within the control theory and its field of applications, fault
detection is extremely important for all system engineering
problems. It is also a crucial component of any system
diagnosis scheme and has received a lot of attention re-
cently. Reliable fault detection and isolation (FDI) is a first
class requirement in many fields. Indeed, efficient (early
and accurate) fault detection can help avoid dangerous
scenarios (accidents, explosions,...) or improve produc-
tivity (reducing process activity loss such as leakage...).
The model-based approaches are proven to provide good
results and acceptable tradeoff between fault sensitivity
and computational cost especially those based on residual
generation (see Patton et al. (2013) and references within).

Many methods and techniques have been developed to
meet these abundant requirements. Several methods for
fault detection in dynamic systems are mentioned in
Willsky (1976), including the innovation-based method
in which a χ2-statistic hypothesis testing was used.
This method is applied appropriately with the standard
Kalman filter (Kalman, 1960) to process the linear dy-
namic system with deterministic coefficient matrices. In
Sainz et al. (2002), an approach to generate envelopes
based on interval techniques of the modal interval analysis
is proposed. Puig (2010) reviews the use of set-membership
methods in fault diagnosis and fault tolerant control. It
aims at checking the consistency between observed and
predicted behaviour by using simple sets to approximate
the exact set of possible behaviours. Also, the design of
stable interval observers for linear systems with additive
time-varying zonotopic input bounds is proposed in Raka
and Combastel (2013). Interval state observers provide
an estimate on the set of admissible values of the state
vector at each instant of time. Ideally, the size of the
evaluated set is proportional to the model uncertainty,
thus interval observers generate the state estimates with
estimation error bounds, similarly to Kalman filters, but

in the deterministic framework. Main tools and techniques
for design of interval observers are reviewed in this tu-
torial for continuous-time, discrete-time and time-delayed
systems (see Efimov and Räıssi (2016) )). In Efimov and
Räıssi (2016) a survey on interval state observers that
provide an estimate on the set of admissible values of the
state vector at each instant of time is provided.

The efficiency of these strategies has attracted the atten-
tion of the industrial community. The automotive industry,
especially, has given more attention to these methods
and though many academic studies have tried to provide
solutions within this field based on set membership FDI.
In Meseguer et al. (2010) a fault diagnosis approach is pro-
posed. It has been motivated by the problem of detecting
and isolating faults of the Barcelona’s urban sewer system
limnimeters (level meter sensors). It is based on interval
observers which improve the integration of fault detection
and isolation tasks. Ifqir et al. (2018) reviews the problem
of robust state estimation and unknown input interval
reconstruction for uncertain switched linear systems. A
design method for obtaining interval observers that pro-
vide guaranteed lower and upper bounds of the state and
unknown inputs is applied to vehicle lateral dynamics
estimation to show the effectiveness of the algorithms.
Also, in Chen et al. (2020), an extended set-membership
filter applied to the vehicle’s longitudinal velocity, lateral
velocity, and sideslip angle provides not only higher accu-
racy, but also can provide a 100% hard boundary which
contains the real values of the vehicle states (compared to
the Unscented Kalman Filter UKF-based approaches).

Recently, in Tran (2017), authors provided an approach
based on a χ2-statistics test whose degrees of freedom
(d.f.) is fixed and predetermined thanks to a size of a
widows in which the statistic is computed. This approach
is an innovation-based method but it is modified and
applied to interval residual context. Then, Lu et al. (2021)
have proposed an adaptive degrees of freedom χ2-statistic
(ADFC) method to provide an improved solution for the



same problem (mixed uncertainty assumption, interval
residual context) of the former. This development consists
in investigations of interval analysis related to d.f. of the
considered statistic and results in the use of the so called
adaptive amplifier coefficients (a.a.c.).

In present paper, the main contribution is the development
of an enhanced ADFC (eADFC) method by discussing
different levels of a.a.c. used in the method. The Bicycle
vehicle model, used as a benchmark, is presented in detail
together with multiple simulation results of fault detection
based on this model.

The paper is organized as follows. Section 2 provides
useful notations, the linear discrete time dynamic system
with potential sensor faults, the enhanced method also
evaluation indicators. In Section 3, the application to fault
detection based on the Bicycle vehicle model is presented,
included detail presentations of the model, simulation
settings and results. Section 4 is a conclusion.

2. ENHANCED METHOD

2.1 Notations

A real interval matrix [X] of dimension p × q is a matrix
with real interval components [xij ], i ∈ {1, ..., p}, j ∈
{1, ..., q}. Write X ∈ [X] to indicate a point matrix
X = (xij) belonging element-wise to [X]. Define:

X ≡ sup([X])
△
= (sup([xij ])) ,

X ≡ inf([X])
△
= (inf([xij ])),

as element-wise operators applying to [X] and then

mid([X])
△
= (X + X)/2, rad([X])

△
= (X − X)/2,

width([X])
△
= X − X. Define also the (convex) hull of

two interval matrices [X1], [X2] of the same dimension as

hull{[X1], [X2]}
△
= [min{X1, X2},max{X1, X2}].

Basic interval operators ⋄ ∈ {+,−,×,÷} defined in Jaulin
et al. (2001) can be used to compute directly all operations
[u] ⋄ [v] and α ⋄ [u], for real intervals [u], [v] and α ∈ R,
without any further approximation algorithm. Then, in-
terval matrix computations are defined similarly to matrix
computations using the basic operators while more general
operators are constructed by means of inclusion function
[f ] (Jaulin et al., 2001). In practice, the package Intlab
Rump (1998) developed for Matlab (also existing in Octave
and C/C++) is used for computations.

Denote I(x) = 1 if the conditions x are true and I(x) = 0
otherwise, mean(x) =

∑n
i=1 xi/n, ∀x ∈ Rn, and S+([M ])

the set of all positive semi-definite matrices belonging to
an interval matrix [M ]. The notation p : l : q (p ≤ q) is
used for a range from p to q with step l. For l = 1, we write
p : q. A sequence of variables can be noted interchangeably
as w1, ..., wk or w1 : wk or w1:k.

2.2 Model

Consider the following linear discrete time dynamic system{
xk = Akxk−1 +Bkuk + wk ,

yk = Ckxk +Dkuk + vk + fsk ,
k ∈ N∗, (1)

where xk ∈ Rnx and yk ∈ Rny represent respectively state
variable and measure, uk ∈ Rnu input, wk ∈ Rnx and
vk ∈ Rny stochastic noises. fsk ∈ Rny is a sensor fault

vector. Each of its components corresponds to a sensor
fault. Thus, the fault vector fsk can be of the multiple or
single error type. In the first type, some (or all) sensors
cause errors which affect the yk value for the corresponding
components. In the second type, only one sensor causes
errors and just the corresponding yk component is affected.

Assumptions (H): The initial state x0 is normally dis-
tributed with mean µ0 and covariance P0. wk and vk are
centered Gaussian vectors with covariance Qk and Rk.
Matrices Ak, Bk, Ck, Dk, Qk, Rk, P0 and µ0 are unknown
and belong to given interval matrices [A], [B], [C], [D],
[Q], [R], [P0] and [µ0] respectively. x0, {w1:k} and {v1:k}
are mutually independent.

System (1) with assumptions (H) is a quite general model
adapted to a wide range of applications. In this system,
parameter matrices are time varying, the uncertainty may
result from different sources (system disturbances, mea-
surement noises) and may be of different kinds (stochastic
and bounded uncertainties).

To evaluate the fault detection performance, indicators
introduced in Lu et al. (2021) are used. Assume that
system (1) is applied for N iterations among which faults
occur in an time interval R with length l (0 ≤ l ≤ N). R
may be an interval or union of them but is called hereafter
an error range for simplicity. A detection signal is denoted
by πk. It has value 0 (no fault is detected) or 1 (a fault is
detected). A right detected signal is a signal πk = 1 with
k ∈ R and a false detected signal is a signal πk = 1 with
k ̸∈ R. Then, the indicators are defined as follows:

+ Detection Rate: DR =
∑

k∈R I(πk = 1)/l × 100%,

+ False Alarm Rate: FAR =
∑

k ̸∈R
I(πk=1)
N−l × 100%,

+ Efficiency : EFF = DR− FAR,
+ No detection rate: NDR = 100%−DR.

2.3 Enhanced Adaptive degrees of freedom χ2-statistic
(eADFC) method

The ADFC in Lu et al. (2021) is an innovation-based
method but deals with interval residual

[rk] = yk − [C][x̂k|k−1]− [D]uk.

[rk] is the difference between the obtained measure yk and
an interval estimate of the later. [rk] contains all admissible
residuals rk’s computed according to assumptions (H).
[x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk is the interval version
of the a priori estimate x̂k|k−1 of the (standard) Kalman
filter. The considered statistic is Uk (Algorithm 1) which
can be expressed as a function of width([rk]). Furthermore,
Uk is an upper bound of all admissible χ2 statistics
rTk S

−1
k rk of ny d.f. where Sk is the covariance of rk.

Therefore, Lu et al. (2021) considered Uk as a χ2 statistic
of κkny d.f. with an a.a.c. chosen as

κk = mean {width([rk])} . (2)

This enlarges the traditional χ2 statistic whose d.f. is
normally a positive integer. The enlargement is mathemat-
ically legal thanks to the continuity of the χ2 cumulative
distribution function in its argument and parameter.

In general, we claim that :

• the choice of κk is not unique,
• there exists a better/optimal choice of κk for each of
different applications (due to its intrinsic conditions),



• any choice of κk depends on predetermined purposes,
e.g. control the system using uk as control input or
maintain the FAR below a target (5% for instance).

Therefore, in the present paper, we do not aim to provide
a generic solution of the optimal choice of κk, nor to solve
this problem in some specific cases. Instead, a flexible en-
hanced method is proposed by controlling the κk strength
using a level parameter λk > 0. The controlled a.a.c. is
now expressed as:

κk = λk ·mean {width([rk])} . (3)

The method is simple and meaningful, since the κk of
(2) is shown in Lu et al. (2021) to be chosen reasonably
according to analysis of the statistic Uk, i.e. κk is sensitive
to the fault, large enough to obtain a small FAR (e.g.
≤ 5%) in the fault free case, sensitively affected by
width([rk]) as well as Uk but it does not increase as fast
as the later whenever a fault occurs and affects on the
width([rk]). This choice also provides a good performance
fault detection with FAR < 3% in several scenarios of
simulations. Thus, the κk of (3) is raised naturally and its
different controlled levels can be easily adapted to different
applications and purposes.

In addition, we let open the choice of a.a.c. for designers
but provide some guidelines and propositions as follows:

P1) Constant level. This is the most simple use of the
level parameter, in which λk ≡ c, ∀k ≥ 1, and
c > 0 is determined experimentally by simulating
many scenarios of the considered application. The
best value of c according to some criteria is chosen.

P2) Piece-wise constant level. This is an advanced version
of P1, in which λk ≡ ci, for Ni < k ≤ Ni+M , ci > 0,
{M,Ni, i} ⊂ N and N0 = 0. The levels ci can be
determined such that FAR computed after every M
time instants is bounded in some range [x, x]. Once
FAR is smaller than x the level must be increased
and vice-versa. Other criteria can be proposed to
determined the level parameters.

The approach P1 is necessarily implemented off-line in
the design stage while the approach P2 is apt to be
implemented online to provide updated λk’s after every
delay of M time instants. This online procedure can be
effectuated by using simultaneously two eADFC detectors
as shown in Fig. 1. Indeed, the first detector aims at
generating the detection signals for the system. The second
one consists in providing an updated level λk by computing
FAR indexes and using virtual faults f testk .

System

fk

uk yk = y0k + fk

eADFC detector 1

eADFC detector 2

f testk
Update box

π̃k

λk

+

+

πk

Fig. 1. General eADFC piece-wise constant level imple-
mention diagram

Finally, the adjusting procedure of Algorithm 1 is im-
portant to enhance the fault detection method. It can

help to reduce the FAR index by considering that in a
window of size W (before or after time instant k), if the
number of consecutive detected faults is not beyond W ,
then these faults (if exist) don’t cause serious effects and
will be dismissed. More precisely, πk is kept its value 1 if∑k+j

i=k−W+1+j πi = W for j = 0 or j = W − 1, which is
expressed equivalently by line 14 of Algorithm 1.

The enhanced method is summarized and presented by
Algorithm 1 in the following.

Algorithm 1 eADFC method

1: Initialization: [x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R],
α, λk, W , uk, yk, k = 1, 2, ..., N .

2: for k = 1, 2, 3, ...N do
3: Compute: [x̂k|k−1] and [Pk|k−1] using OUBIKF

(Algo.1 in Lu et al. (2021)).
4: [rk] = yk − [C][x̂k|k−1]− [D]uk
5: [Sk] = [C][Pk|k−1][C]

T + [R]
6: Find ak s.t. : S+([Sk]) ⪯ akI using Theorem 2 in Lu

et al. (2021).
7: Uk = sup{abs([rk]T [rk]/ak)}
8: κk = λk ·mean {width([rk])}
9: Find δk s.t.: P(χ2(κkny) > δk) = α.

10: Detection signal : πk = I(Uk > δk).
11: end for

Adjusting procedure:
12: Let πk=1:N+2W ← [01×W , πk=1:N ,01×W ]
13: for k = 1 +W, ..., N +W do

14: πk ← or

(
I

(
k∑

i=k−W+1

πi =W

)
, I
(

k+W−1∑
i=k

πi =W

))
15: end for
16: πk=1:N ← πk=1+W+⌊W/2⌋:N+W+⌊W/2⌋
Notes: 0 < α < 1, λk > 0, W ≥ 1.

3. APPLICATION

In this section, the efficiency of the proposed method is
highlighted using a vehicle model validated on a real car.

3.1 Bicycle model

The vehicle model parameters obtained by an identifica-
tion process on the Renault Mégane Coupé are presented.
Indexes i = {f, r} and j = {l, r} are used to identify ve-
hicle front, rear and left, right positions, respectively. The
full vehicle model with the nonlinear equations describing
its dynamical behaviour can be found in Fergani (2014).

Since the full model is highly nonlinear, a linear bicycle
model as illustrated by Fig. 2 reproducing the lateral
behaviour of the car is used for this study by linearizing
the former. Reference to Fig. 2, β(t) is the sideslip angle
and ψ(t) is the vehicle yaw which form the model state
variables. Ftyf

(t) represents lateral front tire forces, Ftyr
(t)

represents lateral rear tire forces and Ftxf
(t) represents

the longitudinal front tire forces, v is the vehicle speed,
∆Ftxr(t) is the differential rear braking force (obtained
based on the braking torques Tbrj ), δ is the steering angle
and Mdz is the yaw moment disturbance.

The model is obtained considering the following: a) Low
sideslip angles: |β| < 7 degrees, b) Low longitudinal slip
ratio: < 0.1, c) Low steering angles: cos(δ) ≃ 1.



Fig. 2. View of the bicycle model reproducing the lateral
behaviour of the car.

The linearized lateral tire forces are:

Ftyf
(t) = Cfβf (t), Ftyr

(t) = Crβr(t), (4)

with the front and rear sideslip angles βf (t) and βr(t):

βf (t) = δ(t)− β(t)− lf ψ̇(t)

v
, βr(t) = β(t) +

lf ψ̇(t)

v
. (5)

This leads to the following state space representation (6):[
β̇(t)

ψ̈(t)

]
=


−Cf − Cr

mv
1 + µ

−lrCr − lfCf

mv2
−lrCr − lfCf

Iz

−l2fCf − l2rCr

Izv

[ β(t)
ψ̇(t)

]

+

 Cf

mv
0 0 0

lfCf

Iz

1

Iz

SrRtr
2Iz

−SrRtr
2Iz


 δ
Mdz

Tbrl
Tbrr

 .
(6)

Remark 1. The sideslip dynamics are highly nonlinear.
They cannot be measured thanks to conventional sensors.
µ is the tire/road adhesion coefficient. It takes value in
[0, 1] depending on the road conditions (dry, wet, icy,...)
and influences strongly the vehicle lateral dynamics.

3.2 Simulation

The discretization of the model is performed with a time
period T = 0.05s. Then, point matrices A, B, C, D
are obtained and interval matrices [A], [B], [C], [D] are
generated as follow: for M ∈ {A,B,C,D}, let M =
mid([M ]) and choose the radii rad([M ]) at random in
[0 , 0.5]. The covariance matrices [Q] and [R] are generated
in the same way by noting that their diagonal elements
must be intervals of positive real numbers.

Inputs uk’s are simulated according to a dynamic change
for N = 864 time instances, i.e. the vehicle is assumed to
be driven at 15 m/s on a dry road (µ = 1) and a double line
change maneuver is performed from t = 0.5s to t = 1.5s
by the driver. The initial state is chosen at x0 = (0, 0)T .
For every k, choose at random Ak, Bk, Ck, Dk, Qk, Rk

in corresponding interval matrices and so that Qk ⪰ 0
and Rk ⪰ 0. Then, wk ∼ N (0, Qk), vk ∼ N (0, Rk) are
simulated and {x1:N , y1:N} are computed according to (1).

Sensor faults are generated in terms of additive vectors
fsk ∈ Rny . Let b, b′ ∈ R be constant fault values, following
types of error will be handled in the remaining:

Type 1: fsk = b.1 where 1 is the all-ones vector in Rny .
Type 2: fsk = b.ej where ej is the j-th column of the

identity matrix Iny
.

Type 3: fsk = b.ej + b′.ej′ , with j ̸= j′.

The error terms are added to yk for all k in a range R with
length l, i.e. R = r : r+ l−1 for r ∈ {1 : N − l+1}. Every

sequence {y1i, y2i, ..., yNi}, with i ∈ {1, ..., ny}, is called a
chain. So, the errors occurred on multiple chains of yk in
type 1 and type 3 and only on single chain j in type 2.

Algorithm 1 is applied with following initializations:
α = 0.05, W = 5, [x̂0] = ([−0.5, 0.5], [−0.5, 0.5])T ,
P0|0 = max{diag(sup([Q]))}I = 0.4412 I , upper bounds
ωkI of any set S+([M ]) identified by ωk = ∥Max([M ])∥F
(Frobenius norm) where [M ] = ([mij ]) and Max([M ]) =
(maxij) so that maxij = sup([mij ]) if mid([mij ]) ≥ 0 and
maxij = inf([mij ]) otherwise.

3.3 Results using identity level parameter λk ≡ 1

First results. A result of fault detection using eADFC
method for type 1 of error with fault value b = 20 is
shown in Fig. 3. The error range [722 : 772] is between
the two vertical black lines. The detection signals are very
well determined.

Fig. 3. eADFC method-Fault detection for Bicycle model.

A comparison between the proposed method and a fixed
d.f. χ2 fault detection strategy shows the importance of
the adaptive characteristic of the approach. The method
proposed in Tran (2017) (called Method A in the following)
uses the statistic Tk = inf([rk]

TS−1
k [rk]) with S+([Sk]) ⪯

Sk. In this method, a fault is detected if Tk > δ where
δ is determined by P(χ2(Wny) > δ) = α. The first
disadvantage of method A is that interval computation
can let Tk be negative, consequently no fault is detected
as illustrated in Fig.4 according to the bicycle model
simulation. The second disadvantage is that a windows
size W is arbitrarily chosen. An example can be built
to illustrate this method works quite well (Fig.5 Left) in
which Tk is non negative, but then the second disadvantage
is still critical: another choice of W leads to another
detection result. Our adaptive method in this case still
provides an accurate fault detection (Fig.5 Right).

Fig. 4. Method A - Fault detection using statistic
Tk = inf([rk]

TS−1
k [rk]) for Bicycle model.



Fig. 5. Example-Fault detection with bias sensor fault
b = 10: (Left)Method A, (Right) eADFC method.

Advanced results. Now, in order to survey, using eADFC
method, how well the detection is when influencing factors
are changed (e.g. fault values b and b′, error range R and
simulated variable yk), indicators introduced in section 2
are used in following simulations. Three types of errors are
simulated to get insight of the proposed method.

For this sake, the following scenario setting are used.
Let fsk ’s be identical error vectors with k in an error range
R whose length is l = 50. For each of different values
of fsk , choose randomly error range R and do L = 100
times of yk simulations and fault detections. Indicators are
computed for each of L simulation times and their means
are yielded afterward. Let τk = max{fsk}/Max width
where max{fsk} is the maximum component of fsk and
Max width is the maximum width of diagonal elements
of [Q] and [R]. This quantity provides an idea of how
large is the maximum fault value with respect to some
known quantity propagating through the dynamic system
and affecting the measure values yk, that is the maximum
variance of noises.

Remark 2. This scenario is a combination of those scenar-
ios presented in Lu et al. (2021), in which the error range
or the yk simulation is fixed.

Type 1 error. The sensor faults come to all chains of {yk},
fsk = b.1 and τk = τ = b/Max width with b = 0 : 5 : 30.

Table 1. Fault detection for type 1 error.

b τ DR% NDR% FAR% EFF%

0 0 1.48 98.52 1.53 -0.05
5 13.8 4.54 95.46 1.59 2.95
10 27.5 13.88 86.12 1.69 12.19
15 41.3 72.38 27.62 1.97 70.41
20 55.0 95.38 4.62 1.75 93.63
25 68.8 99.62 0.38 2.13 97.49
30 82.5 99.96 0.04 1.96 98.00

Type 2 error. The sensor faults only occur in one chain
of {yk}, fsk = b.ej and τk = τ = b/Max width with
b = 0 : 5 : 60. The chain j on which the faults occur is
chosen randomly at each of L times of yk simulations. This
situation corresponds to a single sensor and normally not
all sensors are damaged at the same time. This situation
is necessary for fault isolation in a further phase.

Type 3 error. Let b = 10.m and b′ = 10.(m + 1) for
m = 1, 2, 3. The chains j and j′ at which the faults occur
are also chosen randomly at each simulations. This setting,
while still being of the multiple error type, can represent
an intermediate situation between the settings of type 1
and type 2 error previously presented.

Table 2. Fault detection for type 2 error.

b τ DR% NDR% FAR% EFF%

0 0 3.28 96.72 1.46 1.82
5 13.8 3.74 96.26 2.01 1.73
10 27.5 3.58 96.42 1.44 2.14
15 41.3 10.26 89.74 1.66 8.60
20 55.0 26.50 73.50 1.74 24.76
25 68.8 42.26 57.74 1.88 40.38
30 82.5 50.40 49.60 1.80 48.60
35 96.3 75.58 24.42 1.64 73.94
40 110.0 78.08 21.92 1.52 76.56
45 123.8 85.22 14.78 1.72 83.50
50 137.5 89.88 10.12 2.91 86.98
55 151.3 96.24 3.76 2.10 94.14
60 165.0 98.18 1.82 2.05 96.13

Table 3. Fault detection for type 3 error.

(b, b′) DR% NDR% FAR% EFF%

(10,20) 42.84 57.16 5.29 37.55
(20,30) 79.38 20.62 5.33 74.05
(30,40) 98.82 1.18 5.59 93.23

The following remarks are valid for all three types of errors
already simulated:

(R1) FAR does not vanish even in the fault free case
(b = 0). This fact implies that there are other
reasons (than fault) causing FAR. Actually, in this
case, the error range degenerates to length 0, all
1-value detection signals are false detected signals,
DR and NDR are not defined and FAR must be
recomputed, e.g. according the first row of Table 1:
FAR = [1.53× (N − 50) + 1.48× 50] /N ≈ 1.527.
However, we can think that b has a very small value
and thus results in the Tables remain unchanged.

(R2) The negative value for EFF at b = 0 in Table 1 can
be explained by the fact that, in this case, the fault
detection procedure not only provides no efficiency
gain, but rather a loss.

(R3) The factors causing FAR are multiple. Two of these
factors that differ from simulations to simulations
are random noises and random error ranges, which
can therefore be called specific factors. Some other
factors that exist for all simulations, and which can
therefore be called general factors, are: the model
performance (how well the model describes the dy-
namics of the vehicle), the interval computations, the
lack of knowledge on the exact values of Ak, Bk,
Ck,... and the performance of the χ2-statistic test
(with α significance level).

(R4) DR and EFF have ascending trends according to b
values (or to max{b, b′}) while FAR is rather stable
in some range with positive values.

(R5) There is a threshold for good/bad result of EFF, e.g.
b ≥ 15 for type 1, b ≥ 35 in type 2, max{b, b′} ≥ 30
in type 3.

(R6) The choice of significance level α is also a tunning
factor for an appropriate fault detection.

3.4 Results for other constant level parameters λk

In this section, some other constant level parameters ap-
plied to Bicycle model are investigated. So, the perfor-
mance of the eADFC method with constant level (P1) can
be completely illustrated. The piece-wise constant level
case (P2) is built straightforwardly from the former.



In the following simulations, λk ≡ c, ∀k ≥ 1, with
c ∈ {0.7, 0.3}. The simulation results are shown in Tables
4-5 in which only the type 2 error is concerned. Both cases
of c are applied for common data samples.

Table 4. Fault detection for type 2 error using
a.a.c κk with level parameter λk ≡ 0.7

b τ DR% NDR% FAR% EFF%

0 0 5.84 94.16 4.39 1.45
5 13.8 5.88 94.12 4.62 1.26
10 27.5 13.30 86.70 4.58 8.72
15 41.3 29.52 70.48 4.42 25.10
20 55.0 53.56 46.44 5.01 48.55
25 68.8 68.10 31.90 3.99 64.11
30 82.5 77.94 22.06 3.84 74.10
35 96.3 85.08 14.92 4.43 80.65
40 110.0 94.12 5.88 4.71 89.41

.

Table 5. Fault detection for type 2 error using
a.a.c κk with level parameter λk ≡ 0.3

b τ DR% NDR% FAR% EFF%

0 0 24.64 75.36 25.14 -0.50
5 13.8 37.12 62.88 24.52 12.60
10 27.5 61.84 38.16 25.12 36.72
15 41.6 84.50 15.50 24.08 60.42
20 55.0 95.46 4.54 24.72 70.74
25 68.8 99.42 0.58 24.83 74.59
30 82.5 99.82 0.18 24.06 75.76
35 96.3 99.84 0.16 23.96 75.88
40 110.0 99.92 0.08 25.25 74.67

Tables 4 and 5 show that FAR increases when the level
parameter λk decreases from 0.7 to 0.3. EFF also rises up
for small values of b (< 35) according to the decrease of c.

When c = 0.7 (Table 4), the values of the FAR index
disperse in [3.8 , 5.1](%), and thus EFF = DR− FAR does
not overpass 96.2% even if DR reaches its maximum
value (100%). In addition, compared to Table 2 (c = 1),
EFF increases considerably for many fault values b < 35
(starting at 10) and begins to achieve a remarkable rate
(64.11%) starting at b = 25. Also in comparison with Table
2, but then the EFF does not increase in the case b = 5;
this is due to the fact that Tables 2 and 4 display the
simulation results of the different samples. The case b = 0
is not comparable (see remark (R1)).

When c = 0.3 (Table 5), the FAR range is [23.9 , 25.3](%),
EFF is never beyond 76.1%.

So, depending on the applications requiring a low FAR or
a high EFF for a fine fault detection (detecting error with
small fault value), different a.a.c κk can be chosen suitably
thanks to the level parameters λk > 0.

4. CONCLUSION

An enhanced adaptive method to fault detection is pro-
posed in this paper. The enhancement is presented in
connection with the former method. The simplicity and
efficiency of the method is highlighted from the design
idea to the implementation perspective (as shown in the
application simulations). The proposed method is well
combined with the active fault diagnosis (AFD) approach
developed in Lu et al. (2022).
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détection et isolation de défauts dans les systèmes dy-
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