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Analytical Bounds for an Interval Kalman Filter
Quoc-Hung Lu1, Soheib Fergani1, Carine Jauberthie1

Abstract—This paper is concerned with analytical develop-
ments of results firstly introduced by the authors in [1]. These
developments are devoted to the optimization of upper bounds
of the interval covariance matrices appearing in the Interval
Kalman Filter [2]. The proposed study is mainly highlighted
through two aspects. Firstly, the optimization is further per-
formed by considering a class of upper bounds and minimizing
the traces of these bounds in two stages (in terms of a gain
matrix and then with respect to a scalar parameter). Secondly, the
paper provides conditions under which the optimal trace value
is controlled and hence the proposed Algorithm in [1], namely
Optimal Upper Bound Interval Kalman Filter (OUBIKF), is
ensured to perform with stability (i.e. without width explosion of
the resulting interval estimators). Also under these conditions, the
OUBIKF Algorithm, having a similar structure of the Standard
Kalman Filter (SKF), is ensured to get a smaller trace upper
bound of the covariance matrices in the correction step than the
one in the prediction step. Numerical simulations based on an
automotive model is performed to illustrate the developed results.

I. INTRODUCTION

With the growth of the industrial automatization and the fast
development of intelligent system applications, the necessity
of efficient control strategies have risen to higher levels.
Nerveless, the main problems to the synthesis of such solutions
have been the cost and the feasibility. Indeed, all efficient
control approaches are based on reliable information either
from high precision sensors (expensive and not always easy to
embed) or high fidelity information reconstruction (estimators,
observers). For this sake, in both industry and academia,
Kalman Filter introduced in [3] has always been interested by
its elegant form and result characteristics (optimal estimator,
on-line implementation,...). This is a kind of stochastic ap-
proach for estimation and referred as Standard Kalman Filter
(SKF). Since then, many extensions of the SKF have been
presented to improve its applicability and performance when
dealing additionally with bounded uncertainties, of which the
two major derivations are robust and interval Kalman filtering.

The robust Kalman filtering, [4]–[7], provides essentially
point estimators (of the real states) attempting to limit the dis-
turbance effects to the filter performance. For instance, in [6]
and [7], finite-horizon robust Kalman filters for discrete time-
varying uncertain systems with additive uncertain covariance
white noises are studied without and with missing measure-
ments respectively. Both papers concern an minimization of
the trace of a chosen upper bound of all admissible error
estimation covariances with respect to (w.r.t.) some design
scalar parameters selected (or tuned) adequately, says a point-
wise optimization approach.

The interval Kalman filtering provides essentially inter-
vals containing all admissible estimators (of the real states)
consistent with considered uncertainties and usually being
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used as interval estimators for bounds of the real states. It
may have a relation with the robust approach when using
an element (usually the center) of the yielded interval as
a robust estimator in some sense to be precised, however
this is not the initial objective of the interval approach.
The Interval Kalman Filter (IKF) was first introduced in [2]
with an optimal solution and a suboptimal scheme for the
purpose of real-time implementation. Then, authors have tried
to further investigate this interesting research by its simplicity
(although with conservatism) in computation thanks to interval
computations (Section II-A) and the similar structure of the
SKF with two steps (prediction and correction) in which the
later would improve the estimator obtained from the former
via the stake of a gain matrix [1], [8], [9].

[8] and [9] study enhancing methods for IKF and [1]
proposes an optimal solution for the conservatism problem due
to the choice of the IKF bounds. In [8], the proposed method
consists in adding some positivity constraints together with the
SIVIA algorithm to obtain the interval matrix [Kk] containing
all potential optimal gains and hence yielding guaranteed es-
timation results (without missing some admissible estimations
as in the suboptimal case proposed by [2]). In [9], the interval
[Kk] of [8] is replaced by a point matrix Kk minimizing the
trace of an upper bound of the estimation error covariances,
thanks to which the computation time is reduced and the
resulted estimators are less conservative. In [1], an optimal
upper bound of all symmetric positive semidefinite matrices
belonging to a given interval is provided under the form α∗I
with α∗ ∈ R+, thanks to which upper bound expressions are
simplified and suitable for advanced optimizations and the
computation time is also reduced. Then considering a large
class of upper bounds characterized by two real parameters
and including the one used in [9], [1] also proposes a point-
wise optimization for each choice of these scalar parameters.

The present work is a development of [1]. The first moti-
vation drives our researches is to find an uniformly optimized
solution of the error estimation covariance upper bounds in
terms of their characterized scalar parameters. Furthermore,
in the interval approach, a major issue is the conservatism of
the resulted estimators due to the one of interval computations
accumulated in algorithm iterations. In the worst case, the
width of the resulted estimators may explode with a very high
value. No study in the above papers addresses the conditions
under which the provided algorithms can be controlled to
perform with stability, i.e. without explosion in width of the
resulted estimators. This is another motivation for our work.

The paper is organized as follows: Section II starts with
a brief preliminary part, then introduces the OUBIKF with
two stages optimization and guaranteed conditions. In Section
III, simulations using the proposed estimation filter applied on
an automotive model are provided to emphasize its efficiency.
Finally, Section IV is the paper conclusions.
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II. OPTIMALLY BOUNDED INTERVAL KALMAN FILTER

A. Preliminaries
Denote S(n) =

{
M ∈ Rn×n : M = MT

}
and S+(n) =

{M ∈ S(n) : M ⪰ 0}, where M ⪰ 0 stands for a real positive
semi-definite matrix M . For an n × n matrix M = (mij),
the notations σi(M), λi(M) (i = 1, ..., n) indicate resp. the
singular values and eigenvalues of M among which σmax(M)
and λmax(M) are the corresponding maximum values. tr(M),
∥M∥, ∥M∥∗, ∥M∥F are denoted resp. for the trace, operator
norm, nuclear norm and Frobenius norm of M .

Let M,N be two real squared matrices of the same size.
Define an order between M and N denoted by N ⪯ M if
and only if M −N ⪰ 0. M is called an upper bound of N ,
and N a lower bound of M . This partial order is extended to
the notion of bounds for a non empty set Ω of real squared
matrices: L is an upper (lower) bound of Ω, denoted by Ω ⪯ L
(L ⪯ Ω) if M ⪯ L (L ⪯ M), ∀M ∈ Ω. If P and Q are two
upper (lower) bounds of Ω, then P is better than Q if the norm
of P is smaller (greater) than or equal to the norm of Q.

A real interval, denoted by [x], is a closed connected subset
of R. A real interval matrix [X] of dimension p× q is a
matrix with real interval components [xij ], i ∈ {1, ..., p},
j ∈ {1, ..., q}. Write X ∈ [X] to indicate a point matrix
X = (xij) belonging element-wise to [X]. Define

sup([X])
△
= (sup([xij ])) and inf([X])

△
= (inf([xij ]))

as element-wise operators and
mid([X])

△
= (sup([X]) + inf([X]))/2 = (mid([xij ])),

rad([X])
△
= (sup([X])− inf([X]))/2 = (rad([xij ])),

width([X])
△
= sup([X])− inf([X]) = (width([xij ])),

where the last three matrices are called resp. the midpoint
matrix, the radius matrix and the width matrix of [X]. Denote
also X = sup([X]), X = inf([X]), [X] = [X,X], where
X and X will be called resp. the largest and smallest matrix
of [X] to distinguish with the notion of upper/lower bound
matrices defined above. Let [X] be an n × n real interval
matrix, denote: S([X])

△
=

{
X ∈ [X] : X = XT

}
S+([X])

△
=

{X ∈ S([X]) : X ⪰ 0}.
The basic interval operators ⋄ ∈ {+,−,×,÷} defined in

[10] can be used to compute directly all operations [u]⋄[v] and
α⋄[u], for real intervals [u], [v] and α ∈ R, without any further
approximation algorithm. Then, interval matrix computations
are defined similarly to matrix computations using the basic
operators and more general operators are constructed by meant
of inclusion function [10]. In practice, the package Intlab
developed for Matlab is used for these computations.

Again, we recall that the conservatism of interval computa-
tions is a major issue of all interval filtering and their objective
is to find (interval) bounds for real states rather than their point
estimators, so it is worthy to define
Definition 1. An interval filter is called C-stable if the widths
of interval estimators for all time instant k are upper bounded
by a common constant C.

B. First stages optimization of the Filter
Consider the following linear discrete time dynamical system{
xk = Akxk−1 + Bkuk + wk ,
yk = Ckxk + Dkuk + vk ,

k ∈ N∗, (1)

in which xk ∈ Rnx and yk ∈ Rny represent state variables
and measurements respectively, uk ∈ Rnu inputs, wk ∈ Rnx

and vk ∈ Rny stochastic noises with covariance Qk and Rk

respectively.
For any Kk ∈ Rnx ×ny , k ≥ 1, define:

φk(Kk)
△
= (I−KkCk)Pk|k−1(I−KkCk)

T +KkRkK
T
k , (2)

then φk(Kk) = Pk|k, φk(0) = Pk|k−1, where 0 is the zero
matrix whose dimension is appropriate to the context and
will be clarified if necessary under the notation like 0m×n.
Pk|k−1 and Pk|k are respectively prediction and estimation
error covariance in the SKF:

Pk|k−i
△
= E[(xk − x̂k|k−i)(xk − x̂k|k−i)

T ] , i ∈ {0, 1} ,
where x̂k|k−1 and x̂k|k are respectively a priori and a poste-
riori estimates of the real states xk.

Let Sk = CkPk|k−1C
T
k + Rk and assume that Sk is

nonsingular 1. Let K∗
k = Pk|k−1C

T
k S

−1
k , then

φk(K
∗
k) = (I −K∗

kCk)φk(0) = (I −K∗
kCk)Pk|k−1.

Theorem 1. Consider system (1) with SKF assumptions. Let
k ≥ 1. Then:

0 ⪯ φk(K
∗
k) ⪯ φk(Kk) ,∀Kk ∈ Rnx ×ny , (3)

K∗
k = argminKk

tr{φk(Kk)} = argminKk
tr{Pk|k}. (4)

Proof. Since any covariance matrix is positive semidefinite,
then φk(Kk) ⪰ 0, ∀Kk, and hence φk(K

∗
k) ⪰ 0. By

assumptions, Sk ∈ S+(ny) and is nonsingular, then

0 ⪯ (Kk − Pk|k−1C
T
k S

−1
k )Sk(Kk − Pk|k−1C

T
k S

−1
k )T

where the right hand side (RHS) of the above expression
equals φk(Kk) − φk(K

∗
k). Thus, (3) is implied. Then, (4) is

concluded using Proposition 2 of [1].

Assumptions A1: Matrices Ak, Bk, Ck, Dk are unknown
and belonging to given interval matrices [A], [B], [C], [D]
respectively. wk, vk are centered Gaussian vectors with co-
variance matrices Qk and Rk belonging respectively to given
interval matrices [Q] and [R]. The initial state x0 is also
Gaussian with mean µ0 and covariance matrix P0. In addition,
x0, {w1, ..., wk} and {v1, ..., vk} are mutually independent.

Aim: The aim of the Filter is to get estimate intervals
[x̂k|k] which contain all admissible estimates x̂k|k of states
xk induced by mixed uncertainties. Then related confidence
intervals are yielded according to the 3-σ rule since xk’s follow
the multivariate normal distribution.

Principle: OUBIKF follows the same structure of the
SKF. In the prediction step, thanks to interval computations,
the a priori estimate [x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk

is provided. It contains all admissible estimates x̂k|k−1 =
Akx̂k−1|k−1 + Bkuk for all values of Ak ∈ [A], Bk ∈ [B]
and x̂k−1|k−1 ∈ [x̂k−1|k−1]. In the correction step, an interval
estimator [x̂k|k] = [x̂k|k−1] + Kk(yk − [ŷk]) is provided,
in which [ŷk] = [C][x̂k|k−1] + [D]uk and the gain Kk is
a point matrix chosen in an optimal way. The gain Kk is
chosen by a two stages optimization considering the class of

1The nonsingularity of Sk can be assured if Rk is assumed to be positive
definite or more strictly measurement noises are assumed to be vectors of
independent random components. In practice, the pseudo-inverse S+

k is used
instead with notice that S+

k = S−1
k when the later exists.
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upper bounds Γ
△
=

{
φk(Kk, β) : S+([Pk|k]) ⪯ φk(Kk, β)

}
,

where [Pk|k] is the interval matrix containing all admissible
estimation error covariances Pk|k and the form of φk(Kk, β)
will be clarified in Theorem 2c). Γ also includes the upper
bound of S+([Pk|k]) used in [9]. Each upper bound in Γ is
seen as a function of two arguments: gain matrix Kk and
real parameter β > 0. The optimization is performed in two
stages, first in terms of Kk and then with respect to β in order
to get the optimal bound φ∗

k of S+([Pk|k]) among others in Γ.
Then, the Filter is developed and applied with the guaranteed
conditions under which the model should be designed to obtain
the Filter stability (Definition 1) thanks to the fact that the
tr{φ∗

k} is non-asymptotically and asymptotically bounded.

Theorem 2. Consider system (1) with assumptions A1. Let
M = mid([C]), Rij be a matrix whose elements are zeros
except its ij-th element equals to that of rad([C]), n0 the num-
ber of non null radius of rad([C]) and Σ =

∑
i,j RijR

T
ij =

diag{rad([C])rad([C])T }. The following statements hold:

a) ∀k ≥ 1, ∀Ak ∈ [A], ∀Ck ∈ [C], ∀Qk ∈ [Q], ∀Rk ∈ [R],
∀x̂k|k ∈ [x̂k|k], ∀β > 0 and ∀Kk ∈ Rnx×ny :

Pk|k ⪯ (1 + β−1n0) (I −Kk M)Pk|k−1 (I −Kk M)
T

+ Kk

[
(β + n0)

ny∑
i=1

nx∑
j=1

RijPk|k−1R
T
ij +Rk

]
KT

k , (5)

b) If Pk|k−1 ∈ [Pk|k−1], S+([Pk|k−1]) ⪯ αkI and S+([R]) ⪯
γI , then ∀k ≥ 1, ∀Ak ∈ [A], ∀Ck ∈ [C], ∀Qk ∈ [Q], ∀Rk ∈
[R], ∀x̂k|k ∈ [x̂k|k], ∀β > 0 and ∀Kk ∈ Rnx×ny :

Pk|k ⪯ αk(1 + β−1n0) (I −Kk M) (I −Kk M)
T

+ Kk [αk (β + n0) Σ + γI]KT
k . (6)

c) Let φk(Kk, β) be RHS of (6) and K
∗
k,β = MTS−1

k,β with
Sk,β = MMT + βΣ+ γ/[αk(1 + n0/β)]Iny

. Then:

φk(K
∗
k,β , β) = αk(1 + n0β

−1)(Inx −K
∗
k,βM), (7)

0 ⪯ φk(K
∗
k,β , β) ⪯ φk(Kk, β),∀Kk ∈ Rnx ×ny ,∀β > 0. (8)

K
∗
k,β = argminKk

tr{φk(Kk, β)}. (9)

Proof. The RHS of (5) is upper bounded by the RHS of (6)
implied by using the property: A ⪯ B ⇒ XAXT ⪯ XBXT

(with appropriate dimension). Thus, the statement b) is proved.
The proof of statement c) can be derived in a similar way as
the one of Theorem 1. Let’s now prove the statement a).

Let Ck ∈ [C]. Applying the decomposition Ck = M +∆k

where ∆k =
∑ny

i=1

∑nx

j=1 αij(k)Rij for appropriate αij(k) ∈
[−1, 1] to (2), one gets

Pk|k = Λ1 + Λ2 + Λ3 +KkRkK
T
k ,

where Λ1 = (I −Kk M)Pk|k−1 (I −Kk M)
T ,

Λ2 = (Kk∆k)Pk|k−1 (Kk∆k)
T and Λ3 = Z + ZT with

Z = (Kk M − I)Pk|k−1 (Kk∆k)
T .

Writing Pk|k−1 = P
1/2
k|k−1

(
P

1/2
k|k−1

)T

and using (14),

Λ3 ⪯
∑

i,j Tij

{
β−1
ij Λ1 + βijKk RijPk|k−1 (Kk Rij)

T
}
,

for any βij > 0, where Tij = 1 when rad([C])ij > 0 and null
otherwise. Then, applying (15), ∀σi,j,u,v = σ−1

u,v,i,j > 0:

Λ2 ⪯ Kk

[∑
i,j Tij

(∑
u,v Tuvσi,j,u,v

)
RijPk|k−1R

T
ij

]
KT

k .

Choose βij = β and σi,j,u,v = 1 for all i, j, u, v and get

Pk|k ⪯
(
1 +

∑
i,j β

−1Tij

)
Λ1 +KkRkK

T
k

+ Kk

[∑
i,j Tij

(
β +

∑
u,v Tuv

)
RijPk|k−1R

T
ij

]
KT

k .

Then, (5) holds noting that
∑ny

i=1

∑nx

j=1 Tij = n0.

Remark 1. In [9], the choice βij = σi,j,u,v = 1 is
used. In [1], beside choosing βij = β > 0, the choice
σi,j,u,v = σ > 0, ∀i, j, u, v, is used regardless the condition
σi,j,u,v = σ−1

u,v,i,j . In the present work, a circumspect study of
the minimization of tr{φk(K

∗
k,β , β)} is provided, noting that

1 = inf sup{σi,j,u,v > 0 : σi,j,u,v = σ−1
u,v,i,j} is used.

C. Second stage of optimization and Guaranteed conditions

In this stage, instead of finding directly the optimal upper
bound φ∗

k = infβ>0 φk(K
∗
k,β , β), the function

ϕk(β)
△
= tr{φk(K

∗
k,β , β)}, β > 0,

is considered to find its minimum Φ∗
k

△
= infβ>0 ϕk(β). The

following notations are used:
◦ All notations defined in Theorems 1 and 2:

φk, K∗
k , Sk, M , Rij , Σ, n0, αk, γ, φk, K

∗
k,β , Sk,β .

◦ r = rank(M), {λi}i=1,...,r are non null eigenvalues of
MMT , dmin = min{Σii ̸= 0, i = 1, ..., ny}, dmax =
max{Σii ̸= 0, i = 1, ..., ny}.

Lemma 1. Let α > 0, c > 0, β > 0, a(β) = α(1 + n0/β),
ξ(β) = a(β)

[
nx − tr{MT

(
MMT + βcIny

)−1
M}

]
. Then

limβ→∞ ξ(β) = αnx = αtr{Inx},
limβ→0 ξ(β) = αcn0tr{(MMT )+} , if nx = r

= ∞ , if nx > r.
Furthermore:
a) If nx = r and λi ≥ n0c, ∀i = 1, ..., r, then ξ(β) is non-
decreasing and

inf
β>0

ξ(β) = lim
β→0

ξ(β), sup
β>0

ξ(β) = lim
β→∞

ξ(β).

b) If nx > r and λi ≤ n0c, ∀i = 1, ..., r, then ξ(β) is non-
increasing and

sup
β>0

ξ(β) = lim
β→0

ξ(β), inf
β>0

ξ(β) = lim
β→∞

ξ(β).

Proposition 1. Let k ≥ 1, ϵ > 0, c1,k = dmin+
γ

αk(ϵ+n0)
and

c2,k = dmax +
γ

αkn0
. Let h(β) = αk(1 + n0/β) [nx − r],

g(β) = αk(1 + n0/β)nx and for i ∈ {1, 2},
ξi,k(β) = αk(1+n0/β)

[
nx − tr{MT

(
MMT + βci,kIny

)−1
M}

]
.

Then for all 0 < β ≤ ϵ:
0 ≤ h(β) ≤ ξ1,k(β) ≤ ϕk(β) ≤ ξ2,k(β) ≤ g(β) , (10)

Furthermore:
a) If nx = r and λi ≥ n0dmax +

γ
αk

, ∀i = 1, ..., r, then

0 < ck.tr{(MMT )+} ≤ Φ∗
k ≤ limβ→0 ϕk(β) ≤
≤ ck.tr{(MMT )+} < αknx,

where ck = αkn0dmin + γ and ck = αkn0dmax + γ.

b) If nx > r and λi ≤ n0dmin + γ
αk

, ∀i = 1, ..., r, then

∞ = limβ→0 ϕk(β) ≥ ξ2,k(β) ≥ ϕk(β) ≥
≥ ξ1,k(β) ≥ limβ→∞ ϕk(β) = αknx = Φ∗

k.

Remark 2. Figure 1 illustrates Proposition 1 in which (10) is
highlighted. Lemma 1 is technically needed for Proposition 1,
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while the last one provides the bounds of ϕk(β) together with
its infimum value Φ∗

k in two accessible cases.
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Figure 1: Left: hk(β) and gk(β) at a fixed time k ≥ 1.
Right: An example of ϕk(β) for the case nx = r and
λi ≥ n0dmax + γ/αk, ∀i = 1, ..., r at a fixed time k ≥ 1.

Guaranteed conditions: It is difficult to get the exact
infimum of ϕk(β), noted Φ∗

k, but its bounds and limits can
be determined conditioning:

C1 :

{
nx = r
λi ≥ n0dmax + γ/αk, ∀i = 1, ..., r.

Using Proposition 1 under conditions C1, the following ex-
pression can be obtained:

0 ≤ | lim
β→0

ϕk(β)− Φ∗
k| ≤ αkn0(dmax − dmin)tr{(MMT )+},

in which dmax, dmin are controllable. So, the minimization of
ϕk(β) (exactly or approximately) consists in how to design
the system under consideration to reach conditions C1 and
control dmax, dmin in an appropriate way.

Design of conditions C1:
Condition 1: nx = r. Since M ∈ Rny ×nx , r ≤

min{nx, ny}, to get r = nx, it requires:
• ny ≥ nx,
• M has nx linearly independent columns.
Note that the number of output measurements ny is not

necessary the number of physical sensors ns. In view of the
system design, it is not prohibited (and it is possible) to design
more measurement outputs than the number of states, although
the number of sensors can be not sufficient. The missing
measurements due to the lack of sensor can be (not always)
estimated by several ways, e.g. by an observer considered as
a virtual sensor or by known constraint conditions on the
bounds of these measurements. This situation also leads to
the rationality of using the interval matrix [C] to model the
bounded measurement uncertainty.

The second requirement can be regularized numerically in
particular for the interval context. A regularization [C] ←
[C] + [ϵ, ϵ] with appropriate small (point matrices) ϵ, ϵ can be
used, if it is necessary, so that the (new) matrix [C] still verified
all constraint conditions of the system and M = mid([C]) has
nx linearly independent columns.

Condition 2: λi ≥ n0dmax + γ/αk, ∀i = 1, ..., r.
This condition is equivalent to λmin ≥ n0dmax + γ/αk,

where λmin = mini=1,...,r{λi}. This condition is achievable
thanks to the Lemma 2 below.

Lemma 2. Let δ = maxi,j{rad([cij ])} with [C] = ([cij ]). If
for some s ∈ (0, 1), the following two expressions hold

◦ 0 ≤ δ ≤
√
s λmin

n0nx
,

◦ αk ≥ max
{

γ
(1−s)λmin

, supP∈S+([Pk|k−1])
{λmax(P )}

}
then the condition λmin ≥ n0dmax + γ/αk is verified.

Proof. By assumptions, dmax ≤ (s λmin/n0) and 1/αk ≤
(1− s)λmin/γ, implying that n0dmax +

γ
αk
≤ λmin.

The following lemma is used for Theorem 3 computations.
Only its third statement needs the first condition of C1.
Lemma 3. The following statements hold:

a) K
∗ △
= M+ = MT (MMT )+ = (MTM)+MT ∈ Rnx ×ny .

b) limβ→0 K
∗
k,β = K

∗
and limβ→0 φk(K

∗
k,β) = φk(K

∗
).

c) If rank(M) = nx then Inx −K
∗
M = 0nx ×nx .

Theorem 3. Assume that rank(M) = nx and assumptions of
Lemma 2 are verified. Then
φk(K

∗
) ⪯ lim

β→0
φk(K

∗
k,β , β) ⪯ lim

β→0
φk(K

∗
, β) ⪯

⪯ (αkn0δ
2nx + γ)(MTM)+ ⪯ αkInx (11)

where PK
∗

k|k
△
= φk(K

∗
) is the error covariance matrix associ-

ated with the use of Kk = K
∗
.

Assume further that S+([Q]) ⪯ λ1Inx , S+([A][A]T ) ⪯
λ2Inx

, S+([P0|0]) ⪯ α0Inx and λ2n0nxδ
2

λmin
≤ L < 1. Let

ΨL =
λ1n0nxδ

2 + γ

λmin(1− L)
and ΨL(k) = ΨL + (α0 −ΨL)L

k,

then

PK
∗

k|k ⪯ ΨL(k)Inx
, MSEK

∗
= tr{PK

∗

k|k } ≤ ΨL(k)nx , (12)

PK
∗

k+1|k ⪯ (λ2ΨL(k) + λ1) Inx . (13)

Remark 3. Since ΨL(k) = ΨL+(α0−ΨL)L
k, then ΨL(k) ↓

ΨL if α0 ≥ ΨL and ΨL(k) ↑ ΨL if α0 < ΨL. In the later case,
PK

∗

k|k ⪯ ΨLInx , ∀k ≥ 1. Furthermore, ΨL can be precomputed
and controlled before the algorithm starts. For instance, it can
be controlled the choice of L, s, δ so that ΨL ≤ Ψ with a given
constant Ψ > 0. Concretely, the constraint L

λ2
≥ s ≥ n0nxδ

2

λmin

can be reduce to s = L/λ2 = n0nxδ
2/λmin which implies

ΨL = λ1L
λ2(1−L) +

γ
λmin(1−L) . Let ΨL = Ψ > γ

λmin
and get

L =
Ψ− γ/λmin

Ψ+ λ1/λ2
, s = L/λ2 , δ2 = sλmin/(n0nx).

Proof. From Theorems 1-2, one gets:
0 ⪯ φk(K

∗
k) ⪯ lim

β→0
φk(K

∗
k,β) = φk(K

∗
) ⪯

⪯ lim
β→0

φk(K
∗
k,β , β) ⪯ lim

β→0
φk(K

∗
, β),

By assumptions of the theorem, the conditions C1 holds, then
lim
β→0

φk(K
∗
, β) = K

∗ [
αkn0Σ+ γIny

]
K

∗T
(Lemma 3c)

⪯ (αkn0δ
2nx + γ)(MTM)+,

in which Σ ⪯ δ2nxIny
and K

∗
K

∗T
= (MTM)+.

Since MMT and MTM have the common non null eigen-
values then they have the same λmin (positive). So we get
K

∗
K

∗T
= (MTM)+ ⪯ 1

λmin
Inx

and hence

limβ→0 φk(K
∗
, β) ⪯

(
αkn0δ

2nx + γ
)

1
λmin

Inx
⪯ αkInx

,
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where the last inequality holds thanks to λmin ≥ n0δ
2nx+

γ
αk

.
By recursion, we get
PK

∗

k|k = (Ã⊗
k,1)P0|0(Ã

⊗
k,1)

T+
∑k

i=1(Ã
⊗
k,i+1C̃i)Qi(Ã

⊗
k,i+1C̃i)

T

+
∑k

i=1(Ã
⊗
k,i+1K

∗
)Ri(Ã

⊗
k,i+1K

∗
)T ,

where Ã⊗
k,s = ÃkÃk−1...Ãs+1Ãs if s ≤ k and Ã⊗

k,s = I if
s > k, C̃k = I −K

∗
Ck, Ãk = C̃kAk.

For any p ≥ 1, Cp ∈ [C] is decomposed as Cp = M +
∆p, ∆p =

∑
i,j αij(p)Rij , αij(p) ∈ [−1, 1] and hence, using

Lemma 3 and (15), we get(
I −K

∗
Cp

)(
I −K

∗
Cp

)T

= K
∗
∆p∆

T
p K

∗T ⪯

⪯ K
∗
(n0Σ)K

∗T ⪯ n0δ
2nxK

∗
K

∗T ⪯ n0δ
2nx

1
λmin

Inx ,

implying that ÃpÃ
T
p ⪯ λ2n0δ

2nx
1

λmin
Inx .

Substituting these results into PK
∗

k|k ’s expression above, then

PK
∗

k|k ⪯ α0L
kInx

+
λ1n0nxδ

2 + γ

λmin

k∑
i=1

Lk−iInx

and the conclusion holds noting that L = λ2n0nxδ
2

λmin
≤ L < 1

and
∑k−1

i=0 Li = 1−Lk

1−L . In addition, lim
k→∞

ΨL(k) = ΨL.

Algorithm 1 OUBIKF ALGORITHM
Initialization: [x̂0|0], P0|0, [A], [B], [C], [D], [Q], [R], s, λmin,
uk, yk, k = 1, 2, 3, ..., N

Find n0 and find γ such that S+([R]) ⪯ γI
K

∗
= mid([C])+; radC = rad([C]); Σ = diag

{
radC ∗ radCT

}
.

for k = 1, 2, 3, ...N do
Prediction step:
[x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk

[Pk|k−1] = [A]Pk−1|k−1[A]T + [Q]
Find αk such that S+([Pk|k−1]) ⪯ αkI
αk = max {γ/[(1− s)λmin] , αk}

Correction step:
[x̂k|k] = K

∗
([−1, 1] ∗ radC) [x̂k|k−1] +K

∗
(yk − [D]uk)

Pk|k = K
∗ [

αkn0Σ+ γIny

]
K

∗T

end for
(∗) γ, αk are chosen using Proposition 6 of [1]; s, λmin must satisfy
C1; n0 the number of non zero radius of [C].

Remark 4. Confidence intervals are defined by
CIik =

[
inf([x̂i

k|k])− h
√
Pii
k|k, sup([x̂

i
k|k])] + h

√
Pii
k|k

]
,

for i = 1, ..., nx and h = 1, 2, 3, which contain the states xk

with probabilities at least 68%, 95%, 99.7% according to h.

III. SIMULATION

In this section, the OUBIKF Algorithm is applied to a
model taken from automotive domain presented in [11]. This
model is a nonlinear continuous-time model which has been
discretized/linearized and thus given under the form (1). A
discretization is applied with a sampling time T = 0.05s to get
matrices Ad, Bd, Cd, Dd (non interval and independent of time
instant k) according to equations in (1). Then, interval matrices
[A], [B], [D] are generated as follow: for F ∈ {Ad, Bd, Dd},
let F = mid([F ]) and choose the radii rad([F ]) at random
in [0, 0.5]. [Q] and [R] are generated in the same way, their
diagonal elements being intervals of positive real numbers.

Choose M = mid([C]) = Cd. With this choice, rank(M) =
nx, so the first part of conditions C1 is satisfied. The second
part of conditions C1 is reached using Remark 3 to compute
L, s, δ with the choices Ψ = 10γ/λmin and n0 = nxny .
Then [C] is generated in the same way of [A] so that
maxi,j{rad([cij ])} ≤ δ.

ΨL λmin λ1 λ2 γ s L δ
3.84 3.49 0.91 2.30 1.34 0.24 0.82 0.23

Table I: Parameter computation results.

Inputs uk are simulated according to a dynamic change
for N = 864 iterations. The initial state is chosen at x0 =
(0, 0)T . At each step k, chose Ak, Bk, Ck, Dk, Qk, Rk

in corresponding interval matrices and so that Qk and Rk

are positive semi-definite. Then wk, vk are simulated and
{xk, yk}k∈1:N are computed according to system (1). The
Algorithm is initialized at [x̂0] = ([−0.5, 0.5], [−0.5, 0.5])T
and P0|0 = max{diag(sup([Q]))}I .

The 95% confidence intervals CIk contain all real states
xk as shown in Figure 2. The computation time using the
OUBIKF with the new setting of the present work is improved
against the OUBIKF with the setting proposed in [1] (Table
II), while the last one has been shown by simulation to be
more efficient in computation time against its precursor [9].

OUBIKF With new settings With settings of [1]
Computation time (s) 2.33 3.02

Table II: Computation time of OUBIKF with two settings.
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Figure 2: Estimation results. For i = 1, 2, the center green
line: real states xi

k, the blue lines: 95% confidence intervals
CIik.

IV. CONCLUSION

The OUBIKF Algorithm proposed in [1] is enhanced the-
oretically and practically by the two stages optimization and
the guaranteed conditions C1.

Under these conditions, the optimal upper bound is reached
approximately by the chosen Pk|k whose trace is highly closed
to the optimal value Φ∗

k. Also, the considered Algorithm is
ensured to perform with stability in the sense that the trace of
Pk|k is non-asymptotically and asymptotically bounded and
can be controlled, implying that there is no width explosion of
the yielded estimators. In addition, the trace of Pk|k is smaller
than the one of the upper bound (αkInx

) of S+([Pk|k−1]) in
the prediction step.

Thanks to deep analysis in limit results, expressions of the
correction step are simplified and many factors of them can be
computed off-line. It reduces the algorithm computation time
in comparison Algorithm 1 with others used in [2], [8], [9],
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[1] depending on the complexity of the gain expressions and
of the corresponding method of finding the gain.

V. APPENDIX

Proposition 2. a) (Proposition 1 in [9]) Let M,N be two
real matrices of the same dimension then

MNT +NMT ⪯ t−1MMT + tNNT , ∀t > 0. (14)

b) If {Mu}u=1:n is a sequence of real matrices, then

n∑
u=1

Mu

n∑
u=1

MT
u ⪯

n∑
u=1

1 +

n∑
v=1, ̸=u

σu,v

MuM
T
u (15)

provided that σu,v = σ−1
v,u > 0, ∀u, v ∈ {1 : n}, v ̸= u.

Proof.
n∑

u=1
Mu

n∑
u=1

MT
u =

n∑
u=1

MuM
T
u +

∑
u̸=v

MuM
T
v .

Applying (14), one gets∑
u̸=v

MuM
T
v =

∑
u<v

(
MuM

T
v +MvM

T
u

)
,

⪯
∑
u<v

(
σu,vMuM

T
u + σv,uMvM

T
v

)
, ∀σu,v = σ−1

v,u > 0.

Then by rewriting the last RHS of the above inequality in the
form

∑n
v=1,̸=u σu,vMuM

T
u , (15) is concluded.

Proof of Lemma 1. Since MMT ∈ S+(ny), it can be
decomposed as MMT = QΛQT , QQT = I and Λ =
diag{λi(MMT ), i = 1, .., ny} with r positive eigenvalues λi.
It implies (MMT +sI)−1 = Q(Λ+sI)−1QT , ∀s ∈ R. Thus:

tr{MT
(
MMT + βcIny

)−1
M} =

∑r
i=1

λi

λi+βc

and ξ(β) = a(β)

[
nx −

r∑
i=1

λi
λi+βc

]
= a(β)

r∑
i=1

[
nx
r

− λi
λi+βc

]
.

Since 0 < r = rank(M) ≤ min{nx, ny} then
nx

r
= 1 + δ

for some δ ≥ 0, and the lemma is concluded using

ξ(β) = (1 + n0/β)αδr + αc
r∑

i=1

β + n0

cβ + λi
,

dξ

dβ
(β) =

−αδr
β2

+ αc
r∑

i=1

λi − n0c

(cβ + λi)2
. □

Proof of Proposition 1. Using following facts
• 0 ⪯MMT +βc1,kIny ⪯MMT +βΣ+ γβ

αk(β+n0)
Iny ⪯

MMT + βc2,kIny ,
• A,B ∈ S+(n) and 0 ⪯ A ⪯ B imply that

+ 0 ⪯ B+ ⪯ A+ (note that X+ ≡ X−1 if X−1 exists),
+ 0 ⪯MTAM ⪯MTBM , ∀M ∈ Rn× p,
+ 0 ⪯ P +A ⪯ P +B , ∀P ∈ Rn×n,
+ 0 ⪯ sA ⪯ sB , ∀s > 0 and tB ⪯ tA ⪯ 0 , ∀t < 0,

and get for all 0 < β ≤ ϵ (note that ξ1,k(.) depends on ϵ):

0 ≤ ξ1,k(β) ≤ ϕk(β) ≤ ξ2,k(β) ≤ αk(1 + n0/β)nx.

It remains to prove 0 ≤ hk(β) ≤ ξ1,k(β) for (10) to be true.
It is obvious that hk(β) ≥ 0, ∀β > 0 since r = rank(M) ≤
min{nx, ny}. hk(β) ≤ ξ1,k(β) follows from the fact that

r ≥
r∑

i=1

λi

λi + βc1
= tr{MT (MT + βc1Iny

)−1M} , ∀β > 0.

By (10), we get for all ϵ > 0:
◦ 0 ≤ αk(nx − r) ≤ infβ>0 ξ1,k(β) ≤

≤ Φ∗
k ≤ infβ>0 ξ2,k(β) ≤ αknx,

◦ 0 ≤ limβ→0 ξ1,k(β) ≤ limβ→0 ϕk(β) ≤ limβ→0 ξ2,k(β),
and, beside, Φ∗

k ≤ limβ→0 ϕk(β). Then using Lemma 1, the
two statements a) and b) of the proposition are concluded. □

Proof of Lemma 3. a) The first expression is verified thanks
to Proposition 3.2 of [12].

b) Since A+ = A−1 when the later exists and applying the
Tikhonov’s regularization from Theorem 4.3 of [12], we get

lim
β→0

K
∗
k,β = lim

β→0
MT

(
MMT + βΣ+ γβ

αk(β+n0)
I
)+

=

= lim
β→0

lim
η→0

MT
(
MMT + βΣ+ γβ

αk(β+n0)
I
)T

×

×
[(

MMT + βΣ+ γβ
αk(β+n0)

I
)2

+ ηI

]−1

=

= lim
η→0

MT
(
MMT

) [(
MMT

)2
+ ηI

]−1

=

= MT (MMT )+ = K
∗
.

lim
β→0

φk(K
∗
k,β) = φk(K

∗
) thanks to lim

β→0
K

∗
k,β = K

∗
and

φk(K
∗
k,β)− φk(K

∗
) = (K

∗
k,β −K

∗
)(SkK

∗T − CkPk|k−1)

+(K
∗
k,βSk−Pk|k−1C

T
k )(K

∗
k,β−K

∗
)T .

c) By definition of Moore-Penrose pseudoinverse, we get
MM+M = M and hence M(Inx

−M+M) = 0ny ×nx
.

Let X = Inx
−M+M . By assumption rank(M) = nx, the

null space of M is {0nx × 1}. It follows that all columns of
X equal 0nx × 1 and hence X = Inx

−K
∗
M = 0nx ×nx

. □
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