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POLYNOMIAL OPTIMIZATION, CERTIFICATES OF

POSITIVITY, AND CHRISTOFFEL FUNCTION

JEAN B. LASSERRE

Abstract. We briefly recall basics of the Moment-SOS hierarchy in poly-

nomial optimization and the Christoffel-Darboux kernel (and the Christoffel
function (CF)) in theory of approximation and orthogonal polynomials. We

then (i) show a strong link between the CF and the SOS-based positive certifi-

cate at the core of the Moment-SOS hierarchy, and (ii) describe how the CD-
kernel provides a simple interpretation of the SOS-hierarchy of lower bounds

as searching for some signed polynomial density (while the SOS-hierarchy of

upper bounds is searching for a positive (SOS) density). This link between the
CF and positive certificates, in turn allows us (i) to establish a disintegration

property of the CF much like for measures, and (ii) for certain sets, to relate

the CF of their equilibrium measure with a certificate of positivity on the set,
for constant polynomials.
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1. Introduction

In this chapter we describe (in our opinion, surprising) links between different
fields, namely optimization – convex duality – certificates of positivity in real alge-
braic geometry on the one hand, and orthogonal polynomials – Christoffel function
– approximation – equilibrium measures, on the other hand. More precisely, con-
sider the polynomial optimization problem:

(1.1) P : f∗ = min {f(x) : x ∈ S } ,

where f is a polynomial and S is a basic semi-algebraic set1. Importantly, f∗ in
(1.1) is understood as the global minimum of P and not a local minimum. As a
polynomial optimization problem, P is NP-hard in general. However, in the early
2000 the Moment-SOS hierarchy (SOS stands for “sum-of-squares”) has emerged
as a new methodology for solving P. Its distinguishing feature is (i) to exploit
powerful certificates of positivity from real algebraic geometry (and dual results on
the S-moment problem) and (ii) combine them with the computational power of
semidefinite programming in conic optimization, to obtain a hierarchy of (convex)
semidefinite relaxations of P of increasing size.

The optimal values of such semidefinite relaxations provide a monotone non de-
creasing sequence of certified lower bounds which converges to the global minimum
f∗. In addition, finite convergence is generic and when there are finitely many global
minimizers, they can be obtained (also generically) from the optimal solutions of
the exact semidefinite relaxation, via a simple linear algebra routine.

Moreover, this methodology is easily adapted to solve the Generalized Moment
Problem (GMP) whose list of potential applications in mathematics, computer sci-
ence, probability & statistics, quantum information, and many areas of engineering,
is almost endless. For a detailed description of the methodology and an account
of several of its applications, the interested reader is referred to e.g. the books
[8, 11, 17] and the many references therein. Less known is another (still SOS-
based) hierarchy but now with an associated monotone non increasing sequence of
upper bounds which converges to f∗. While very general in its underlying principle,
its practical implementation requires the feasible set S to have a “simple” geom-
etry like a box, a simplex, an ellipsoid, a hypercube, or their image by an affine
mapping, and recently, rates of its asymptotic convergence have been obtained in
e.g. [4, 28, 29, 30].

Crucial at each step t of the Moment-SOS hierarchy of lower bounds, is a dual
pair of semidefinite programs associated with a dual pair (Ct, C

∗
t ) of convex cones.

By a duality result of Nesterov [22], the respective interiors of Ct and C∗t are in a
simple one-to-one correspondence. In fact, its recent interpretation in [14, Lemma
3] states that every polynomial p ∈ int(Ct) has a distinguished SOS-based repre-
sentation in terms of Christoffel functions associated with some moment-sequence
φp ∈ int(C∗t ). (In particular, every degree-2t SOS p in the interior of the convex
cone Σt of SOS of degree at most 2t, is the reciprocal of the Christoffel function
of some linear functional φp ∈ Σ∗t ). In turn this duality result can be exploited
to reveal additional properties of the CF. For instance we use it to obtain a disin-
tegration property of the CF [14], very much in like for measures on a Cartesian
product of Borel spaces. Also, for certain compact sets we can relate the CF of their

1A basic semi-algebraic set in the intersection of finitely many sublevel sets of polynomials.
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equilibrium measure with a certain SOS-based representation of constant polynomi-
als. Finally, we reveal an interpretation of the latter representation [19] related to
what we call a generalized polynomial Pell equation (an equation which originates
in algebraic number theory).

So in this chapter we first briefly review basics of the moment-SOS hierarchies
of lower and upper bounds. We next introduce the Christoffel-Darboux kernel
(CD-kernel) and the Christoffel function (CF) and describe some of their basic
properties, which in our opinion are interesting on their own and should deserve
more attention from the optimization community. We then describe our interpre-
tation of Nesterov’s duality result to establish a strong link between the Christoffel
functions and the SOS-based positivity certificate used in the Moment-SOS hierar-
chy. Conversely, we also describe how this duality result of convex analysis can be
used to provide a disintegration property of the Christoffel function and a result on
equilibrium measures of certain compact semi-algebraic sets.

We hope that this brief account on links between seemingly distinct disciplines
will raise curiosity from the optimization community.

2. Notation, definitions and preliminary results

Let R[x] denote the ring of real polynomials in the variables x = (x1, . . . , xn)
and let R[x]t ⊂ R[x] (resp. Σ[x]t ⊂ R[x]) be its subset of polynomials of degree
at most t (resp. sum-of-squares (SOS) polynomials of degree at most 2t). Let
Nnt := {α ∈ Nn : |α| ≤ t} (where |α| =

∑
i αi) with cardinal s(t) =

(
n+t
n

)
. Let

vt(x) = (xα)α∈Nn
t

be the vector of monomials up to degree t. Then p ∈ R[x]t reads

x 7→ p(x) = 〈p,vt(x)〉 , ∀x ∈ Rn ,

where p ∈ Rs(t) is the vector of coefficients of p in the basis (xα)α∈Nn .
Given a closed set X ⊂ Rn, denote by M (X ) (resp. M (X )+) the space of finite

signed Borel measures (resp. the convex cone of finite Borel measures) on X . The
support supp(µ) of a Borel measure µ on Rn is the smallest closed set A such that
µ(Rn \A) = 0, and such a set A is unique.

Riesz linear functional With any real sequence φ = (φα)α∈Nn (in bold letter)
is associated the Riesz linear functional φ ∈ R[x]∗ (not in bold) defined by:

p (=
∑
α∈Nn

pα xα) 7→ φ(p) :=
∑
α∈Nn

pα φα = 〈p,φ〉 , ∀p ∈ R[x] .

A sequence φ has a representing measure if there exists a Borel measure φ ∈
M (Rn)+ such that φα =

∫
xα dφ for all α ∈ Nn, in which case

φ(p) =

∫
p dφ , ∀p ∈ R[x] .

Given a sequence φ = (φα)α∈Nn and a polynomial g ∈ R[x] (x 7→ g(x) :=∑
γ gγ xγ), denote by g · φ the new sequence (g · φ)α :=

∑
γ gγ φα+γ , α ∈ Nn,

with associated Riesz linear functional g · φ ∈ R[x]∗:

g · φ(p) = φ(g p) , ∀p ∈ R[x] .

Moment matrix With t ∈ N, the moment matrix Mt(φ) associated with a real
sequence φ = (φα)α∈Nn is the real symmetric matrix Mt(φ) with rows and columns



4 JEAN B. LASSERRE

indexed by Nnt , and with entries

Mt(φ)(α,β) := φ(xα+β) = φα+β , α,β ∈ Nnt .

If φ has a representing measure φ then necessarily Mt(φ) is positive semidefinite
(denoted Mt(φ) � 0 or Mt(φ) � 0) for all t. But the converse is not true in general.
Localizing matrix Similarly, with t ∈ N, the localizing matrix Mt(g ·φ) associ-
ated with a real sequence φ = (φα)α∈Nn and a polynomial x 7→ g(x) =

∑
γ gγxγ ,

is the real symmetric matrix Mt(g ·φ) with rows and columns indexed by Nnt , and
with entries

Mt(g · φ)(α,β) := g · φ(xα+β) = φ(g xα+β) =
∑
γ

gγ φα+β+γ , α,β ∈ Nnt .

Equivalently, Mt(g · φ) is the moment matrix of the sequence g · φ.

Orthonormal polynomials. Let φ = (φα)α∈Nn be a real sequence such that
Mt(φ) is positive definite (denoted Mt(φ) � 0) for all t. Then with φ one may
associate a family of orthonormal polynomials (Pα)α∈Nn ⊂ R[x], i.e., which satisfy:

(2.1) φ(Pα · Pβ) = δα=β , ∀α,β ∈ Nn ,

where δ• is the Kronecker symbol. One way to obtain the Pα’s is via certain
determinants formed from entries of Mt(φ), For instance, in dimension n = 1,
P0 = 1 and

P1 = τ1 · det

[
φ0 φ1

1 x

]
P2 = τ2 · det

 φ0 φ1 φ2

φ1 φ2 φ3

1 x x2

 , etc.,

with τk being a scalar that ensures φ(P 2
k ) = 1, k ∈ N. For more details the inter-

ested reader is referred to e.g. [5, 7].

Putinar’s Positivstellensatz. Let g0 := 1 and G := {g0, g1, . . . , gm} ⊂ R[x] with
tg := ddeg(g)/2e for all g ∈ G. Let

(2.2) S := {x ∈ Rn : g(x) ≥ 0 , ∀g ∈ G } ,

and define the sets

Q(G) = {
∑
g∈G

σg g ; σg ∈ Σ[x] , ∀g ∈ G}(2.3)

Qt(G) = {
∑
g∈G

σg g ; deg(σg g) ≤ 2t , ∀g ∈ G} ,(2.4)

called respectively the quadratic module and the t-truncated quadratic module as-
sociated with G.

Remark 2.1. With R > 0, let x 7→ θ(x) := R − ‖x‖2. The quadratic module
Q(G) ⊂ R[x] is said to be Archimedean if there exists R > 0 such that θ ∈ Q(G),
in which case it provides an algebraic certificate that the set S in (2.2) is compact.
If one knows that S ⊂ {x : ‖x‖2 ≤ R} for some R then it is a good idea to include
the additional (but redundant) constraint R−‖x‖2 ≥ 0 in the definition (2.2) of S,
in which case the resulting associated quadratic module Q(G) is Archimedean.
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Theorem 2.2 (Putinar [27]). Let S be as in (2.2) and let Q(G) be Archimedean.
(i) If p ∈ R[x] is strictly positive on S then p ∈ Q(G).
(ii) A real sequence φ = (φα)α∈Nn has a representing Borel measure on S if and

only if Mt(g · φ) � 0 for all t ∈ N, and all g ∈ G.

Theorem 2.2 is central to prove convergence of the Moment-SOS hierarchy of
lower bounds on f∗, described in Section 3.1.

Another Positivstellensatz We next provide an alternative Positivstellensatz
where the compact set S is not required to be semi-algebraic. Given a real sequence
φ = (φα)α∈Nn , define the convex cones

Cφt,s := { g ∈ R[x]t : Ms(g · φ) � 0 } , t , s ∈ N .(2.5)

Let t be fixed. Observe that for each s, the convex cone Cφt,s is defined in terms
of the single linear matrix inequality Ms(g · φ) � 0, on the coefficients (gα) of
g ∈ R[x]t. It defines a spectrahedron in the space Rs(t) of the coefficient vector
g = (gα) ∈ Rs(t) of g ∈ R[x]t (recall that s(t) =

(
n+t
n

)
). It is a closed convex cone.

Theorem 2.3 ([9]). Let S ⊂ Rn be a compact set and let φ be an arbitrary finite
Borel measure on Rn whose support is S and with moments φ = (φα)α∈Nn . Then
g ∈ R[x] is nonnegative on S if and only if Ms(g · φ) � 0 for all s ∈ N.

Theorem 2.3 is central to prove the convergence of the Moment-SOS hierarchy

of upper bounds on f∗, described in Section 3.2. With t fixed, (Cφt,s)s∈N provides a

monotone non increasing sequence of convex cones Cφt,s, each being an outer approx-
imation of the convex cone Ct(S)+ of polynomials of degree at most t, nonnegative
on S = supp(φ).

In addition,
⋂∞
s=0 C

φ
t,s = Ct(S)+. Indeed if g ∈ Cφt,s for all s then by Theorem

2.3, g ∈ Ct(S)+. Conversely, if g ∈ Ct(S)+ then
∫
S
p2 g dφ ≥ 0, for all p ∈ R[x]s,

that is, Ms(g · φ) � 0, and as s was arbitrary, g ∈ Cφt,s for all s.
Notice that Theorem 2.3 is a Nichtnegativstellensatz and applies to sets with

are not necessarily semi-algebraic. However, if on the one hand the set S is not
required to be semi-algebraic, on the other hand one needs to know the moment

sequence φ to exploit numerically the convex cone Cφt,s. In addition, the set S may
also be non-compact. It is then enough to take a reference measure φ on S such that
supi

∫
e|xi|dφ < M for some M > 0; see e.g. [9, 10]. In particular, one may then

approximate from above the convex cone Ct(Rn)+ (resp. C (Rn+)+) of polynomials
nonnegative on the whole Rn (resp. Rn+). (Just take φ = exp(−‖x‖2)dx on Rn
(resp. φ = exp(−2

∑
i xi) dx on Rn+).

3. The Moment-SOS hierarchy in polynomial optimization

Consider the optimization problem P in (1.1) where f ∈ R[x], S is the basic
semi-algebraic set described in (2.2), and f∗ in (1.1) is the global minimum of P.

3.1. A Moment-SOS hierarchy of lower bounds. Assumption 1: The set S
in (2.2) is compact and contained in the Euclidean ball of radius

√
R. Therefore

with no loss of generality we may and will assume that the quadratic polynomial
x 7→ θ(x) := R − ‖x‖2 is in G. Technically this implies that the quadratic module
Q(G) is Archimedean; see Remark 2.1.
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For every g ∈ R[x], let tg := ddeg(g)/2e. Define t0 := max[tf ,maxg∈G tg], and
consider the sequence of semidefinite programs indexed by t ∈ N:

(3.1) ρt = inf
φ∈Rs(2t)

{φ(f) : φ(1) = 1 ; Mt−tg (g · φ) � 0 , ∀g ∈ G } , t ≥ t0 .

For each t ≥ t0, (3.1) is a semidefinite program and a convex relaxation of (1.1)
so that ρt ≤ f∗ for all t ≥ t0. In addition, the sequence (ρt)t≥t0 is monotone non
decreasing. The dual of (3.1) reads:

(3.2) ρ∗t = sup
σg,λ
{λ : f − λ =

∑
g∈G

σg g ; σg ∈ Σ[x]t−tg ,∀g ∈ G } .

By weak duality between (3.1) and (3.2), ρ∗t ≤ ρt for all t ≥ t0 and in fact, under
Assumption 1, there is no duality gap, i.e., ρ∗t = ρt for all t ≥ t0; see e.g. [11, 17].

KKT-optimality conditions. In the context of problem P in (1.1) with feasible
set S as in (2.2), for x ∈ S, let J(x) := {g ∈ G : g(x) = 0} identify the set of
constraints that are active at x. Let x∗ ∈ S, and define

(3.3) CQ(x∗) : the vectors (∇g(x∗))g∈J(x∗) are linearly independent.

In non linear programming, the celebrated first-order necessary Karush-Kuhn-
Tucker (KKT) optimality conditions state that if x∗ ∈ S is a local minimizer
for P and CQ(x∗) holds, then there exists λ∗ = (λ∗g)g∈G ⊂ R+ such that

∇f(x∗)−
∑
g∈G

λ∗g∇g(x∗) = 0 ; λ∗g g(x∗) = 0 , ∀ g ∈ G .

In addition if λ∗g > 0 whenever g(x∗) = 0, then strict complementarity is said to
hold. Finally, the second-order sufficient optimality condition holds at x∗ if

uT

∇2f(x∗)−
∑
g∈G

λ∗g∇2g(x∗)

u > 0 , ∀u ( 6= 0) ∈ ∇G(x∗)⊥ ,

where ∇G(x∗)⊥ := {u ∈ Rn : uT∇g(x∗) = 0 , ∀g ∈ J(x∗) }, and ∇2h(x∗) denotes
the Hessian of h evaluated at x∗.

Theorem 3.1. Let Assumption 1 hold with S as in (2.2), and consider the semi-
definite program (3.1) and its dual (3.2).

(i) ρ∗t = ρt for all t ≥ t0. Moreover (3.1) has an optimal solution φ∗ for every
t ≥ t0, and if S has a nonnempty interior then (3.2) also has an optimal solution
(σ∗g)g∈G.

(ii) As t increases, ρt ↑ f∗ and finite convergence takes place if (3.3), strict com-
plementarity, and second-order sufficiency condition, hold at every global minimizer
of P (a condition that holds true generically).

(iii) Let s := maxg∈G tg. If rank(Mt(φ
∗)) = rank(Mt−s(φ

∗)) for some t,
then ρt = f∗ (i.e., finite convergence takes place) and from φ∗ one may extract
rank(Mt(φ

∗)) global minimizers of P via a linear algebra subroutine.

In Theorem 3.1(iii), the (flatness) condition on the ranks of Mt(φ
∗) and Mt−s(φ

∗),
also holds generically (e.g. if the second-order sufficiency condition holds at every
global minimizer); see e.g. [1, 2, 25]. In the recent work [2], the authors have pro-
vided the first degree-bound on the SOS weights in Putinar’s positivity certificate
f ∈ Q(G), with a polynomial dependence on the degree of f and a constant related
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to how far is f from having a zero in S. (The previous known bound of [24] has an
exponential dependence.)

As stated in (3.1), the standard Moment-SOS hierarchy does not scale well with
the dimension. This is because it involves s(2t) moment variables φα and semi-
definite matrices of size s(t). Fortunately, for large-scale polynomial optimization
problems, sparsity and/or symmetries are often encountered and can be exploited
to obtain alternative hierarchies with much better scaling properties. The inter-
ested reader is referred to the recent book [20] and the many references therein
where various such techniques are described and illustrated. Also in [23] are de-
scribed first-order methods that exploit a constant trace property of matrices of the
semidefinite program (3.1); they can provide an alternative to costly interior point
methods for solving large-scale semidefinite relaxations.

3.2. A Moment-SOS hierarchy of upper bounds. In this section we now con-
sider a hierarchy of upper bounds on the global minimum f∗ of P in (1.1) and
where S ⊂ Rn is a compact set with nonempty interior. Let µ be a probability
measure with support S and with associated sequence of moments µ = (µα)α∈Nn .
Consider the sequence of optimization problems indexed by t ∈ N:

τt = min
σ∈Σ[x]t

{
∫
S

f σ dµ :

∫
S

σ dµ = 1 }(3.4)

τ∗t = sup
λ
{λ : Mt(f · µ) � λMt(µ)}(3.5)

It is straightforward to see that τt ≥ f∗ for all t. Indeed let σ ∈ Σ[x]t be a feasible
solution of (3.4). Then as f ≥ f∗ for all x ∈ S,∫

S

f σ dµ ≥ f∗
∫
S

σ dµ = f∗ .

Moreover, τ∗t ≤ τt for every t because from the definition of the localizing and
moment matrices associated with µ and f ,

Mt(f · µ) � λMt(µ)⇒
∫
S

f σ dµ ≥ λ
∫
S

σ dµ , ∀σ ∈ Σ[x]t ,

which in turn implies λ ≤
∫
S
f σ dµ for all σ feasible in (3.4), and therefore λ ≤ τt.

Theorem 3.2 ([9]). Let S ⊂ Rn be compact with nonempty interior and τt and
τ∗t be as in (3.4) and (3.5) respectively. Then τt = τ∗t for every t and τt ↓ f∗
as t increases. Moreover (3.4) (resp. (3.5)) has an optimal solution σ∗ ∈ Σ[x]t
(resp. λ∗) and λ∗ is the smallest generalized eigenvalue of the pair of matrices
(Mt(f · µ),Mt(µ)) with associated eigenvector σ∗.

The proof of the convergence τt ↓ f∗ as t increases, is based on Theorem 2.3.
The dual problem (3.5) has a single variable λ and is a generalized eigenvalue prob-
lem associated with the pair of matrices (Mt(f · µ),Mt(µ)). Therefore τt can be
computed by standard linear algebra routine with no optimization. See e.g. the
discussion in [9, Section 4]. However the size of the involved matrices makes this
technique quite difficult even for modest size problems. Nevertheless and fortu-
nately, there is a variant [13] that reduces to computing generalized eigenvalues of
related univariate Hankel moment matrices by using the pushforward (univariate)
measure #µ (on the real line) of µ by f . That is, #µ(B) = µ(f−1(B)) for all
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B ∈ B(R), and therefore

f∗ = inf { z : z ∈ f(S) } = inf { z : z ∈ supp(#µ) } .

Then letting Ht(#µ) (resp. Ht(z ·#µ)) be the (univariate) Hankel moment matrix
associated with #µ (resp. z ·#µ), the sequence of scalars (δt)t∈N defined by

(3.6) δt := sup
λ
{λ : Ht(z ·#µ) � λHt(#µ) } , t ∈ N ,

provides a monotone non-increasing sequence of upper bounds (δt)t∈N that con-
verges to f∗. For more details, the interested reader is referred to [13, 29].

When comparing (3.6) with (3.5), the gain in the computational burden is strik-
ing. Indeed in (3.6) one has to compute generalized eigenvalues of Hankel matrices
of size t+1 instead of size

(
n+t
t

)
in (3.5). Recent works in [4, 28, 29, 30] have proven

nice rates for the convergence δt ↓ f∗ and τt ↓ f∗, with an appropriate choice of
the reference measure µ on specific sets S (e.g., sphere, box, simplex, etc.). Inter-
estingly, the analysis makes use of sophisticated results about zeros of orthogonal
polynomials, and a clever perturbation of the Christoffel-Darboux kernel.

4. The Christoffel-Darboux kernel and Christoffel functions

In this section we briefly review basic properties of the Christoffel-Darboux (CD)
kernel and Christoffel functions. For more details on these classical tools, the
interested reader is referred to e.g. [15, 16] and the many references therein.

4.1. Christoffel-Darboux kernel. Let S ⊂ Rn be compact with nonempty inte-
rior and let µ ∈M (S)+ be such that Mt(µ) � 0 for all t ∈ N. Let (Pα)α∈Nn ⊂ R[x]
be a family of polynomials that are orthonormal with respect to µ, and view R[x]t
as a finite-dimensional vector subspace of the Hilbert space L2(S, µ). Then the
kernel

(4.1) (x, z) 7→ Kµ
t (x, z) :=

∑
α∈Nn

t

Pα(x)Pα(z) , ∀x, z ∈ Rn , t ∈ N ,

is called the Christoffel-Darboux (CD) kernel associated with µ. It has an important
property, namely it reproduces R[x]t. Indeed, for every p ∈ R[x]t,

(4.2) p(x) =

∫
S

Kµ
t (x, z) p(z) dµ(z) , ∀x ∈ Rn ,

and for this reason, (R[x]t,K
µ
t ) is called a Reproducing Kernel Hilbert Space

(RKHS). Then every f ∈ L2(S, µ) can be approximated by a sequence of poly-

nomials (f̂t)t∈N, where f̂t ∈ R[x]t for every t ∈ N, and

x 7→ f̂t(x) :=

∫
S

f(z)Kµ
t (x, z) dµ(z) =

∑
α∈Nn

t

(∫
S

f(z)Pα(z) dµ(z)

)
Pα(x) ,

so that ‖f − f̂t‖L2(S,µ) → 0 as t increases; see e.g. [15, Section 2, p. 13].
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Interpreting the reproducing property. Given y ∈ Rn fixed, let p ∈ R[x]t be the
polynomial defined by

(4.3) x 7→ p(x) := Kµ
t (y,x) , ∀x ∈ Rn .

Then by the reproducing property (4.2), observe that∫
S

xα p(x) dµ(x) = yα =

∫
xα δ{y}(dx) , ∀α ∈ Nnt ,

that is, viewing p as a signed density w.r.t. µ, the signed measure pdµ on S, mimics
the Dirac measure at y, as long as only moments of order at most t are concerned.
This is illustrated in Figure 1 where S = [−1, 1] and dµ = 1[−1,1](x)dx, t varies
between 1 and 10, and y = 0, 1/2, 1.

y = 0 y = 0.5 y = 1

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0

50

100

−2

0

2

4

6

0

2

4

x

C
D
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ke

rn
el
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5

10

15

Figure 1. The signed measure Kµ
t (y, x)dx (with different values

of t) mimics the Dirac measure at y = 0 (left) y = 0.5 (middle)
and y = 1 (right); reprinted from [15, p. 45] with permission.
©Cambridge University Press

4.2. Christoffel function. With t∈ N, the function Λµt : Rn → R+ associated
with µ, and defined by

(4.4) x 7→ Λµt (x) := Kµ
t (x,x)−1 =

 ∑
α∈Nn

t

Pα(x)2

−1

, ∀x ∈ Rn ,

is called the (degree-t) Christoffel function (CF), and recalling that Mt(µ) is non-
singular, it also turns out that

(4.5) Λµt (x) =
[
vt(x)T Mt(µ)−1 vt(x)

]−1
, ∀x ∈ Rn .

The CF also has an equivalent and variational definition, namely:

Λµt (x) = inf
p∈R[x]t

{
∫
S

p2 dµ : p(x) = 1 } , ∀x ∈ Rn(4.6)

= inf
p∈Rs(t)

{ 〈p,Mt(µ) p〉 : 〈p,vt(x)〉 = 1 } , ∀x ∈ Rn .(4.7)

In (4.7) the reader can easily recognize a convex quadratic programing problem
which can be solved efficiently even for large dimensions. However solving (4.7)
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only provides the numerical value of Λµt at x ∈ Rn, whereas in (4.5) one obtains
the coefficients of the polynomial (Λµt )−1 (but at the price of inverting Mt(µ)).

The reader will also notice that from its definitions (4.4) or (4.5), the CF depends
only on the finite sequence µ2t = (µα)α∈Nn

2t
of moments of µ, up to degree 2t,

and not on µ itself. Indeed there are potentially many measures on S with same
moments up to degree 2t, and therefore indexing Λµt with µ is not totally correct;
therefore a more correct labelling would be Λ

µ2t
t . One reason for this labelling is

that in theory of approximation, one is usually given a measure µ on a compact set
S and one is interested in the sequence (Λµt )t∈N and its asymptotic properties.

Remark 4.1. In fact, one may also define the CD-kernel Kφ
t and the Christoffel

function (CF) Λφt associated with a Riesz linear functional φ ∈ R[x]∗ whose associ-
ated sequence φ is such that Mt(φ) � 0, no matter if φ is a measure on S or not.
Indeed for fixed t, and letting (Pα)α∈Nn

t
be orthonormal w.r.t. φ, the polynomial

(x,y) 7→ Kφ
t (x,y) :=

∑
α∈Nn

t

Pα(x)Pα(y) , ∀x,y ∈ Rn ,

is well-defined, and all definitions (4.1)-(4.7) are still valid. But again, historically
the CD-kernel was defined w.r.t. a given measure µ on S . Finally, one may use

interchangeably the notations Kφ
t (resp. Λφt ) or Kφ

t (resp. Λφt ), or K
φ2t
t (resp.

Λ
φ2t
t ) as in all cases, the resulting mathematical objet depends only on the finite

moment sequence φ2t = (φα)α∈Nn
2t

of φ.

4.3. Some distinguishing properties of the CF. The CF Λφt associated with
a Borel measure φ on a compact S ⊂ Rn, has an interesting and distinguishing

feature. As t increases, Λφt (x) ↓ 0 exponentially fast for every x 6∈ S whereas its
decrease is at most polynomial in t whenever x ∈ S; see e.g. [15, Section 4.3, p.

50–51]. In other words, Λφt identifies the support of φ when t is sufficiently large.
In addition, at least in dimension n = 2 or n = 3, one may visualize this property

even for small t, as the resulting superlevel sets Sγ := {x : Λφt (x) ≥ γ }, γ ∈ R,
capture the geometric shape of S quite accurately; For instance in Figure 2 are
displayed several level sets Sγ associated with the empirical measure φN supported
on a cloud of N points that approximates the geometric shape obtained with the
letters “C” and “D” of Christoffel and Darboux. In [12], the interested reader can
find many other examples of 2D-clouds with non-trivial geometric shapes which are
captured quite well with levels set Sγ associated with φN , even for relatively low
degree t.

Another nice feature of the CF is its ability to approximate densities. Indeed let φ
and µ be finite Borel measures on a compact set S, and let µ be such that uniformly
on compact subsets of int(S), limt→∞ s(t) Λµt = hµ, where hµ is continuous and
positive on int(S) (and recall that s(t) is the dimension of R[x]t). In addition
suppose that φ has continuous and positive density fφ w.r.t. µ. Then uniformly on
compact subsets of int(S)

lim
t→∞

s(t) Λφt = fφ · hµ

(see e.g. [15, Theorem 4.4.1]). So if the function hµ is already known then one can
approximate the density fφ, uniformly on compact subsets of int(S).

Finally, another distinguishing property of the CF is its link with the so-called
equilibrium measure of the compact set S. The latter is a measure on S (let us
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Figure 2. Level sets Sγ associated with ΛφN

10 for various values
of γ; the red level set is obtained with γ := s(10); reprinted from
cover of [15, p. 45] with permission. ©Cambridge University Press

denote it by λS) which minimizes some Riesz energy functional (invoking pluripo-
tential theory and viewing Rn as a subset of Cn). For a detailed treatment see e.g.
[3]. The measure λS is known only for sets with specific geometry (e.g., an interval
of the real line, the simplex, the unit sphere, the unit euclidean unit box). How-
ever under some condition2, as t increases, the Borel measure νt on S with density

1/s(t)Λφt w.r.t. φ, converges to λS in the weak-? topology of M (S) (the Banach
space of finite signed Borel measures on S equipped with the total variation norm).
That is:

lim
t→∞

∫
S

h dνt := lim
t→∞

∫
S

h

s(t)Λφt
dφ =

∫
S

h dλS , ∀h ∈ C (S)

where C (S) is the space of continuous functions on S; (see e.g. [15, Theorem
4.4.4]). In particular, the moments νt,α, α ∈ Nnt , converge to the moments of λS .

5. CF, Optimization, and SOS-Certificates of Positivity

5.1. The CF to compare the hierarchies of upper and lower bounds. Recall
the polynomial optimization problem P in (1.1) with S ⊂ Rn as in (2.2). Let µ be a
finite Borel (reference) measure whose support is exactly S and with an associated
sequence of orthonormal polynomials (Pα)α∈Nn . Next, with φ ∈ Rs(2t) and from

2The set S is assumed to be regular and (S, φ) possesses the Bernstein-Markov property; see
e.g. [15, Section 4.4]
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the reproducing property (4.2), observe that

φ(f) = φ

∫
S

∑
α∈Nn

2t

Pα(x)Pα(y) f(y) dµ(y)


=

∑
α∈Nn

2t

φ(Pα)

∫
S

Pα(y) f(y) dµ(y)

=

∫
S

f(y)
∑
α∈Nn

2t

φ(Pα)Pα(y) dµ(y) =

∫
S

f(y)σφ(y) dµ(y)

where the degree-2t polynomial y 7→ σφ(y) :=
∑
α∈Nn

2t
φ(Pα)Pα(y), is a signed

density w.r.t. µ.
Therefore in the semidefinite relaxations (3.1) of lower bounds on f∗, one searches

for a linear functional φ ∈ R[x]∗2t which satisfies

φ(1) = 1 ; Mt(g · φ) � 0 , ∀g ∈ G ,
and which minimizes φ(f) =

∫
S
f σφ dµ, where σφ is a degree-2t polynomial signed

density w.r.t. µ, with coefficients (σφ,α := φ(Pα))α∈Nn
2t

.
The reason why the semidefinite relaxations (3.1) can be exact (i.e., ρt = f∗ for

some t), is that the signed probability measure dνt = σφdµ can mimic the Dirac
measure at a global minimizer ξ ∈ S and so φ(f) = f(ξ); see Figure 1.

This is in contrast to the hierarchy of semidefinite relaxations (3.4) of upper
bounds where one searches also for a polynomial density σ dµ w.r.t. µ, but as this
density σ is an SOS (hence positive), it cannot be a Dirac measure, and therefore
the resulting convergence τt ↓ f∗ is necessarily asymptotic and not finite. For more
details on a comparison between the Moment-SOS hierarchies of upper and lower
bounds, the interest reader is referred to [18].

5.2. The CF and positive polynomials. Of course, from its definition (4.5) the
reciprocal (Λµt )−1 of the CF is an SOS of degree 2t. But we next reveal an even
more interesting link with SOS polynomials. Observe that the Qt(G) in (2.4) is a
convex cone and its dual reads

(5.1) Qt(G)∗ = {φ = (φα)α∈Nn
2t

: Mt−tg (g · φ) � 0 , ∀ g ∈ G } .
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A duality result of Nesterov.

Lemma 5.1. If p ∈ int(Qt(G)) then there exists φ ∈ int(Qt(G)∗) such that

p =
∑
g∈G

g(x) vt−tg (x)TMt−tg (g · φ)−1vt−tg (x) , ∀x ∈ Rn(5.2)

=
∑
g∈G

g · (Λg·φt )−1 .(5.3)

In particular, for every SOS p ∈ int(Σt[x]), 1/p is the CF of some linear functional

φ ∈ Σ[x]∗2t, i.e., 1/p = Λφt for some φ ∈ Rs(2t) such that Mt(φ) � 0. In addition,
in the univariate case, φ has a representing measure on R.

Equation (5.2) is from [22] while its interpretation (5.3) is from [14, Lemma 4].
Observe that (5.3) provides a distinguished representation of p ∈ int(Qt(G)), and
in view of its specific form, we propose to name (5.3) the Christoffel representation
of p ∈ int(Qt(G)), that is:

(5.4) int(Qt(G)) = {
∑
g∈G

g · (Λg·φt )−1 : φ ∈ int(Qt(G)∗) } .

Of course, an intriguing question is: What is the link between φ ∈ int(Qt(G)∗) in
(5.3) and the polynomial p ∈ int(Qt(G))? A partial answer is provided in Section
5.4.

A numerical procedure to obtain the Christoffel representation. Consider
the following optimization problems:

(5.5)
P : inf

φ∈Rs(2t)
{−

∑
g∈G

log det(Mt−tg (g · φ)) : φ(p) =
∑
g∈G

s(t− tg)

Mt−tg (g · φ) � 0 , ∀g ∈ G } .

(5.6)

P∗ : sup
Qg�0

{
∑
g∈G

log det(Qg) :

p(x) =
∑
g∈G

g(x) vt−tg (x)TQgvt−tg (x) , ∀x ∈ Rn } .

Both P and P∗ are convex optimization problems that can be solved by off-the-shelf
software packages like e.g. CVX [6].

Theorem 5.2. Let p ∈ int(Qt(G)). Then P∗ is a dual of P, that is, for every
feasible solution φ ∈ Rs(2t) of (5.5) and (Qg)g∈G of (5.6),

(5.7)
∑
g∈G

log det(Qg) ≤ −
∑
g∈G

log det(Mt−tg (g · φ)) .

Moreover, both P and P∗ have a unique optimal solution φ∗ and (Q∗g)g∈G respec-
tively, which satisfy

(5.8) Q∗g = Mt−tg (g · φ∗)−1 , ∀g ∈ G ,

and which yields equality in (5.7).

The proof which uses Lemma 6.1 in Appendix, mimics that of [14, Theorem 3]
(where p was a constant polynomial) and is omitted.
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5.3. A disintegration of the CF. We next see how the above duality result, i.e.,
the Christoffel representation (5.3) of int(Qt(G)), can be used to in turn infer a
disintegration property of the CF. So let Λµt (x, y) be the CF of a Borel probability
measure µ on S × Y , where S ⊂ Rn and Y ⊂ R are compact. It is well-known
that µ disintegrates into its marginal probability φ on S, and a conditional measure
µ̂(dy|x) on Y , given x ∈ S, that is,

µ(A×B) =

∫
S∩A

µ̂(B|x)φ(dx) , ∀A ∈ B(S) , B ∈ B(Y ) .

Theorem 5.3 ([14]). Let S ⊂ Rn (resp. Y ⊂ R) be compact with nonempty
interior, and let µ be a Borel probability measure on S × Y , with marginal φ on S.
Then for every t ∈ N, and x ∈ S, there exists a probability measure νx,t on R such
that

(5.9) Λµt (x, y) = Λφt (x) · Λνx,t

t (y) , ∀x ∈ Rn , y ∈ R .

The proof in [14, Theorem 5] heavily relies on the duality result of Lemma 5.1. In
particular every degree-2t univariate SOS p in the interior of Σ[y]t is the reciprocal
of the Christoffel function of some Borel measure on R.

5.4. Positive polynomials and equilibrium measure. This section is moti-
vated by the following observation. Let (Tn)n∈N (resp. (Un)n∈N) be the family of
Chebyshev polynomials of the first kind (resp. second kind). They are orthogonal
w.r.t. measures (1 − x2)−1/2dx and (1 − x2)1/2dx on [−1, 1], respectively. (The
Chebyshev measure (1 − x2)−1/2dx/π is the equilibrium measure of the interval
[−1, 1].) They also satisfy the identity

Tn(x) + (1− x2)Un(x) = 1 , ∀x ∈ R , n = 1, . . .

Equivalently, it is said that the triple (Tn, (1−x2), Un) is a solution to (polynomial)
Pell’s equation for every n ≥ 1. For more details on polynomial Pell’s equation (orig-
inally Pell’s equation is a topic in algebraic number theory), the interested reader
is referred to [21, 31]. Next, letting x 7→ g(x) := (1− x2), and after normalization
to pass to orthonormal polynomials, in summing up one obtains

(5.10) Λφt (x)−1 + (1− x2) Λg·φ(x)−1 = 2t+ 1 , ∀x ∈ R , ∀t = 0, 1, . . .

Now, invoking Lemma 5.1, observe that (5.10) also states that p ∈ int(Qt(G))
where G = {g} and p is the constant polynomial x 7→ p(x) = 2t + 1. In addition,
it also means that if one solves P in (5.5) with p = s(t) + s(t− tg) = 2t+ 1 (recall
that tg = 1), then its unique optimal solution φ is just the vector of moments

(up to degree 2t) of the equilibrium measure φ = (1− x2)−1/2dx/π of the interval
S = [−1, 1]. So in Lemma 5.1 the linear functional φp associated with the constant
polynomial p = 2t+ 1 is simply the equilibrium measure of S (denote it λS).

The notion of equilibrium measure associated to a given set originates from
logarithmic potential theory (working in C in the univariate case to minimize some
energy functional) and some generalizations have been obtained in the multivariate
case via pluripotential theory in Cn. In particular if S ⊂ Rn ⊂ Cn is compact then
the equilibrium measure λS is equivalent to Lebesgue measure on compact subsets
of int(S). See e.g. Bedford and Taylor [3, Theorem 1.1] and [3, Theorem 1.2].
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The Bernstein-Markov property. A measure with compact support S satisfies the
Bernstein-Markov property if there exists a sequence of positive numbers (Mt)t∈N
such that for all t ∈ N and all p ∈ R[x]t,

sup
x∈S
|p(x)| (= ‖p‖S) ≤ Mt · ‖p‖L2(S,µ) ,

and limt→∞ log(Mt)/t = 0.
So when it holds, the Bernstein-Markov property describes how the sup-norm

and the L2(S, µ)-norm of polynomials relate when the degree increases.
In [19] we have obtained the following result. Let x 7→ θ(x) := 1 − ‖x‖2 and

possibly after an appropriate scaling, let S in (2.2) be such that θ ∈ Q1(G) (so that
S ⊂ [−1, 1]n); see Remark 2.1.

Theorem 5.4 ([19]). Let φ ∈ R[x]∗ (with φ0 = 1) be such that Mt(g · φ) � 0 for

all t ∈ N and all g ∈ G, so that the Christoffel functions Λg·φt are all well defined.
In addition, suppose that there exists t0 ∈ N such that

(5.11)
∑
g∈Gt

s(t− tg) =
∑
g∈Gt

g · (Λg·φt−tg )−1 , ∀t ≥ t0 .

Then: (a) for every t ≥ t0, the finite moment sequence φ∗t := (φα)α∈Nn
2t

is the
unique optimal solution of (5.5) (with p the constant polynomial x 7→

∑
g∈G s(t −

tg)).
(b) φ is a Borel measure on S and the unique representing measure of φ. More-

over, if (S, g ·φ) satisfies the Bernstein-Markov property for every g ∈ G, then φ is

the equilibrium measure λS and therefore the Christoffel polynomials (Λg·λS
t )−1

g∈Gt

satisfy the generalized Pell’s equations:

(5.12)
∑
g∈Gt

s(t− tg) =
∑
g∈Gt

g · (Λg·λS

t−tg )−1 , ∀t ≥ t0 .

Importantly, the representation of S in (2.2) depends on the chosen set G of
generators, which is not unique. Therefore if (5.11) holds for some set G, it may
not hold for another set G. The prototype of φ in Theorem 5.4 is the equilibrium
measure of S = [−1, 1], i.e., the Chebyshev measure (1 − x2)−1/2dx/π on [−1, 1].
So Theorem 5.4 is a strong result which is likely to hold only for quite specific sets
S (and provided that a good set of generators is used). In [19] the author could
prove that (5.11) also holds for the equilibrium measure λS of the 2D-simplex, the
2D-unit unit box, the 2D-Euclidean unit ball, at least for t = 1, 2, 3.

However, if θ ∈ Q1(G) then as proved in [19, 23], 1 ∈ int(Qt(G)) for all t, and
therefore (5.5) has always a unique optimal solution φ∗t . That is, for every t ≥ t0,
(5.11) hold for some φt ∈ R[x]∗2t which depends on t (whereas in (5.11) one considers
moments up to degree 2t of the same φ). Moreover, every accumulation point φ
of the sequence (φ∗t )t∈N has a representing measure φ on S. An interesting issue
to investigate is the nature of φ, in particular its relationship with the equilibrium
measure λS of S.

Finally, for general compact sets S with nonempty interior, to λS one may
associate the polynomial

p∗t :=
1∑

g∈Gt
s(t− tg)

∑
g∈Gt

g · (Λg·λS
t )−1
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which is well-defined because the matrices Mt−tg (g · λS) are non singular. In
Theorem 5.4 one has considered cases where p∗t is exactly the constant (equal to
1) polynomial (like for the Chebyshev measure on S = [−1, 1]). We now consider
the measures (µt := p∗tλS)t∈N, with respective densities p∗t w.r.t. λS . Each µt is a
probability measure on S because∫

p∗t dλS =
1∑

g∈Gt
s(t− tg)

∑
g∈Gt

∫
g · (Λg·λS

t )−1 dλS

=
1∑

g∈Gt
s(t− tg)

∑
g∈Gt

〈Mt−tg (g · λS),Mt−tg (g · λS)−1〉

=
1∑

g∈Gt
s(t− tg)

∑
g∈Gt

s(t− tg) = 1 .

Moreover, preceding as in the proof of Theorem 5.4 in [19], it follows that

lim
t→∞

∫
xα p∗t dλS =

∫
xα dλS , ∀α ∈ Nn .

As S is compact it implies that the sequence of probability measures (µt)t∈N ⊂
M (S)+ converges to λS for the weak-? topology of M (S). In other words (and
in an informal language), the density p∗t of µt w.r.t. λS behaves like the constant
(equal to 1) polynomial, which can be viewed as a weaker version of (5.12).

6. Conclusion

SOS polynomials play a crucial role in the Moment-SOS hierarchies of upper
and lower bounds through their use in certificates of positivity of real algebraic
geometry. We have shown that they are also related to the Christoffel function
in theory of approximation. Interestingly, the link is provided by interpreting a
duality result in convex optimization applied to a certain convex cone of polynomials
and its dual cone of pseudo-moments. It also turns out that in this cone, the
constant polynomial is strongly related to the equilibrium measure of the semi-
algebraic set associated with the convex cone. We hope that these interactions
between different and seemingly disconnected fields will raise the curiosity of the
optimization community and yield further developments.

Appendix

Lemma 6.1. Let Sn be the space of real symmetric n×n matrices and let Sn++ ⊂ Sn
be the convex cone of real n×n positive definite matrices Q (denoted Q � 0). Then

(6.1) n+ log det(M) + log det(Q) ≤ 〈M,Q〉 , ∀M ,Q ,∈ Sn++ .

with equality if and only if Q = M−1.

Proof. Consider the concave function

f : Sn → R ∪ {−∞} Q 7→ f(Q) =

{
log det(Q) if Q ∈ Sn++,
−∞ otherwise,

and let f∗ be its (concave analogue) of Legendre-Fenchel conjugate, i.e.,

M 7→ f∗(M) := inf
Q∈Sn

〈M,Q〉 − f(Q) .
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It turns out that

f∗(M) =

{
n+ log det(M) (= n+ f(M)) if M ∈ Sn++ ,
−∞ otherwise.

Hence the concave analogue of Legendre-Fenchel inequality states that

f∗(M) + f(Q) ≤ 〈M,Q〉 , ∀M ,Q ∈ Sn ,

and yields (6.1). �
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