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Accuracy for Attack Detection

Quentin Vacher and Philippe Owezarski

LAAS-CNRS, Université de Toulouse
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Toulouse, France

Abstract. Machine learning based anomaly and attack detection is a
topic under the spotlights for more than one decade. It is raising a sig-
nificant research effort worldwide. The reasons of this interest lie in the
ability of machine learning to introduce a large part of autonomy in the
attacks detection process compared to the classical signature based ap-
proach, and then reduces the management cost of networks for NetOps,
provides rapid and efficient results, and is prone to detect 0d attacks.
This paper confirms this efficiency showing that using the simple Ran-
dom Forest (RF) algorithms together with features selection allows de-
tection ratio greater than 99%. However, despite a large set of attempts
on the training stage for improving this detection ratio, RF never de-
tects 100% of attacks. It especially always misses some attacks in the
traffic, especially under-represented ones in the training dataset. False
Negatives are certainly the most dramatic events for network security.
In addition, it makes adversarial learning very easy to perform. This pa-
per then presents a controversial study on machine learning based attack
detection (using the significantly illustrative RF example), and its trust-
worthiness limits. This paper is then trying to break the current dogma
that machine learning is THE solution for future cyber-security systems.

Keywords: Attack detection, Machine learning, Random Forest, adver-
sarial learning, training, controversial thoughts

1 Introduction

Given the large variety of usages in the Internet, its traffic is characterized by
a significant variety of its features: variety of applications, variable traffic, etc.
This variability often exceeds some thresholds and disturbs the way the traffic
is flowing in the network. These are called traffic anomalies. Such anomalies can
have multiple forms. They can be benign due for instance to large flows trans-
missions, flash crowds, or even misconfigurations of some equipments. At the
other side of the spectrum of anomalies are malicious anomalies as attacks and
notably Denial of Service (DoS) attacks. In all cases, these anomalies require the
network operators (NetOps) to trigger countermeasures or actions to mitigate
them, and recovering an acceptable service for the flowing traffic. Anomaly de-
tection at run-time is then an essential requirement nowadays, and is raising a
large effort since several years.
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The first approach was inspired from the security enforcement solutions
as signature based detection. It consists in extracting from each encountered
anomaly a signature based on traffic features and values due to the anomaly, to
add them to an anomaly signatures database, that serves to detect any further
anomaly of the same kind. However, this approach is very time-consuming as
analysis of anomalies for producing signatures is mostly hand-made, costly, and
most importantly, it does not allow the detection of unknown anomalies (called
Oday or 0d anomalies).

To cope with 0d anomalies detection, current research focuses on statistical
approaches. It consists in designing a statistical model on traffic features able to
characterize normal traffic. Any variation of the traffic characteristics from this
model then raises an alarm. Among these approaches, the ones based on machine
learning (ML) are currently under the spotlights and raising the huge majority
of research efforts. Their interest lies in their ability in building the traffic and
anomalies models during a training phase (supervised learning)®. Indeed, the
main problematic deals with both detecting and classifying traffic anomalies to
allow NetOps to trigger appropriate countermeasures. Detection and classifica-
tion are specifically two functionalities that machine learning algorithms have
been designed for. ML algorithms exhibit high accuracy for detecting anomalies.
The literature on the topic generally shows detection ratios higher than 95%, of-
ten reaching 98 or 99%. However, none of them reaches the perfect detection ratio
of 100% [1]. And more surprisingly, none of previous paper investigated why ML
algorithms do not allow a perfect detection. Papers on anomaly detection contin-
uously propose new ML based detection algorithms built by combining existing
ML techniques. These algorithms are becoming more and more complex, but do
not leverage on clear and exhaustive analysis of the lacks of previously published
algorithms, and are then unmotivated. They just target higher detection ratios,
without learning from the mistakes of previous algorithms. In addition, it is obvi-
ous that there are biases in the assessment of all these detection algorithms, the
used dataset being certainly the most important one: Datasets are mandatorily
limited in terms of traffic and anomalies kinds, and they mandatorily influence
the design of the detection algorithms. Therefore, proudly publishing the results
of one algorithm because its detection ratio is few tens of percent, or event 1 or
2% higher than related algorithms is nonsense. The results could be inverted if
the algorithms were assessed on another dataset. The only conclusion that comes
from all these ML based detection papers is that ML based detection algorithms
are very good, but not perfect.

That is why the work presented in this paper tries to understand how the
ML algorithms work, and more specifically how training impacts the detection
performance. This paper then proposes a black box based methodology on ML
algorithms that adopts NetOps point of view and their need of trustworthy
ML, for analyzing the way training influences the capabilities of ML algorithms
to detect specific anomalies, especially targeting an explanation of the decision
made by the RF algorithm. This methodology mainly focuses on adapting at each

! For unsupervised learning, both training and detection phases are joint.
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stage the training dataset according to the anomalies that remained undetected
on the previous stages. For illustration purpose, the Random Forest (RF) ML
algorithm has been selected, as it is generally proved to be one of the best ranked
algorithm for anomaly detection in the existing literature of this domain, and it
is certainly the simplest.

The rest of this paper is as follows: section 2 presents an illustrative state of
the art on existing works on the use of machine learning for anomaly detection.
Section 3 describes the dataset used for this work, especially focusing on the
anomalies it contains. Section 4 addresses the problem of RF hyper parameters
optimization with an empirical and pragmatic approach, in order to work in the
best possible conditions for anomaly detection. This is an important part of the
methodology as several alternative approaches could have been chosen. The best
one has then been pragmatically exhibited. Section 5 is devoted to the analysis
of the impact of training on ML detection ratio. Based on these results, section 6
continues this work by trying to explain the RF decision making. Finally section
7 provides a final discussion on the impact of the results presented in the paper.

2 Related Works

Machine learning for cyber-security is raising a lot of effort since at least two
decades. Historically, the first machine learning algorithm - K-mean [2] - was
designed more than 50 years ago. Since then, many other machine learning algo-
rithms were designed: DB-SCAN, Random Forest, K-Nearest Neighbors (KNN),
Support Vector Machine (SVM), to quote a few. Since two decades, they have
been used as a support for detecting and classifying network anomalies and at-
tacks, exhibiting good but still imperfect performances [3] [4] Mathematicians
are still designing new machine learning algorithms, especially based on Neu-
ral Networks (NN), and that belong to the family of Deep Learning algorithms
(DL). These algorithms are raising the interest of researchers and engineers in
cyber-security; as soon as they appear, cyber-security scientists test them. This
is the case of Long Short Term Memory (LSTM) [5] for instance.

The way scientists in cyber-security proceed with all these learning algorithm
lacks motivation and methodology. Most (all?) papers in machine learning based
attack detection select one machine learning algorithm without indicating why
this choice is made, and evaluate its performance on a labeled dataset. This
is always performed with a black box point of view of the machine learning
algorithm. More recently, scientists combine several machine learning techniques.
The complexity of the attack detection systems then increases, for a gain that
is generally very limited: few percents of accuracy in the best cases, more often
only few tens of percent, and this on lab experiments with very reduced traffic
datasets that are far from representing the variety of existing traffic and attacks
types [6]. But none of these attack detection algorithms is able to detect all
attacks without any false alarms [1].

Then, the question that is legitimate to ask is: does it worth continuing
working this way, i.e. continuing designing more and more complex attack de-



4 Vacher, Owezarski

tection systems just to gain few tens of percent of accuracy compared to other
systems? NetOps requirements give the answer. It is essential for them to rely
on trustworthy attack detection system. For that, NetOps need to understand
why the machine learning algorithm detected and classified one flow as benign
or malicious. They then require explainable learning algorithms.

This paper then deals with a study of the RF algorithm trying to understand
how it works and how it is making its detection decision. RF has been selected
as it appears as one of the best algorithms for attack detection, with a detection
accuracy often evaluated over 99% [7] [8].

3 The CIC-IDS-2017 Dataset

As introduced in section 1, this paper aims at analyzing the limits of machine
learning algorithms for anomaly detection in Internet traffic, taking Random
Forest as an illustrative example. This work considers the Random forest based
anomaly detection tool as a blackbox, and then requires a labeled dataset to com-
pare the RF based detection results with the exact labels of the input dataset.
The CIC-IDS-2017 dataset has been selected for this purpose [9]. It nowadays
appears as the new reference dataset for security tool assessment. It more or less
replaces the ancient KDD’99 dataset that has been the reference for more than
20 years. This dataset has been created by the Canadian Institute for Cybersecu-
rity with the purpose of giving researchers an open source Dataset for designing
and evaluating network intrusion detection systems. The CIC-IDS-2017 dataset
consists of eight .csv files. It represents a total of five days of traffic. Each gath-
ered day contains one attack or more that were specifically generated. Table 1
indicates the list of attacks contained in the different files of the CIC-IDS-2017
dataset.

Each of the .csv files is the result of the network traffic analysis performed
with CICFlowMeter, an open source tool that re-constructs bidirectional flows
from the gathered packet pcap files, and extracts the specific features of these
flows. In bidirectional flows, the first packet determines the forward (source to
destination) and backward (destination to source) directions. Hence the statis-
tical time-related features can be calculated separately in the forward and back-
ward directions. CIC-IDS-2017 comes with 78 features. Some of these features
are indicated in Table 2 as examples.

For using this dataset we had to merge all the files into one single .csv file.
We then cleaned the dataset by taking off the rows with NaN, infinite or missing
values. We also noticed that there were 8 features that had a variance of 0.
We then took these features off the dataset. Finally we added a binary label
column. The dataset is given with types of attack as labels, but we chose to
add the option of using binary class with “1” to indicate an attack, and “0” for
benign traffic.

After this preprocessing stage, the final dataset consists of 2 827 876 samples
with 70 features and two label columns: a MultiClass label (which is the attack
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Table 1. CIC-IDS-2017 files description

File name Day Attacks found
Monday- Monday |Benign (Normal Ac-
WorkingHours.csv tivity)

Tuesday- Tuesday |Benign, FTP-
WorkingHours.csv Patator, SSH-

Patator

Wednesday- Wednesday |Benign, DoS Golden-
workingHours.csv Eye, DoS Hulk, DoS

Slowhttptest,  DoS
slowloris, Heartbleed

Thursday- Thursday |Benign, Web Attack -
WorkingHours- Brute Force, Web At-
Morning- tack - SQL injection,
WebAttacks.csv Web Attack - XSS
Thursday- Thursday |Benign, Infiltration
WorkingHours-

Afternoon-

Infilteration.csv

Friday- Friday |Benign, Bot
WorkingHours-

Morning.csv

Friday- Friday |Benign, PortScan
WorkingHours-

Afternoon-

PortScan.csv

Friday- Friday |Benign, DDoS
WorkingHours-

Afternoon-DoS.csv

type) and a binary label. Table 3 details the repartition of the different attack
types in the dataset.

4 Random Forest Hyper-parameters optimization

4.1 RF Hyper-parameters

The goal of this paper is to analyze why ML algorithms for anomaly detection
do not reach the 100% detection ratio, even when applied to well-known refer-
ence datasets with perfectly identified anomalies and attacks. The algorithms
are however evaluated in their best possible configuration. Indeed, in such con-
trolled condition it is possible to optimize the configuration parameters of the
ML algorithm — here RF — for optimizing its detection performance. For that,
it is possible to run the RF algorithm several times on the recorded dataset
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Table 2. Examples of features from CIC-IDS-2017 dataset

Feature name Description of the Fea-
ture
Init_Win_bytes_backward|The total number of bytes
sent in initial window in the
backward direction

Destination Port Destination port of the flow
Bwd Packet Length Min [Minimum size of packet in
backward direction
Average Packet Size |Average size of packet in the
flow
Fwd Packet Length Min |Minimum size of packet in
the forward direction

with different values for the configuration hyper-parameters, so as to empirically
discover the ones providing the best results. This is what this section aims to
exhibit. This is obviously not representative of the way ML based detection al-
gorithms are used in operational conditions as NetOps cannot afford recording
the flowing traffic and running the detection algorithms several times on it. This
would forbid any real-time detection of the anomalies and attacks.

For finding out the optimal parameters when testing Random Forest on
the CIC-IDS-2017 dataset, we selected the RandomForestClassifier [10] function
from Python Scikit-Learn. Indeed, it appears as a widely used RF implementa-
tion according to current papers dealing with RF based anomaly detection. The
hyper-parameters to be optimized are:

— n_estimators: the number of estimators, i.e. the number of decision trees

— max_depth: the maximum depth of the trees inside the RF

— max_features: the maximum number of features Random Forest is allowed
to consider in individual trees when looking for the best split.

In this paper, two different evaluations will be presented: the first one deals
with the classical labels of the CIC-IDS-2017 dataset that indicate the kind of
anomaly/attack for each entry of the dataset files. We call it evaluation with
multiclass labels (considering several classes of attacks). The second one uses
the extra labels that we added to the CIC-IDS-2017 files, and that just indicates
whether the entry is an attack or benign traffic. We called it evaluation with
binary labels.

Each experiment will then be run in both multi classes vs. binary labels. De-
termining the optimal hyper-parameters will then be done for the two multiclass
and binary labels approaches.

The methodology for finding out the 3 optimal RF hyper-parameters follows
a b-fold Cross-Validation approach. For each parameter, several runs with a wide
range of values are performed, the other hyper-parameters being fixed to the best
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Table 3. Distribution of Samples in CIC-IDS-2017

Attack Type Number of samples in the dataset
BENIGN 2271320
DoS Hulk 230124
PortScan 158804
DDoS 128025
DoS GoldenEye 10293
FTP-Patator 7935
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Bot 1956
Web Attack - Brute Force 1507
Web Attack - XSS 652
Infiltration 36
Web Attack - Sql Injection 21
Heartbleed 11

values previously determined. For the scoring of each run, we use the function
score() of Scikit-learn which gives the accuracy of the detection. The accuracy
is defined as the number of correctly identified samples over the total number of

samples.

4.2 Results

The results of the determination of the 3 RF hyper-parameters optimal values
are depicted in Table 4, where each cell of the table is the evaluation curve of
the accuracy of the RF detection for one hyper-parameter. It especially shows
the results obtained over both the train-set and the test-set, as a function of the
value of the hyper-parameter being tested.

Based on these results we selected for each hyper-parameter the following
values:

— n_estimators: we decided to fix the value to 80, because it is a maximum for
the multiclass label, and that we need the same value for the binary label
model in order to compare both binary and multiclass labels performances.

— max_depth : we chose to fix the value to 15, because for higher values, for
both binary and multiclass models, the train and test scores stop increasing
significantly.

— max_features : we selected 15 as the best value because it gives a maximum
score for both binary and multiclass models.
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Table 4. Hyper-parameters optimization results

MultiClass Label Experiment

Binary Label Experiment
y P
0_ggl%luence of n_estimators for binary label RF model O‘QQ;Bfluence of n_estimators for Multilabel RF model
—— Train_score
— Test_Score
0.9965 0.9965 —
0.9960 0.9960
g <
o It
20.9955 20.9955
[) [0]
T °
2 s
0.9950 0.9950
0.9945 _ qain score 0.9945
Test_Score \
0.9940 20 40 60 80 100 0.9940—5520 60 8 100
n_estimators n_estimators n_estimators
Influence of max_depth for binary label RF model Influence of max_depth for Multilabel RF model
1.00 J— 1.00 - -
v e
0.98 /ﬁ 0.98 //
/
0.96 e 0.96 J
< / o /
90.94 ( 50.94 (
] | ] /
o | O] /
90.92 | $0.92 /
s / = /
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S /
0.88 0.88 /
Train_score / —— Train_score
0.86) —— Test Score 0.86 / ~—— Test_Score
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max_depth max_depth max_depth
Olgé%uence of max_features for binary label RF model o.gggbﬂ“ence of max_features for Multilabel RF model
—— Train_score
0.9975 S~ 0.9975 —— Test_Score
/
0.9970 / 0.9970
Vi
©0.9965 / ©0.9965
o / o
bt / b
6-0.9960 / TJ'0.9960
g g
=0.9955 | =0.9955
0.9950 | 0.9950
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Confusion Matrix :
[[453580 336]

[ 420 111240]]
Classification Report :

precision recall fl-score support

Q 9.999075 0.999260 0.999167 453916
i | 9.996989 ©.996239 0.996613 111660

accuracy 0.998663 565576

Fig. 1. Confusion matrix and classification report for binary label RF model

4.3 Analysis

Since the same resources are allocated to both binary and multiclass Classifiers,
we can compare their results as achieved in the exact same situation. It clearly
appears on the figures in table 4 that the use of binary labels gives better results
than multiclass labels. Focusing only on binary classification results, Figure 1
shows several traditional evaluation parameters obtained with RF on the full
CIC-IDS-2017 dataset. Figure 1 exhibits first the confusion matrix. The first
line consists of two values: the number of True Negatives (TN) and False Pos-
itive (FP). The second line displays the number of False Negative (FN) and of
True Positive (TP). The classification report shows a set of detection evaluation
metrics (Precision, Recall, and F1-Score) for benign traffic class (line 0) and for
attack class (line 1). The last column indicates for both benign traffic and at-
tacks the number of sampled identified as such. Let us recall that the Precision,
recall and F1-Score are computed as follows, for a class i :
number of samples correctly assigned to class 4

Precision; = 1
! number of samples assigned to class ¢ (1)

number of samples correctly assigned to class 4

Recall; = (2)

number of samples belonging to class ¢

(Precision - Recall)

F1- =2.
Seore (Precision + Recall)

3)

The accuracy line displays first the Scikit-Learn model.score and the number
of samples. The model score is defined by:

number of samples correctly assigned to their class
Model.Score =

total number of samples )
Finally, Figure 1 exhibits a very high accuracy score. This explains why
Random Forest is so often praised for its intrusion detection capabilities.
To go deeper in the analysis of the capabilities of RF to detect attacks, Table
5 shows the detection performance for each of the 14 different attacks contained
in the CIC-IDS-2017 dataset. Table 5 displays the percentage of False Negative
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Table 5. FN rate per attack type for binary and multi class label RF detection

PercentagPercentage
Numbgf unde-|of unde-
of tected tected
Attack [sam- |[samples |[samples
Type ples |for the|for the
in the|binary multi-
dataseflabel label
model model
DoS Hulk (230124{0.09% 0.11%
PortScan |158804(0.02% 0.02%
DDoS 128025 |0.08% 0.11%
DoS Gold-1y 093 |158%  [6.25%
enEye
FTP-
Patator 7935 [0.06% 0.18%
SSH-
Patator 5897 10.16% 0.08%
DoS  iros |123%  |4.43%
slowloris
DoS
Slowhttpte:.%499 1.66% 5.19%
Bot 1956 |63.01% 63.26%
Web  At-
tack — -lisor |520%  [5.96%
Brute
Force
Web  At-
tack - XSS 652 4.20% 45.45%
Infiltration|36 80% 80%
Web  At-
tack - Sql|21 57.14% 100%
Injection
Heartbleed|11 0% 0%

(FN) per attack kind, together with the number of samples of each attack present
in the dataset.

It clearly appears with Table 5 that despite a very low global FN rate, some
attacks remain mostly undetected by RF based anomaly detection (some attacks
as SQL web attacks are always missed by the RF detector). It also appears that
the attacks that are not well detected are the ones with the fewest samples in the
dataset. A possible explanation to this problem is precisely the fact that these
attacks are underrepresented in the dataset.
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5 Analyzing the impact of training on RF detection
performance

Results presented in Table 5 might exhibit a link between the detection ratio of
some attacks with the number of their instances in the training dataset. Indeed,
a low number of samples of an attack in the training dataset might cause a poor
detection ratio for this kind of attack. In this section, it is then proposed to act
on the training dataset to balance highly and poorly represented attacks. Three
different approaches will be used:

— Undersampling: It consists in taking samples of the most represented class
off the dataset.

— OverSampling: It consists in creating new samples of a kind to increase its
number of instances. For that, RandomOverSampler [13] is used. Rando-
mOverSampler can create new samples with the features distribution of any
attack type.

— Class Weighting: Contrary to the two previous approaches, this method does
not change the dataset. It consists in only changing the weight the RF algo-
rithm assigns to each class in the Gini index calculation.

5.1 Undersampling

Undersampling consists in taking some samples of traffic classes highly repre-
sented off the training-set. The dataset is split as usual: 80% go to the training
and 20% are used as a test-set. Since the RF detection has to be assessed in re-
alistic conditions, as much as possible, the balance of the test-set is not changed.
Indeed, in real conditions, NIDSs face a large majority of benign traffic. In the
following, the balance is defined as the number of benign samples over the num-
ber of attack samples.

To assess the RF detection performance, different balances will be considered
from 4 to 0.1 by taking off progressively some samples of benign traffic, so as to
increase the related ratio of attacks with few samples. For each modified train
set, RF detection is applied on the unchanged test set. Figure 2 presents the
obtained detection scores.

The best score is obtained with the training set balance set to 0.7. The related
RF detection accuracy is 0.9989. This is a small increase of the global detection
ratio with RF. The details of the detection ratio per attack kinds are presented
in section 5.3. However, changing the balance that is originally of 5 in CIC-
IDS-2017 to 0.7 is a huge transformation. In addition, this balance of 0.7 is not
necessarily a constant value that can be applied to any dataset captured on any
network and at any time. Last, with undersampling, it still remains a significant
difference of the number of samples in the training dataset corresponding to the
different attacks.
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Influence of Trainset balance (UnderSampling)

0.999 A
SN~ o

Y -_—

0.9981 /

score())

= 0.9971

0.996

Accuracy (model

0.995{ |

0.994

0.0 05 1.0 15 2.0 25 30 35 a0
Trainset Balance : nb_BENIGN_samples/nb_MALICIOUS_samples

Fig. 2. Undersampling experiment results

Confusion Matrix :
[[453488  428]
[ 271 111389]]
Classification Report :
precision recall fl-score support

0 0.999403 0.999057 0.999230 453916
1 0.996172 0.997573 ©0.996872 111660

0.998764 565576

Fig. 3. Results obtained after training RF on the OverSampled dataset

5.2 Oversampling

The oversampling method consists in creating new samples of under-represented
classes of traffic and injecting them in the already collected dataset. Here, we
will focus on how to create new instances of under-represented attacks. Since
it is barely impossible to reproduce the actual conditions of the network sys-
tem in which the dataset was created, we are duplicating existing samples. The
RandomOverSampler function from the Python Imbalanced Learn library [11] is
used for that purpose. Of course, the idea of randomly picking some samples of
under-represented classes of attacks, and exactly repeating them in the dataset
is clearly prone to heavy statistical biases, as we will have many strictly iden-
tical samples in both the training and testing datasets. However, the shrinkage
floating parameter of the RandomOverSampler function can add a distortion to
the samples to be duplicated. Since the distortion is proportional to the samples’
class’s features standard deviations, we have to OverSample by attack types.

Random Forest with binary labels has been trained on the oversampled
dataset, and its detection accuracy has then been tested on the original one.
Results are reported in Figure 3.

It exhibits an accuracy performance when the training is done on an over-
sampled dataset very similar to the one when the training is done on an under-
sampled training set: 0.9987 vs. 0.9989 respectively. It is also very close from the
detection accuracy obtained without under- or oversampling: 0.9986 (Figure 1).
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0.9990

—
~
0.9988 { A
T \\/ —
0.9986 | NG
~—

0.9984 \
50,9982 | \

0.9980 | \

score()

Model
e

0.9978] \

0.9976 | \

10-1 100
Ratio of weights applied to samples (w_benign/w_malicious)

Fig. 4. Evaluation of the RF model for different Ratios of weight applied to classes

5.3 Class_weight

Given the poor improvement levels when training RF on under-or oversampled
datasets, we finally tested another solution based on the “class_weight” entry
parameter of the RandomForestClassifier function. This parameter allows the
user to assign a weight to the different classes considered. This weight is aimed
at changing the calculation of the Gini index. At each node split, when a tree is
being built, the algorithm tries to find a feature and a threshold that minimize
the Gini impurity. The Gini index (impurity index) for a node can be defined
as:

Ig:Zfix(l_fi):l_ZfiQ (5)

where f; is defined according to the weight applied to the class i by the
formula :

> Win;

where w; is the weight applied to class ¢ and n; the number of samples
belonging to class i

Then, if a weight of 2 is put on a class of samples (and 1 on the others), we
expect the Gini index to give the same results as if these samples were appearing
twice in the considered node. We expect this method to artificially multiply by 2
the weight of the related classes, and this without any risk of bias, at the opposite
of what arises in the oversampling case. Indeed, these samples are in the dataset
only once, and the algorithm simply counts them as twice more important.

The principle of class weighting has been tried with several different balances
between the weights of benign vs. attack classes. In the following, the weight on
the benign class is always set to 1, moving only the weights of the attack classes.
Figure 4 shows the accuracy score as a function of the weights ratio between the
benign and attack classes (in this first experiment, the same weight is set for all
attack classes).

fi (6)
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Model Score : 0.9989426708346889
Confusion Matrix :

[[453370 546]

[ 52 111608]]

Attack Type Percentage of NON Detected

DoS Hulk .008690928843020099 %
.003131066441229883 %
.019464341326689505 %
-19230769230769232 %
.0 %
.0 %
.41017227235438886 %
DoS Slowhttptest .09233610341643582 %
Bot .612244897959184 %
Web Attack € Brute Force 1.3245033112582782 %
Web Attack € XSS 0.8403361344537815 %
Infiltration 40.0 %
Web Attack € Sgql Injection 42.857142857142854 %
Heartbleed 0.0 %

(]

PortScan

DDoS

DoS GoldenEye
FTP-Patator

SSH-Patator
DoS slowloris

VOO ®

Fig. 5. Accuracy Score, Confusion Matrix and FN percentages for the best RF model
obtained with Class_weighting

Figure 4 exhibits that the best result is obtained for a weight ratio of 0.2,
which means a weight of 1 for benign samples and 5 for attack samples. Given
that there are originally five times more benign samples than attack samples in
the dataset, the use of these weights somewhat brings us back to a balanced
situation. The best accuracy obtained with this method is 0.9989 (similar to the
first under-sampled approach). This “weight” based method nevertheless appears
better than the under-sampled one, as with under-sampling, a lot of information
are lost, as many benign samples are thrown away. Another advantage of the
weight-based method appears when looking at the detection performance of
individual classes of attacks, as shown on Figure 5.

With the weighed-based training approach, the detection rate of all attack
types has been reduced. This is particularly the case for under-represented at-
tack classes. For example, the Bot attack FN rate has been decreased from 63 to
5%. The Infiltration attack FN has been decreased from 80 to 40%. And more
importantly, some attack types have seen all their samples detected as the Pata-
tor attacks. Globally, the total number of FN has been reduced to 52. Going
further with the weighted-based training method, let us apply different weights
on the different attack classes. In the preceding experiment a weight of 1 has
been set to the benign class and a weight of 5 has been set to all attack class.
Let us now change the weight of the Web SQL Injection attack from 5 to 10,
the weights of the other attacks remaining the same. Figure 6 then shows that
the FN rate for SQL Injection attack is reduced from 42 to 28%. On the other
side, the detection ratio of bot attack is raising from 5 to 7%, and the one of
Infiltration attack from 40 to 60%.

This type of results appeared for each attack type. When its weight has been
increased with regard to the other attacks, the FN ratio has been decreased for
this specific attack, but it is increased for many others. Differently changing the
weight of attacks then creates some troubles in the way the training is done with
RF.
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Model Score : 0.9989320621808563
Confusion Matrix :
[[453372 544]
[ 60 111600]]
Attack Type Percentage of NON Detected
DoS Hulk 008690928843020099 %
PortScan 003131066441229883 %
DDoS 019464341326689505 %
GoldenEye 19230769230769232 %
-Patator 0 %
0 4
41017227235438886 %
09233610341643582 %
3979591836734695 %
Attack € Brute Force 1.3245033112582782 %
Attack € XSS 1.680672268907563 %
Infiltration 60.0 %
Web Attack € Sgql Injection 28.57142857142857 %
Heartbleed 0.0 %

®
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Fig. 6. Accuracy Score, Confusion Matrix and FN percentages when favoring the SQLI
attack class with the weighted-based training method

6 Understanding the RF decision making

It is clear that using a black box approach is limiting the possibility of analyzing
the decision making process of RF, and then its trustworthy nature. Thanks
to the Scikit-Learn library [12], more information is available, especially on the
trees inside the RF (here 80 trees), and for each tree, much information on the
nodes and leaves are provided, as the features and thresholds considered. Given
the material at disposal, this part would require another 20 pages paper. Because
of space limit, this section will just briefly present two of the objectives of the
study and the related conclusions.

The first study deals with evaluating the RF performances in detecting 0d
attacks. For that, RF is trained with the same 80% of the dataset, as usual,
minus the samples from the chosen attack class. Then the performance of RF is
tested on the same test-set as usual, therefore containing an attack type it has
not been trained on. It then appears that RF is not good at detecting attacks. It
detects a 0d attack only when it has in its dataset attacks that have very similar
shapes, and even in that favorable case, results are not very good. Only some
DoS and Web attacks are well detected. For unique types of attack, like PortScan
or Bot, the results are close to 100% of missed samples. The results also show
that using binary labels provide better results, as it leads to a generalized forest
model compared to a multiclass of attacks approach.

A second study deals with analyzing what features are taken as essential for
each detection tree in the forest. The impurity score of Scikit-Learn library allows
us to rank features from the most to the least important as considered by the
RF algorithm. The real impact of all these features on the detection of attacks
was then tested. The process consists in taking off features from the dataset
and retraining RF to evaluate its new accuracy in detecting attacks. By taking
off features from the dataset, starting from the most important ones, it appears
that these important features are not so essential in the decision making. Indeed,
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taking any of them off lowers the accuracy scores by only 0.01. Similarly, taking
20 features off the dataset sometimes does not imply any significant changes
on the accuracy score. It is then very difficult to understand how RF makes
its decision for classifying some slices of traffic as benign or malicious. A finer
classification of attacks according to the multiclass approach is then very fuzzy,
and the alarms not easy to understand for NetOps, that cannot trust them.

7 Concluding discussion

This paper provides a significant analysis of the RF algorithm for attack detec-
tion. RF has been configured in order to provide the best possible results. Then,
the training dataset has been transformed in order to analyze its ability to detect
specifically any kind of attacks contained in the dataset. This exhibits that im-
proving the detection of one type of attacks can decrease the ability of detecting
other kinds. A perfect detection has never been obtained. It is especially shown
in the paper that it is impossible to explain how RF makes its detection deci-
sion. We argue that this conclusion can be extended to any machine learning
algorithm for attack detection. They all can provide very good results higher
than 99% of accuracy, but none of them is able to ensure a perfect detection of
attacks without false alarms, and to provide explainable and trustworthy results.

This paper also exhibits that the proposed method in the related works are
not necessarily usable with the expected level of accuracy in the actual network.
Indeed, continuous training, or continuous algorithms parameters configuration
are quite impossible to perform. However, these are essential stages for ensuring
a high level of detection accuracy. Identifying the packets or flows constituting
an attack is also difficult, very few algorithms being able of this identification
necessary to trigger the appropriate countermeasures afterwards (in general only
the ones with a solid pre-processing stage on the traffic and applying machine
learning algorithms on some slices of the traffic can do it). In addition, the eval-
uation metrics as accuracy, F1-score, recall, etc. do not indicate what influences
their results. As machine learning algorithms they are not easily explainable.
This paper then aims at giving notice of the machine learning dogma in cyber-
security. It also points out all biases in the current approaches and methodology.
If machine learning is obviously necessary in cyber-security, it has to be combined
with other techniques that can explain raised alarms for trustworthy detection
results.
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