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Automated Polyhedral Abstraction Proving

Nicolas Amat1, Silvano Dal Zilio1, and Didier Le Botlan1

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

We propose an automated procedure to prove polyhedral abstractions
for Petri nets. Polyhedral abstraction is a new type of state-space equiv-
alence based on the use of linear integer constraints. Our approach relies
on an encoding into a set of SMT formulas whose satisfaction implies that
the equivalence holds. The difficulty, in this context, arises from the fact
that we need to handle infinite-state systems. For completeness, we ex-
ploit a connection with a class of Petri nets that have Presburger-definable
reachability sets. We have implemented our procedure, and we illustrate
its use on several examples.
Keywords— Automated reasoning; Abstraction techniques; Reachabil-
ity problems; Petri nets.

1 Introduction
We describe a procedure to automatically prove polyhedral abstractions between
pairs of parametric Petri nets. Polyhedral abstraction [2, 6] is a new type
of equivalence that can be used to establish a “linear relation” between the
reachable markings of two Petri nets. Basically, an abstraction is a triplet of
the form (N1, E,N2), where E is a system of linear constraints between the
places of two nets N1 and N2. The idea is to preserve enough information in E
so that we can rebuild the reachable markings of N1 knowing only the ones of
N2, and vice versa.

In this context, we use the term parametric to stress the fact that we ma-
nipulate semilinear sets of markings, meaning sets that can be defined using a
Presburger arithmetic formula C. In particular, we reason about parametric
nets (N,C), instead of marked nets (N,m0), with the intended meaning that
all markings satisfying C are potential initial markings of N . We also define
an extended notion of polyhedral equivalence between parametric nets, denoted
(N1, C1) uE (N2, C2), whereas our original definition [1] was between marked
nets only (see Definition 2.1).

We show that given a valid equivalence statement (N1, C1) uE (N2, C2), it is
possible to derive a Presburger formula, in a constructive way, whose satisfaction
implies that the equivalence holds. We implemented this procedure on top of an
SMT-solver for Linear Integer Arithmetic (LIA) and show that our approach is
applicable in practice (Sect. 7). Our method is only a semi-procedure though,
since there are two possible outcomes when the equivalence does not hold: either
we can generate a formula that is unsound, or our procedure does not terminate,
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and each of these outcomes provide useful information on why the equivalence
does not hold.

This decidability result is not surprising, since most equivalence problems on
Petri nets are undecidable [15, 16]. If anything, it makes the fact that we may
often translate our problem into Presburger arithmetic quite remarkable. In-
deed, polyhedral abstraction is by essence related with the marking equivalence
problem, which amounts to decide if two Petri nets with the same set of places
have the same reachable markings; a problem proved undecidable by Hack [17].
Also, polyhedral equivalence entails trace equivalence, another well-known un-
decidable equivalence problem when we consider general Petri nets [17, 18].

Description of our Approach and Related Works.

We introduced the concept of polyhedral abstraction as a way to solve reacha-
bility problems more efficiently. We applied this approach to several problems:
originally for model-counting, that is to count the number of reachable mark-
ings of a net [12, 13]; then to check reachability formulas and to find inductive
invariants [1, 2]; and finally to speed-up the computation of concurrent places
(places that can be marked simultaneously in a reachable marking) [5, 6]. We
implemented our approach in two symbolic model-checkers developed by our
team: Tedd, a tool based on Hierarchical Set Decision Diagrams (SDD) [25],
part of the Tina toolbox [22]; and SMPT [21, 3], an SMT-based model-checker
focused on reachability problems [4].

In each case our approach can be summarized as follows. We start from an
initial net (N1, C1) and derive a polyhedral abstraction (N1, C1) uE (N2, C2) by
applying a set of abstraction laws in an iterative and compositional way. Finally,
we solve a reachability problem about N1 by transforming it into a reachability
problem on net N2, which should hopefully be easier to check. A large number
of the laws we implement in our tools derive from structural reduction rules [11],
or are based on the elimination of redundant places and transitions, with the
goal to obtain a “reduced” net N2 that is smaller than N1.

We also implement several other kinds of abstraction rules—often subtler to
use and harder to prove correct—which explains why we want machine check-
able proofs of equivalence. For instance, some of our rules are based on the
identification of Petri nets subclasses in which the set of reachable markings
equals the set of potentially reachable ones, a property we call the PR-R equal-
ity in [19, 20]. We use this kind of rules in the example of the “SwimmingPool”
model of Fig. 8, a classical example of Petri net often used in case studies (see
e.g. [10]).

We give an example of a basic abstraction law in Fig. 1, with an instance
of rule (concat) that allows us to fuse two places connected by a direct, silent
transition. We give another example with (magic), in Fig. 2, which illustrates
a more complex agglomeration rule, and refer to other examples in Sect. 7.

The parametric net (N1, C1) (left of Fig. 1) has a condition which entails
that place y2 should be empty initially (y2 = 0), whereas net (N2, C2) has a
trivial constraint, which can be interpreted as simply x > 0. We can show (see
Sect. 3) that nets N1 and N2 are E-equivalent, which amounts to prove that
any marking (y1 : k1, y2 : k2) of N1, reachable by firing a transition sequence σ,
can be associated with the marking (x : k1 + k2) of N2, also reachable by the
same firing sequence. Actually, we prove that this equivalence is sound when no
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y1

τ

y2

a b

cd

C1 ≜ y2 = 0

≊x = y1 + y2
x

a b

cd

C2 ≜ True

Figure 1: Equivalence rule (concat), (N1, C1) uE (N2, C2), between nets N1

(left) and N2 (right), for the relation E , (x = y1 + y2).

transition can input a token directly into place y2 of N1. This means that the
rule is correct in the absence of the dashed transition (with label d), but that
our procedure should flag the rule as unsound when transition d is present.

The results presented in this paper provide an automated technique for prov-
ing the correctness of polyhedral abstraction laws. This helps us gain more
confidence on the correctness of our tools and is also useful if we want to add
new abstraction rules. Indeed, up until now, all our rules where proven using
“manual theorem proving”, which can be tedious and error-prone. Incidentally,

y1

a b

τ

τ τ

y3

τ τ

y4

c

y2

c′

C1 ≜ y2 + y3 + y4 = 0

≊x = y1 + y2 + y3 + y4

x

a b

cc′

C2 ≜ True

Figure 2: Equivalence rule (magic).

the theory we developed for this paper also helped us gain a better understand-
ing of the constraints necessary when designing new abstraction laws. A critical
part of our approach relies on the ability, given a Presburger predicate C, to
encode the set of markings reachable from C by firing only silent transitions,
that we denote τ?C in the following. Our approach draws a connection with
previous works [7, 8, 24] that study the class of Petri nets that have Presburger-
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definable reachability sets; also called flat nets. We should also make use of a
tool implemented by the same authors, called FAST, which provides a method
for representing the reachable set of flat nets. Basically, we gain the insight that
polyhedral abstraction provides a way to abstract away (or collapse) the sub-
parts of a net that are flattable. Note that our approach may work even though
the reachability set of the whole net is not semilinear, since only the part that
is abstracted must be flattable. We also prove that when (N1, C1) uE (N2, C2)
then necessarily the sets τ?C1

and τ?C2
are semilinear.

Outline and Contributions.

The paper is organized as follows. We define our central notion of parametric
polyhedral abstraction in Sect. 3 and prove several of its properties in Sect. 6.
In particular, we prove that polyhedral abstraction is a congruence, and that
it is preserved when “duplicating labeled transitions”. These properties mean
that every abstraction law we prove can be safely applied in every context, and
that each law can be used as a “rule schema”. Our definition relies on a former
notion of polyhedral equivalence, that we recall in Sect. 2, together with a quick
overview of our notations. We describe our proof procedure in Sect. 4, which
is defined as the construction of a set of four core requirements, each expressed
as separate quantified LIA formulas. A key ingredient in this translation is to
build a predicate, τ?C , which encodes the markings reachable by firing only the
silent transitions of a net. We defer the definition of this predicate until Sect. 5,
where we show how it can be obtained using the output of the FAST tool. We
also describe a method for automatically certifying that the resulting predicate
is sound, which means that we do not have to trust the soundness of any outside
software component, except SMT solvers. We conclude by presenting the results
obtained with a new tool implementing our approach, called Reductron, on some
concrete examples.

2 Petri Nets and Polyhedral Abstraction
A Petri net is a tuple (P, T,Pre,Post), where P = p1, . . . , pn is a finite set
of places, T = t1, . . . , tk is a finite set of transitions (disjoint from P ), and
Pre : T → (P → N) and Post : T → (P → N) are the pre- and post-condition
functions (also known as the flow functions of the net). A state of a net, also
called a marking, is a mapping m : P → N (also denoted NP ) that assigns a
number of tokens, m(p), to each place p in P . A marked net (N,m0) is a pair
consisting of a net, N , and an initial marking, m0. In the following, we will
often consider that each transition is labeled with a symbol from an alphabet
Σ. In this case, we assume that a net is associated with a labeling function
l : T → Σ ∪ {τ}, where τ is a special symbol for the silent action. Every net
has a default labeling function, lN , such that Σ = T and lN (t) = t for every
transition t ∈ T .

A transition t ∈ T is enabled at a marking m ∈ NP if m(p) > Pre(t, p) for all
places p ∈ P , which we also write m > Pre(t), where > represents component-
wise comparison of the markings. A marking m′ ∈ NP is reachable from a
marking m ∈ NP by firing transition t, denoted (N,m)

t−→ (N,m′) or simply
m

t−→m′ when N is obvious from the context, if: (1) transition t is enabled at
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m, and (2) m′ = m − Pre(t) + Post(t). A firing sequence % = t1, . . . , tn ∈ T ∗
can be fired from m, denoted (N,m)

%
=⇒ (N,m′) or simply m %

=⇒m′, if there exist
markings m0, . . . ,mn such that m = m0, m′ = mn, and mi

ti+1−−→mi+1 for all
i < n. We denote R(N,m0) the set of markings reachable from m0 in N .

We can lift any labeling function l : T → Σ∪ {τ} to a mapping of sequences
from T ∗ to Σ∗. Specifically, we define inductively l(%.t) = l(%) if l(t) = τ and
l(%.t) = l(%).l(t) otherwise, where . is the concatenation operator, and l(ε) = ε,
where ε is the empty sequence, verifying ε.σ = σ.ε = σ for any σ ∈ Σ∗. Given
a sequence of labels σ ∈ Σ∗, we write (N,m)

σ
=⇒ (N,m′) if there exists a firing

sequence % ∈ T ∗ such that (N,m)
%

=⇒ (N,m′) and σ = l(%). In this case, σ is
referred to as an observable sequence of the marked net (N,m). In some cases,
we have to consider firing sequences that must not finish with τ transitions.
Hence, we define a relation (N,m)

σ〉
=⇒ (N,m′), written simply m

σ〉
=⇒ m′, as

follows:

• (N,m)
ε〉

=⇒ (N,m) holds for all marking m.

• (N,m)
σ.a〉

==⇒ (N,m′) holds for any markings m,m′ and a, σ ∈ Σ × Σ∗,
if there exists a marking m′′ and a transition t such that l(t) = a and
(N,m)

σ
=⇒ (N,m′′)

t−→ (N,m′).

It is immediate that m
σ〉

=⇒ m′ implies m σ
=⇒ m′. Note the difference between

m
ε

=⇒m′, which stands for any sequence of τ transitions, and m
ε〉

=⇒m′, which
implies m = m′ (the sequence is empty).

We use the standard graphical notation for nets, where places are depicted
as circles and transitions as squares such as the nets displayed in Fig. 1.

Polyhedral Abstraction.

We define an equivalence relation that can be used to describe a linear depen-
dence between the markings of two different nets, N1 and N2. Assume V is a set
of places p1, . . . , pn, considered as variables, and let m be a mapping in V → N.
We define m as a linear formula, whose unique model in NV is m, defined as
m ,

∧{x = m(x) | x ∈ V }. By extension, given a Presburger formula E,
we say that m is a (partial) solution of E if the formula E ∧m is consistent.
Equivalently, we can view m as a substitution, where each variable x ∈ V is
substituted by m(x). Indeed, the formula F{m} (the substitution m applied
to F ) and F ∧m admit the same models. Given two mappings m1 ∈ NV1 and
m2 ∈ NV2 , we say that m1 and m2 are compatible when they have equal values
on their shared domain: m1(x) = m2(x) for all x in V1 ∩V2. This is a necessary
and sufficient condition for the system m1 ∧m2 to be consistent. Finally, if V
is the set of free variables of m1, m2, and the free variables of E are included
in V , we say that m1 and m2 are related up-to E, denoted m1≡E m2, when
E ∧m1 ∧m2 is consistent.

m1≡E m2 ⇔ ∃m ∈ NV . m |= E ∧m1 ∧m2 (1)

This relation defines an equivalence between markings of two different nets
(≡E ⊆ NP1 × NP2) and, by extension, can be used to define an equivalence
between nets themselves, that is called polyhedral equivalence in [2, 5], where
all reachable markings of N1 are related to reachable markings of N2 (and
conversely), as explained next.
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Definition 2.1 (E-abstraction). Assume N1 = (P1, T1,Pre1,Post1) and N2 =
(P2, T2,Pre2,Post2) are two Petri nets, and E a Presburger formula whose free
variables are included in P1 ∪ P2. We say that the marked net (N2,m2) is an
E-abstraction of (N1,m1), denoted (N1,m1) vE (N2,m2), if and only if:

(A1) The initial markings are compatible with E, meaning m1≡E m2.

(A2) For all observable sequences (N1,m1)
σ

=⇒ (N1,m
′
1) in N1, there is at least

one marking m′2 over P2 such that m′1≡E m′2, and for all markings m′2
over P2 such that m′1≡E m′2 we have (N2,m2)

σ
=⇒ (N2,m

′
2).

We say that (N1,m1) is E-equivalent to (N2,m2), denoted (N1,m1) ≡E
(N2,m2), when we have both (N1,m1) vE (N2,m2) and (N2,m2) vE (N1,m1).

By definition, given an equivalence statement (N1,m1) ≡E (N2,m2), then
for every marking m′2 reachable in N2, the set of markings of N1 consistent with
E ∧m′2 is non-empty (condition (A2)). This defines a partition of the reachable
markings of (N1,m1) into a union of “convex sets”—hence the name polyhedral
abstraction—each associated to one (at least) reachable marking in N2.

Although E-abstraction looks like a simulation, it is not, since the pair of
reachable markings m′1,m′2 from the definition does not satisfy (N1,m

′
1) vE

(N2,m
′
2) in general. This relation vE is therefore broader than a simulation,

but suffices for our primary goal, that is Petri net reduction. Of course, ≡E
is not a bisimulation either. It is also quite simple to show that checking E-
abstraction equivalence is undecidable in general.

Theorem 2.1 (Undecidability of E-equivalence). The problem of checking
whether a statement (N1,m1) ≡E (N2,m2) is valid is undecidable.

Proof. Assume that N1 and N2 are two nets with the same set of places, such
that all transitions are silent. Then (N1,m1) ≡True (N2,m2), an E-abstraction
for the trivial constraint E , True, entails that (N1,m1) and (N2,m2) must
have the same reachability set. This property is known as marking equivalence
and is undecidable [17].

3 Parametric Reduction Rules and Equivalence
E-abstraction is defined on marked nets (Definition 2.1), thus the reduction rules
defined in [1, 2], which are E-abstraction equivalences, mention marked nets as
well. Their soundness was proven manually, using constrained parameters for
initial markings. Such constraints on markings are called coherency constraints.

Coherency Constraints.

We define a notion of coherency constraint, C, that must hold not only in the
initial state, but also in a sufficiently large subset of reachable markings. We
have already seen an example with the constraint C1 , y2 = 0 used in rule
(concat). Without the use of C1, rule (concat) would be unsound since net
N2 (right of Fig. 1) could fire transition b more often than its counterpart, N1.

Since C is a predicate on markings, we equivalently consider it as a subset
of markings or as a logic formula, so that we may equivalently write m |= C or
m ∈ C to indicate that C(m) is true.
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Definition 3.1 (Coherent Net). Given a Petri net N and a predicate C on
markings, we say that N satisfies the coherency constraint C, or equivalently,
that (N,C) is a coherent net, if and only if for all firing sequences m σ

=⇒m′ with
m ∈ C, we have

∃m′′ ∈ C . m
σ〉

=⇒m′′ ∧m′′ ε
=⇒m′

Intuitively, if we consider that all τ transitions are irreversible choices, then
we can define a partial order on markings with m < m′ whenever m τ−→ m′

holds. Then, markings satisfying the coherency constraint C must be minimal
with respect to this partial order.

In this paper, we wish to prove automatically the soundness of a given reduc-
tion rule. A reduction rule basically consists of two nets with their coherency
constraints, and a Presburger relation between markings.

Definition 3.2 (Parametric Reduction Rule). A parametric reduction rule is
written (N1, C1) >E (N2, C2), where (N1, C1) and (N2, C2) are both coherent
nets, and C1, C2, and E are Presburger formulas whose free variables are in
P1 ∪ P2.

A given reduction rule (N1, C1) >E (N2, C2) is a candidate, which we will
analyze to prove its soundness: is it an E-abstraction equivalence?

Our analysis relies on a richer definition of E-abstraction, namely parametric
E-abstraction (Definition 3.3, next), which includes the coherency constraints
C1, C2. Parametric E-abstraction entails E-abstraction for each instance of its
parameters (Theorem 3.1, below). Essentially, for any sequence m1

σ
=⇒m′1 with

m1 ∈ C1, there exists a markingm′2 such thatm′1≡E m′2; and for every marking
m2 ∈ C2 compatible with m1, i.e., m1≡E m2, all markings m′2 compatible with
m′1 (i.e., m′1≡E m′2) can be reached from m2 by the same observable sequence
σ.

To ease the presentation, we define the notation

m1 〈C1EC2〉m2 , m1 |= C1 ∧m1≡E m2 ∧m2 |= C2 (2)

Definition 3.3 (Parametric E-abstraction). Assume (N1, C1) >E (N2, C2) is
a parametric reduction rule. We say that (N2, C2) is a parametric E-abstraction
of (N1, C1), denoted (N1, C1) �E (N2, C2) if and only if:

(S1) For all markings m1 satisfying C1 there exists a marking m2 such that
m1 〈C1EC2〉m2.

(S2) For all firing sequences m1
ε

=⇒m′1 and all markings m2, we have m1≡E m2

implies m′1≡E m2.

(S3) For all firing sequences m1
σ

=⇒ m′1 and all marking pairs m2, m′2, if
m1 〈C1EC2〉m2 and m′1≡E m′2 then we have m2

σ
=⇒m′2.

We say that (N1, C1) and (N2, C2) are in parametric E-equivalence, de-
noted (N1, C1) uE (N2, C2), when we have both (N1, C1) �E (N2, C2) and
(N2, C2) �E (N1, C1).

Condition (S1) corresponds to the solvability of the Presburger formula E
with respect to the marking predicates C1 and C2. Condition (S2) ensures that
silent transitions of N1 are abstracted away by the formula E, and are therefore
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invisible to N2. Condition (S3) follows closely condition (A2) of the standard
E-abstraction equivalence.

Note that equivalence u is not a bisimulation, in the same way that ≡ from
Definition 2.1. It is defined only for observable sequences starting from states
satisfying the coherency constraint C1 of N1 or C2 of N2, and so this relation
is usually not true on every pair of equivalent markings m1≡E m2.

Instantiation Law.

Parametric E-abstraction implies E-abstraction for every instance pair satisfy-
ing the coherency constraints C1, C2.

Theorem 3.1 (Parametric E-abstraction Instantiation). Assume (N1, C1) �E
(N2, C2) is a parametric E-abstraction. Then for every pair of markings m1,m2,
m1 〈C1EC2〉m2 implies (N1,m1) vE (N2,m2).

Proof. Consider (N1, C1) �E (N2, C2), a parametric E-abstraction, and m1,
m2 such thatm1 〈C1EC2〉m2 holds. By definition ofm1 〈C1EC2〉m2, see Equa-
tion (2), condition (A1) of Definition 2.1 is immediately satisfied. We show (A2)
by considering an observable sequence (N1,m1)

σ
=⇒ (N1,m

′
1). Since m1 satisfies

the coherency constraint C1, we get from Definition 3.1 a marking m′′1 ∈ C1

such that m1
σ〉

=⇒m′′1
ε

=⇒m′1 holds. By applying (S1) to m′′1 , we get a marking m′2
such that m′′1 〈C1EC2〉m′2 holds, which implies m′′1 ≡E m′2. Then, by applying
(S2) to m′′1

ε
=⇒ m′1, we obtain the expected result m′1≡E m′2. Finally, for all

markings m′2 such that m′1≡E m′2, we conclude m2
σ

=⇒m′2 from (S3). Condition
(A2) is proved, hence (N1,m1) vE (N2,m2) holds.

4 Automated Proof Procedure
Our automated proof procedure receives a candidate reduction rule (Defini-
tion 3.2) as input, and has three possible outcomes: (i) the candidate is proven
sound, congratulations you have established a new parametric E-abstraction
equivalence; (ii) the candidate is proven unsound, try to understand why and
fix it; or (iii) we cannot conclude, because part of our procedure relies on a
semi-algorithm (see Sect. 5) for expressing the set of reachable markings of a
flat subnet as a linear constraint.

Given the candidate reduction rule, the procedure generates SMT queries,
which we call core requirements (defined in Sect. 4.2) that are solvable if and only
if the candidate is a parametric E-abstraction (Theorems 4.8 and 4.9, Sect. 4.3).
We express these constraints into Presburger predicates, so it is enough to use
solvers for the theory of formulas on Linear Integer Arithmetic, what is known
as LIA in SMT-LIB [9]. We illustrate the results given in this section using
a diagram (Fig. 3) that describe the dependency relations between conditions
(S1), (S2), (S3) and their encoding as core requirements.

4.1 Presburger Encoding of Petri Net Semantics
We start by defining a few formulas that ease the subsequent expression of
core requirements. This will help with the most delicate point of our encoding,
which relies on how to encode sequences of transitions. Note that the coherency
constraints of reduction rules are already defined as such.
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Core 0

Coherent nets
Lemma 4.4

Core 1

S1
Proposition 4.5

Core 2

S2
Lemma 4.6

Core 3

S3

Lemma 4.7

Lemma 4.2

Figure 3: Detailed dependency relations.

In the following, we use x for the vector of variables (x1, . . . , xn), correspond-
ing to the places p1, . . . , pn of P , and F (x) for a formula whose variables are
included in x. We say that a mappingm of NP is a model of F , denotedm |= F ,
if the ground formula F (m) = F (m(p1), . . . ,m(pn)) is true. Hence, we can also
interpret F as a predicate over markings. Finally, we define the semantics of
F as the set JF K = {m ∈ NP | m |= F}. As usual, we say that a predicate
F is valid, denoted |= F , when all its interpretations are true (JF K = NP ). In
order to keep track of fired transitions in our encoding, and without any loss of
generality we assume that our alphabet of labels Σ is a subset of the natural
numbers (Σ ⊂ N∗), except 0 that is reserved for τ .

We define next a few Presburger formulas that express properties on mark-
ings of a net N . For instance, Equation (3) below defines the predicate ENBLt,
for a given transition t, which corresponds exactly to the markings that enable t.
We also define a linear predicate T(x,x′, a) that describes the relation between
the markings before (x) and after (x′) firing a transition with label a. With
this convention, formula T(m,m′, a) holds if and only if m t−→m′ holds for some
transition t such that l(t) = a (which implies a 6= 0).

ENBLt(x) ,
∧
i∈1..n(xi > Pre(t, pi)) (3)

∆t(x,x
′) ,

∧
i∈1..n(x′i = xi + Post(t, pi)− Pre(t, pi)) (4)

T(x,x′, a) ,
∨
t∈T (ENBLt(x) ∧∆t(x,x

′) ∧ a = l(t)) (5)

We admit the following, for all markings m, m′ and label a:

|= T (m,m′, a) ⇐⇒ ∃t . m t−→m′ ∧ l(t) = a (6)

In order to define the core requirements, we additionally require a predicate
τ∗C(x,x′) encoding the markings reachable by firing any sequence of silent tran-
sitions from a state satisfying the coherency constraint C. And so, the following
constraint must hold:

|= m ∈ C =⇒ (τ∗C(m,m′) ⇐⇒ m
ε

=⇒m′) (7)

9



Since m ε
=⇒ m′ may fire an arbitrary number of silent transitions τ , the

predicate τC is not guaranteed to be expressible as a Presburger formula in the
general case. Yet, in Sect. 5, we characterize the Petri nets for which τC can be
expressed in Presburger logic, which include all the polyhedral reductions that
we meet in practice (we explain why).

Thanks to this predicate, we define the formula T́C(x,x′, a) encoding the
reachable markings from a marking satisfying the coherency constraint C, by
firing any number of silent transitions, followed by a transition labeled with a.
Then, we define T̂ which extends T́ with any number of silent transitions after
a and also allows for only silent transitions (no transition a).

T́C(x,x′, a) , ∃x′′ . τ∗C(x,x′′) ∧ T (x′′,x′, a) (8)

T̂C(x,x′, a) ,
(
∃x1 . T́C(x,x1, a) ∧ C(x1) ∧ τ∗C(x1,x

′))
)

(9)

∨ (a = 0 ∧ τ∗C(x,x′)) (10)

Lemma 4.1. For any markings m,m′ and label a such that m ∈ C, we have
|= T́C(m,m′, a) if and only if m

a〉
=⇒m′ holds.

Proof. We show both directions separately.

• Assume m
a〉

=⇒m′. By definition, this implies that there exists m′′ and a
transition t such that l(t) = a and m ε

=⇒m′′
t−→m′. Therefore, τ∗C(m,m′′)

is valid by (7), and T (m′′,m′, a) is valid by (6), hence the expected result
|= T́C(m,m′, a).

• Conversely, assume T́C(m,m′, a) is valid. Then, by (8) there exists a mark-
ingm′′ such that both τ∗C(m,m′′) and T (m′′,m′, a) are valid. From (7), we
get m ε

=⇒m′′, and (6) implies ∃t . m′′ t−→m′∧ l(t) = a. Thus, m ε
=⇒m′′

t−→m′,
that is the expected result m

a〉
=⇒m′.

Lemma 4.2. Given a coherent net (N,C), for any markings m,m′ such that
m ∈ C and a ∈ Σ ∪ {0}, we have |= T̂C(m,m′, a) if and only if either m ε

=⇒m′

and a = 0, or m a
=⇒m′.

Proof. We show both directions separately.

• Assume m ε
=⇒ m′ and a = 0, then τ∗C(m,m′) is valid by (7), hence the

expected result |= T̂C(m,m′, a) from (10).

• Assume m a
=⇒m′. From Definition 3.1 (coherent net), there exists m′′ ∈ C

such that m
a〉

=⇒m′′
ε

=⇒m′. Then, we get |= T́C(m,m′′, a) from Lemma 4.1,
and |= τ∗C(m′′,m′) from (7). Consequently, T̂C(m,m′, a) is valid from (9).

• Conversely, assume T̂C(m,m′, a) holds by (10), then a = 0 and |=
τ∗C(m,m′), which implies m ε

=⇒m′ by (7). This is the expected result.

• Finally, assume T̂C(m,m′, a) holds by (9), then there exists a marking
m′′ ∈ C such that |= T́C(m,m′′, a) and |= τ∗C(m′′,m′). This implies
m

a〉
=⇒m′′

ε
=⇒m′ from Lemma 4.1 and (7). This implies the expected result

m
a

=⇒m′.
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Finally, we denote Ẽ(x,y) the formula obtained from E where free variables
are substituted as follows: place names in N1 are replaced with variables in x,
and place names in N2 are replaced with variables in y (making sure that bound
variables of E are renamed to avoid interference). When the same place occurs
in both nets, say p1i = p2j , we also add the equality constraint (xi = yj) to Ẽ in
order to preserve this equality constraint.

4.2 Core Requirements: Parametric E-abstraction Encod-
ing

In order to check conditions (S1)–(S3) of parametric E-abstraction (Defini-
tion 3.3), we define a set of Presburger formulas, called core requirements, to
be verified using an external SMT solver ((Core 1) to (Core 3)). You will find
an illustration of these requirements in Figs. 4–7. The satisfaction of these re-
quirements entail the parametric E-abstraction relation. We have deliberately
stressed the notations to prove that (N2, C2) is a parametric E-abstraction of
(N1, C1). Of course, each constraint must be checked in both directions to ob-
tain the equivalence. Also, to not overload the notations, we assume that the
transition relations are clear in the context if they belong to N1 or N2.

Verifying that a Net is Coherent.

The first step consists in verifying that both nets N1 and N2 satisfy their co-
herency constraints C1 and C2 (the coherency constraint is depicted in Figure 4).
We recall Definition 3.1:

Definition (Coherent Net). For all firing sequence m σ
=⇒m′ with m ∈ C, there

exists a marking m′′ satisfying C such that m
σ〉

=⇒m′′ and m′′ ε
=⇒m′.

We encode a simpler relation, below, with sequences σ of size 1. This relies
on the following result:

Lemma 4.3. (N,C) is coherent if and only if for all firing sequence m
a〉

=⇒m′

with m ∈ C and a ∈ Σ, we have ∃m′′ ∈ C . m
a〉

=⇒m′′ ∧m′′ ε
=⇒m′.

We deliberately consider a firing sequence m
a〉

=⇒m′ (and not m a
=⇒m′), since

the encoding relies only on T́C (that is,
a〉

=⇒), not on T̂C (that is, a
=⇒).

Proof. The “only if” part is immediate, as a particular case of Definition 3.1
and noting that m

a〉
=⇒ m′ implies m a

=⇒ m′. Conversely, assume the property
stated in the lemma is true. Then, we show by induction on the size of σ, that
Definition 3.1 holds for any σ. Note that the base case σ = ε always holds, for
any net, by taking m′′ = m. Now, consider a non-empty sequence σ = σ′.a
and m σ′.a

==⇒m′ with m ∈ C. By definition, there exists m1 and m2 such that
m

σ′

=⇒m1
a〉

=⇒m2
ε

=⇒m′. By induction hypothesis, onm σ′

=⇒m1, there existsm3 ∈ C
such thatm

σ′〉
==⇒m3

ε
=⇒m1. Therefore, we havem

σ′〉
==⇒m3

ε
=⇒m1

a〉
=⇒m2

ε
=⇒m′, which

can simply be written m
σ′〉

==⇒m3
a〉

=⇒m2
ε

=⇒m′. Using the property stated in the
lemma onm3

a〉
=⇒m2, we get a markingm4 ∈ C such thatm3

a〉
=⇒m4

ε
=⇒m2. Hence,

m
σ′〉

==⇒m3
a〉

=⇒m4
ε

=⇒m2
ε

=⇒m′ holds, which can be simplified as m
σ′.a〉

===⇒m4
ε

=⇒m′.
This is the expected result.
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m1
m′

1
a

m′′
1

a⟩
ϵ

1

Figure 4: Illustration of (Core 0).

R(N1, C1)C1

R(N2, C2)C2

m1

m2

E

Figure 5: Illustration of (Core 1).

Therefore, we can encode Definition 3.1 using the following formula:

∀p,p′, a . C(p) ∧ T́C(p,p′, a)

=⇒ ∃p′′ . C(p′′) ∧ T́C(p,p′′, a) ∧ τ∗C(p′′,p′)
(Core 0)

Lemma 4.4. Given a Petri net N , the constraint (Core 0) is valid if and only
if the net satisfies the coherency constraint C.

Proof. Constraint (Core 0) is an immediate translation of the property stated
in Lemma 4.3.

Given a net N , a constraint C expressed as a Presburger formula, and a
formula τ∗C that captures ε

=⇒ transitions (as obtained in Sect. 5), we are now
able to check automatically that a net (N,C) is coherent. Thus, from now on,
we assume that the considered nets (N1, C1) and (N2, C2) are indeed coherent.

Coherent Solvability.

The first requirement of the parametric E-abstraction relates to the solvability
of formula E with regard to the coherency constraint C1, and is encoded by
(Core 1). This requirement ensures that every marking of N1 satisfying C1 can
be associated to at least one marking of N2 satisfying C2. Let us recall (S1),
taken from Definition 3.3:

Definition (S1). For all markings m1 satisfying C1 there exists a marking m2

such that m1 〈C1EC2〉m2.

Condition (S1) is depicted in Figure 5. We propose to encode it by the
following Presburger formula:

∀x . C1(x) =⇒ ∃y . Ẽ(x,y) ∧ C2(y) (Core 1)

Since the encoding is immediate, we admit this proposition:

Proposition 4.5. The constraint (Core 1) is valid if and only if (S1) holds.
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Figure 6: Illustration of (Core 2).
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Figure 7: Illustration of (Core 3).

Silent Constraints.

So far, we have focused on the specific case of coherent nets, which refers to
intermediate coherent markings. Another notable feature of parametric E-
abstractions is the ability to fire any number of silent transitions without altering
the solutions of E. In other words, if two markings, m1 and m2, are solutions of
E, then firing any silent sequence from m1 (or m2) will always lead to a solution
of E ∧m2 (or E ∧m1). This means that silent transitions must be invisible to
the other net.

Let us recall (S2), taken from Definition 3.3:

Definition (S2). For all firing sequences m1
ε

=⇒m′1 and all markings m2, we
have m1≡E m2 implies m′1≡E m2.

It actually suffices to show the result for each silent transition t ∈ T1 taken
separately:

Lemma 4.6. Condition (S2) holds if and only if, for all markings m1, m2 such
that m1≡E m2, and for all t1 ∈ T1 such that l1(t1) = τ , we have m1

t1−→m′1 =⇒
m′1≡E m2.

Proof. The “only if” way is only a particular case of (S2) with a single silent
transition t1. For the “if” way, (S2) is shown from the given property by tran-
sitivity.

Thanks to this result, we encode (S2) by the following core requirement:

∀p1,p2,p
′
1 . Ẽ(p1,p2) ∧ τ(p1,p

′
1) =⇒ Ẽ(p′1,p2) (Core 2)

where τ(x,x′) is defined as τ(x,x′) ,
∨
t∈T |l(t)=τ (ENBLt(x) ∧∆t(x,x

′))

Reachability.

Let us recall the definition of (S3), taken from Definition 3.3:

Definition (S3). For all firing sequences m1
σ

=⇒m′1 and all marking pairs m2,
m′2, if m1 〈C1EC2〉m2 and m′1≡E m′2 then we have m2

σ
=⇒m′2.

Condition (S3) mentions sequences σ of arbitrary length. We encode it
with a formula dealing only with sequences of length at most 1, thanks to the
following result:

13



Lemma 4.7. Given a parametric reduction rule (N1, C1) >E (N2, C2) which
satisfies condition (S1), then condition (S3) holds if and only if for all firing
sequence m1

σ
=⇒m′1 with σ = ε or σ = a with a ∈ Σ, and all markings m2,m

′
2,

we have m1 〈C1EC2〉m2 ∧m′1≡E m′2 =⇒ m2
σ

=⇒m′2.

Proof. The given property is necessary as a particular case of (S3) taking σ = a
or σ = ε. Conversely, assume the given property holds. We show by induction
on the size of σ that (S3) holds for any sequence σ. The base cases σ = a and
σ = ε are ensured by hypothesis. Now, consider a non-empty sequence σ = σ′.a,
and m1

σ
=⇒m′1 (i), as well as markings m2, m′2 such that m1 〈C1EC2〉m2 and

m′1≡E m′2 holds. We have to showm2
σ

=⇒m′2. From (i), we havem1
σ′.a

==⇒m′1, that
is, there exists a marking u1 such that m1

σ′

=⇒ u1
a

=⇒m′1 (ii). By Definition 3.1,
there exists u′1 ∈ C1 such thatm1

σ′〉
==⇒u′1

ε
=⇒u1 (iii). Also, by condition (S1), there

exists a marking u′2 of N2 such that u′1 〈C1EC2〉u′2, which implies u′1≡E u′2 (iv).
Hence, by induction hypothesis on m1

σ′

=⇒ u′1, we have m2
σ′

=⇒ u′2 (α) From (iii)
and (ii), we get u′1

a
=⇒m′1 (v). Applying the property of the lemma on (iv) and

(v), we get u′2
a

=⇒m′2 (β). Combining (α) and (β) leads to m2
σ′.a

==⇒m′2, that is
the expected result m2

σ
=⇒m′2.

Thanks to Lemma 4.7, we can encode (S3) by the following formula:

∀p1,p2, a,p
′
1,p
′
2 . 〈C1EC2〉(p1,p2) ∧ T̂C1(p1,p

′
1) ∧ Ẽ(p′1,p

′
2)

=⇒ T̂C2
(p2,p

′
2)

(Core 3)

4.3 Global Procedure
In this section, we consider the full process for proving parametric E-abstraction.
We demonstrate that verifying requirements (Core 0) to (Core 3) is sufficient
for obtaining a sound abstraction (Th. 4.8). We also prove that these conditions
are necessary (Th. 4.9).

Theorem 4.8 (Soundness). Given two nets N1, N2 and constraints C1, C2 ex-
pressed as Presburger formulas, if core requirement (Core 0) holds for both
(N1, C1) and (N2, C2), and if core requirements (Core 1), (Core 2), and (Core
3) are valid, then the rule is a parametric E-abstraction: (N1, C1) �E (N2, C2).

Proof. If (Core 0) holds for (N1, C1), then (N1, C1) is a coherent net by
Lemma 4.4. Similarly for (N2, C2). Hence, (N1, C1) >E (N2, C2) is a para-
metric reduction rule. By Proposition 4.5, and since (Core 1) is valid, we get
(S1) from Definition 3.3. Similarly, by Lemma 4.6, and since (Core 2) is valid,
we get (S2). Finally, (S3) holds by Lemma 4.7 since (Core 3) is valid and
since (S1) is known to hold. (S1), (S2), (S3) entail (N1, C1) �E (N2, C2) by
Definition 3.3.

The converse also holds:

Theorem 4.9 (Completeness). Given a parametric E-abstraction (N1, C1) �E
(N2, C2), then core requirements (Core 1), (Core 2), and (Core 3) are valid,
and (Core 0) holds for both (N1, C1) and (N2, C2).

Proof. By hypothesis, conditions (S1), (S2) and (S3) hold and (N1, C1) and
(N2, C2) are coherent nets. Then, Lemma 4.4 implies that (Core 0) holds for
both nets. Besides, Proposition 4.5 and Lemmas 4.6 and 4.7 ensure that (Core
1), (Core 2), and (Core 3) are valid.
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Consequently, checking E-abstraction equivalence, i.e., (N1, C1) uE
(N2, C2), amounts to check that SMT formulas (Core 0)-(Core 3) are valid
on both nets.

Our approach relies on our ability to express (arbitrarily long) sequences
m

ε
=⇒m′ thanks to a formula τ∗C(x,x′). This is addressed in the next section.

5 Silent Transition Relation Acceleration
The previous results, including Theorems 4.8 and 4.9, rely on our ability to
express the reachability set of silent transitions as a Presburger predicate, de-
noted τ∗C . Finding a finite formula τ∗C that captures an infinite state-space is not
granted, since τ -sequences may be of arbitrary length. However, we now show
that, since τ transitions must be abstracted away by E in order to define a valid
parametric E-equivalence (condition (S2)), and since E is itself a Presburger
formula, this implies that τ∗C corresponds to the reachability set of a flattable
subnet [24], which is expressible as a Presburger formula too.

We define the silent reachability set of a net N from a coherent constraint
C as Rτ (N,C) , {m′ | m |= C ∧m ε

=⇒m′}. We now want to find a predicate
τ∗C(x,x′) that satisfies the relation:

Rτ (N,C) = {m′ | m′ |= ∃x . C(x) ∧ τ∗C(x,x′)} (7)

In order to express the formula τ∗C , we first use the tool FAST [7], designed for
the analysis of infinite systems, and that permits to compute the reachability
set of a given Vector Addition System with States (VASS). Note that a Petri net
can be transformed to an equivalent VASS with the same reachability set, so
the formal presentation of VASS can be skipped. The algorithm implemented
in FAST is a semi-procedure, for which we have some termination guarantees
whenever the net is flattable [8], i.e. its corresponding VASS can be unfolded
into a VASS without nested cycles, called a flat VASS. Equivalently, a net N
is flattable for some coherent constraint C if its language is flat, that is, there
exists some finite sequence %1 . . . %k ∈ T ∗ such that for every initial marking
m |= C and reachable marking m′ there is a sequence % ∈ %∗1 . . . %∗k such that
m

%
=⇒m′. In short, all reachable markings can be reached by simple sequences,

belonging to the language: %∗1 . . . %∗k. Last but not least, the authors stated in
Theorem 5.1 from [24] that a net is flattable if and only if its reachability set is
Presburger-definable:

Theorem 5.1 ([24]). For every VASS V , for every Presburger set Cin of con-
figurations, the reachability set ReachV(Cin) is Presburger if, and only if, V is
flattable from Cin.

As a consequence, FAST’s algorithm terminates when its input is Presburger-
definable. We show in Theorem 5.2 that given a parametric E-abstraction
equivalence (N1, C1) uE (N2, C2), the silent reachability sets for both nets N1

and N2 with their coherency constraints C1 and C2 are indeed Presburger-
definable – we can even provide the expected formulas. Yet, our computation
is complete only if the candidate reduction rule is a parametric E-abstraction
equivalence (then, we are able to compute the τ∗C relation), otherwise FAST, and
therefore our procedure too, may not terminate.
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Theorem 5.2. Given a parametric E-abstraction equivalence (N1, C1) uE
(N2, C2), the silent reachability set Rτ (N1, C1) is Presburger-definable.

Proof. We prove only the result for (N1, C1), the proof for (N2, C2) is similar
since u is a symmetric relation. We first propose an expression that computes
Rτ (N1,m1) for any marking m1 satisfying C1. Consider an initial marking m1

in C1. From condition (S1) (solvability of E), there exists a compatible marking
m2 satisfying C2, meaning m1 〈C1EC2〉m2 holds. Now, take a silent sequence
m1

ε
=⇒m′1. From condition (S2) (silent stability), we have m′1≡E m2. Hence,

Rτ (N1,m1) ⊆ {m′1 | ∃m2 . Ẽ(m1,m2) ∧ Ẽ(m′1,m2)}. Conversely, we show
that all m′1 solution of Ẽ(m′1,m2) are reachable from m1. Take m′1 such that
m′1≡E m2. Since we have m2

ε
=⇒m2, by condition (S3) we must have m1

ε
=⇒m′1.

And finally we obtain Rτ (N1,m1) = {m′1 | m′1 |= ∃p1,p2 . m1(p1)∧Ẽ(p1,p2)∧
Ẽ(p′1,p2)}.

We can generalize this reachability set for all coherent markings satisfy-
ing C1. We first recall its definition, Rτ (N1, C1) = {m′1 | ∃m1 . m1 |=
C1 ∧ m1

ε
=⇒ m′1}. From condition (S1), we can rewrite this set as {m′1 |

∃m1,m2 . m1 〈C1EC2〉m2 ∧ m1
ε

=⇒ m′1} without losing any marking. Finally,
thanks to the previous result we get Rτ (N1, C1) = {m′1 | m′1 |= P} with
P = ∃p1,p2 . 〈C1EC2〉(p1,p2) ∧ Ẽ(p′1,p2) a Presburger formula. Because
of the E-abstraction equivalence, (S1) holds in both directions, which gives
∀p2 . C2(p2) =⇒ ∃p1 . Ẽ(p1,p2) ∧ C1(p1). Hence, P can be simplified into
∃p2 . C2(p2) ∧ Ẽ(p′1,p2).

Note that this expression of Rτ (N,C) relies on the fact that the equivalence
(N1, C1) uE (N2, C2) already holds. Thus, we cannot conclude that a candidate
rule is an E-abstraction equivalence by using this formula at once, without the
extra validation of FAST.

Verifying FAST Results.

We have shown that FAST terminates in case of a correct parametric E-
abstraction. We now show that it is possible to check that the predicates τ∗C1

and τ∗C2
, computed from the result of FAST (see Th. 5.2) are indeed correct.

Assume τ∗C is, according to FAST, equivalent to the language %∗1 . . . %∗n with
%i ∈ T ∗. We encode this language with the following Presburger predicate
(similar to the one presented in [4]), which uses the formulas H(σki) and ∆(σki)
defined later:

τ∗C(p1,pn+1) , ∃k1...kn,p2 . . .pn−1 .∧
i∈1..n

(
(pi > H(σki)) ∧∆(σki)(pi,pi+1

) (11)

This definition introduces acceleration variables ki, encoding the number of
times we fire the sequence %i. The hurdle and delta of the sequence of transitions
%ki , which depends on k, are written H(σki) and ∆(σki), respectively. Their
formulas are given in equations (14) and (15) below. Let us explain how we
obtain them.

First, we define the notion of hurdle H(%) and delta ∆(%) of an arbitrary
sequence %, such that m %

=⇒m′ holds if and only if (1) m > H(%) (the sequence %
is fireable), and (2) m′ = m+∆(%). This is an extension of the hurdle and delta
of a single transition t, already used in formulas (3) and (4). The definition of
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H and ∆ is inductive:

H(ε) = 0, H(t) = Pre(t) and H(%1.%2) = max (H(%1), H(%2)−∆(%1)) (12)
∆(ε) = 0, ∆(t) = Post(t)− Pre(t) and ∆(%1.%2) = ∆(%1) + ∆(%2) (13)

where max is the component-wise max operator. The careful reader will check
by herself that the definitions of H(%1.%2) and ∆(%1.%2) do not depend on the
way the sequence %1.%2 is split.

From these, we are able to characterize a necessary and sufficient condition
for firing the sequence %k, meaning firing the same sequence k times. Given
∆(%), a place p with a negative displacement (say −d) means that d tokens
are consumed each time we fire %. Hence, we should budget d tokens in p
for each new iteration, and this suffices to enable the k − 1 more iterations
following the first transition %. Therefore, we have m %k

=⇒m′ if and only if (1)
m |= m > 1>0(k)× (H(%) + (k − 1)×max(0,−∆(%))), with 1>0(k) = 1 if and
only if k > 0, and 0 otherwise, and (2)m′ = m+k×∆(%). Concerning the token
displacement of this sequence %k, it is k times the one of the non-accelerated
sequence %. Equivalently, if we denote by m+ the “positive” part of a mapping
m, such that m+(p) = 0 when m(p) 6 0 and m+(p) = m(p) when m(p) > 0, we
get:

H(%k) = 1>0(k)× (H(%) + (k − 1)× (−∆(%))
+

) (14)

∆(%k) = k ×∆(%) (15)

Finally, given a parametric rule (N1, C1) >E (N2, C2) we can now check
that the reachability expression τ∗C1

provided by FAST, and encoded as explained
above, corresponds to the solutions of ∃p2 . Ẽ(p1, p2) using the following ad-
ditional SMT query:

∀p1,p
′
1 . C1(p1) =⇒ (∃p2 . Ẽ(p1,p2) ∧ Ẽ(p′1,p2)⇐⇒ τ∗C1

(p1,p
′
1)) (16)

(and similarly for τ∗C2
).

Once the equivalence (16) above has been validated by a solver, it is in
practice way more efficient to use the formula (∃p2 . Ẽ(p1,p2) ∧ Ẽ(p′1,p2))
inside the core requirements, rather than the formula τ∗C1

(p1,p
′
1) given by FAST,

since the latter introduces many new acceleration variables.

6 Generalizing Equivalence Rules
Before looking at our implementation, we discuss some results related with the
genericity and generalisability of our abstraction rules. We consider several
“dimensions” in which a rule can be generalized. A first dimension is related
with the parametricity of the initial marking, which is taken into account by
our use of a parametric equivalence, u instead of ≡, see Th. 3.1. Next, we show
that we can infer an infinite number of equivalences from a single abstraction
rule using compositionality, transitivity, and structural modifications involving
labels. Therefore, each abstraction law can be interpreted as a schema for several
equivalence rules.
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Definition 6.1 (Transition Operations). Given a Petri net N =
(P, T,Pre,Post) and its labeling function l : T → Σ ∪ {τ}, we define two oper-
ations: T−, for removing, and T+, for duplicating transitions. Let a and b be
labels in Σ.

• T−(a) is a net (P, T ′,Pre′,Post′), where T ′ , T \ l−1(a), and Pre′ (resp.
Post′) is the projection of Pre (resp. Post) to the domain T ′.

• T+(a, b) is a net (P, T ′,Pre′,Post′), where T ′ is a subset of T × {0, 1}
defined by T ′ , T ×{0}∪ l−1(a)×{1}. Additionally, we define Pre′(t, i) ,
Pre(t) and Post′(t, i) , Post(t) for all t ∈ T and i ∈ {0, 1}. Finally, the
labeling function l′ is defined with l′(t, 0) , l(t) and l′(t, 1) = b for all
t ∈ T .

The operation T−(a) removes transitions labeled by a, while T+(a, b) dupli-
cates all transitions labeled by a and labels the copies with b. We illustrated
T+ in the nets of rule (magic), in Fig. 2, where the “dashed” transition c′

can be interpreted has the result of applying operation T+(c, c′). Note that
these operations only involve labeled transitions. Silent transitions are kept
untouched—up-to some injection.

Theorem 6.1 (Preservation by Transition Operations). Assume we have a
parametric E-abstraction equivalence (N1, C1) uE (N2, C2), a and b are labels
in Σ. Then,

• T−i (a) and T+
i (a, b) satisfy the coherency constraint Ci, for i = 1, 2.

• (T−1 (a), C1) uE (T−2 (a), C2).

• (T+
1 (a, b), C1) uE (T+

2 (a, b), C2).

where T−i , T+
i is (respectively) the operation T−, T+ on Ni.

Finally, we recall a previous result from [1, 2] (Theorem 6.2), which states
that equivalence rules can be combined together using synchronous composi-
tion, relabeling, and chaining. Note that, in order to avoid inconsistencies that
could emerge if we inadvertently reuse the same variable in different reduc-
tion equations (variable escaping its scope), we require that conditions can
be safely composed: the equivalence statements (N1,m1) ≡E (N2,m2) and
(N2,m2) ≡E′ (N3,m3) are compatible if and only if P1 ∩P3 = P2 ∩P3. We also
rely on classical operations for relabeling a net, and for synchronous product,
N1 ‖N2, which are defined in [2] for instance.

Theorem 6.2 (E-equivalence is a Congruence [1, 2]). Assume we have two
compatible equivalence statements (N1,m1) ≡E (N2,m2) and (N2,m2) ≡E′

(N3,m3), and that M is a Petri net such that N1 ‖M and N2 ‖M are defined,
then

• (N1,m1) ‖(M,m) ≡E (N2,m2) ‖(M,m).

• (N1,m1) ≡E,E′ (N3,m3).

• (N1[a/b],m1) ≡E (N2[a/b],m2) for any a ∈ Σ and b ∈ Σ ∪ {τ}.
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Figure 8: A Petri net modeling users in a swimming pool, see e.g. [10].

7 Validation and Conclusion
We have implemented our automated procedure in a new tool called Reductron.
The tool is open-source, under the GPLv3 license, and is freely available on
GitHub [23]. The repository contains a subdirectory, rules, that provides ex-
amples of equivalence rules that can be checked using our approach. Each test
contains two Petri nets, one for N1 (called initial.net) and another for N2

(called reduced.net), defined using the syntax of Tina. These nets also include
declarations for constraints, C1 and C2, and for the equation system E. Our list
contains examples of laws that are implemented in Tedd and SMPT, such as rule
(concat) depicted in Fig. 1, but also some examples of unsound equivalences
rules. For instance, we provide example (fake_concat), which corresponds
to the example of Fig. 1 with transition d added.

An interesting feature of Reductron, when a rule is unsound, is to return
which core requirement failed. For instance, with (fake_concat), we learn
that (N1, C1) is not coherent because of d (we cannot reach a coherent marking
after firing d using only silent transitions). We can also detect many cases in
which there is an error in the specification of either C or E.

We performed some experimentation using z3 [14] (version 4.8) as our target
SMT solver, and FAST (version 2.1). All the examples given in our repository
can be solved in a few seconds. Although we focus on the automatic verification
of abstraction laws, we have also tested our tool on moderate-sized nets, such as
the swimming pool example given in Fig. 8. In this context, we use the fact that
an equivalence of the form (N,C) uE (∅,True), between N and a net containing
an empty set of places, entails that the reachability set of (N,C) must be equal
to the solution set of E. In this case, also, results are almost immediate.

These very good results depend largely on the continuous improvements
made by SMT solvers. Indeed, we generate very large LIA formulas, with some-
times hundreds of quantified variables, and a moderate amount of quantifier
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alternation (formulas of the form ∀ ∃∀). For instance, experiments performed
with older versions of z3 (such as 4.4.1, October 2015) exhibit significantly de-
graded performances. We also rely on the very good performances exhibited by
the tool FAST, which is essential in the implementation of Reductron.
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