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Data-driven stabilization of
input-saturated systems

Valentina Breschi, Member, IEEE , Luca Zaccarian, Fellow, IEEE , and Simone Formentin, Member, IEEE

Abstract— We provide a data-driven stabilization ap-
proach for input-saturated systems with formal Lyapunov
guarantees. Through a generalized sector condition, we
propose a convex design algorithm based on linear ma-
trix inequalities for obtaining a regionally stabilizing data-
driven static state-feedback gain. Regional, rather than
global, properties allow us to address non-exponentially
stable plants, thereby making our design broad in terms
of applicability. Moreover, we discuss consistency issues
and introduce practical tools to deal with measurement
noise. Numerical simulations show the effectiveness of our
approach and its sensitivity to the features of the dataset.

Index Terms— data-driven control, input saturation

I. INTRODUCTION

Data-driven (DD) control is recently enjoying great suc-
cess as an alternative to traditional model-based design. In
particular, existing DD control techniques range from model-
reference approaches, e.g., [5], [10], to the recently proposed
optimal (e.g., [8], [9]) and predictive techniques [2], [6].
Nonetheless, few solutions have been devised to handle sys-
tems with input saturation apart from predictive strategies.
Moreover, these alternatives to predictive control have mainly
been tailored to the model-reference framework. Indeed, a
VRFT-like strategy is proposed in [3], where saturation is
accounted for by augmenting the cost of the optimization prob-
lem solved to design a fixed-structure (dynamic) controller. A
similar principle is exploited in [4], where a neural network
controller is used to cope with input saturation. However,
neither of these solutions provides stability guarantees. On
the other hand, the MPC-based DD solution in [1] provides
robust stability guarantees, but does not account for input
saturation that would otherwise prevent global results to be
achieved with general (possibly exponentially unstable) plants.
In the model-based context, several tools are instead available,
mostly stemming from generalized sector conditions leading to
regional stability guarantees (with guaranteed estimates of the
basin of attraction) with easily implementable feedbacks [14],
[17] and less cumbersome online computations, as compared
to MPC.
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In this note, we exploit generalized sector conditions to
propose a novel DD solution for the design of regionally
stabilizing controllers for input-saturated systems. To this end,
we introduce a DD formulation of the model-based solutions
in [14], starting from a behavioral description of linear systems
[16] and its closed-loop counterpart [7]. Assuming the state to
be fully accessible, the DD solution solely requires the explicit
identification of the matrix B linking the state evolution
to the input. By working at the boundary between system
identification and control design, we thus need to identify how
the nonlinearity (i.e., the saturation) affects the system.

To handle noisy data, we propose to use an instrumental
variable scheme [12]. A similar approach has been used for
the design of DD predictive controllers [15]. With this well-
known tool in system identification, we are able to recover
an (asymptotically) unbiased description of the closed-loop
system (in line with the one in [15]), which is ultimately
exploited to design the regionally stabilizing feedback law.

The paper is organized as follows. The problem statement
is given in Section II. A first solution is given in Section III,
in a deterministic setting. The issues stemming from using a
deterministic solution within a noisy setting are then discussed
in Section IV, where a design strategy with noisy data is
then proposed. Section V shows some numerical results,
highlighting the potential of the proposed framework.

Notation. For a full-row-rank matrix Y , Y † denotes its right
pseudo-inverse. For matrix A ∈Rnx×nx , He(A) = A+A⊤. x+ =
Ax is a shorthand for x(t+1) = Ax(t). Given another sequence
t 7→ w(t) ∈ Rnw , for any 0 ≤ t0 < t1 ≤ T and 1 ≤ τ < t1, we
define the associated Hankel matrix as

Wt0,τ,t1 =


w(t0) w(t0+1) ··· w(t1−τ)

w(t0+1) w(t0+2) ··· w(t1−τ+1)
...

...
. . .

...
w(τ−1) w(τ) ··· w(t1−1)

 (1)

while we denote the single row Hankel matrix as follows:

Wt0,t1 =Wt0,1,t1 =
[
w(t0) w(t0 +1) · · · w(t1)

]
. (2)

Definition 1 (Persistence of excitation): A sequence w(t)∈
Rnw is persistently exciting of order τ if the Hankel matrix
Wt0,τ,t1 in (1) is full row rank, namely rank(Wt0,τ,t1) = τ ·nw.

II. PROBLEM FORMULATION

Consider a discrete-time, linear time-invariant (LTI) and
controllable plant P , in cascade with an input saturation. Let
this cascade be described by the difference equation

x+ = Ax+Bv = Ax+Bsat(u), (3a)



P

K

u v x
+

e
+

xd

Fig. 1. Scheme of the (noisy) closed-loop system, where known/tunable
blocks are depicted in white and the unknwon plant is depicted in grey.

where x ∈ Rnx is the state, u ∈ Rnu is the input to the satu-
ration, and A∈ Rnx×nx and B∈ Rnx×nu are unknown matrices
of suitable dimensions. The input nonlinearity sat : Rnu →Rnu

is a known decentralized saturation, whose components are
defined as

vi =sati(ui) = max{−ūi,n,min{ūi,p,ui}}, i = 1, . . . ,nu, (3b)

whose known lower and upper saturation bounds, gathered
in vectors ūn, ūp ∈ Rm, respectively, satisfy the componen-
twise inequalities ūn ≥ ū and ūp ≥ ū for some vector ū =
[ū1 · · · ūnu ]

⊤ ∈ Rnu having positive elements. Assume that
we have access to noisy measurements of the state, i.e.,

xd = x+ e, (4)

where xd ∈ Rnx denotes the measured state, and e ∈ Rnx is
a zero mean, white noise corrupting the true state x, here
assumed to be uncorrelated to the inputs.

Even though A and B in (3a) are unknown, assume that we
can carry out experiments on P for data collection purposes.
Specifically, suppose that we can feed the plant with a finite
input sequence VT = {vd(t)}T−1

t=0 , saturated in accordance with
(3b), that is persistently exciting of order nx +1 according to
Definition 1, and that we can collect the corresponding (noisy)
states XT = {xd(t)}T

t=0. Given the dataset DT = {VT ,XT},
our goal is propose a data-based solution alternative to existing
(and viable) system identification+model-based approaches, to
design a static state-feedback law, namely

u = Kx, K ∈ Rnu×nx , (5)

such that the origin of the closed loop in Fig. 1 is exponentially
stable, while obtaining an (inner) estimate of the basin of
attraction of the closed-loop system.

Remark 1 (On experiment design): For the rank condition
in Definition 1 to be satisfied by the saturated input sequence
VT , the user-defined inputs UT = {ud(t)}T

t=0 from which VT
is originated (vd(t) = sat(ud(t)) for all t) should be chosen
to avoid recurrent saturations as much as possible so that the
input values are sufficiently rich to provide excitation.

III. DETERMINISTIC DATA-DRIVEN DESIGN OF
REGIONALLY STABILIZING STATE-FEEDBACK LAWS

We initially focus on a noiseless setting, i.e., e = 0 in (4), to
show how a regionally stabilizing static state feedback law can
be designed from data, using the generalized sector condition
in [14]. As in the linear case [7], initially considering this
simplified framework allows us is obtain DD conditions that
are equivalent to their model-based counterparts.

At the core of our formulation lays the following foun-
dational result, that stems directly from our setup and the
fundamental lemma in [16].

Lemma 1: Given the input sequence UT in the available
dataset DT , assume that VT = {vd(t)}T−1

t=0 , is persistently
exciting of order nx +1 and that the dataset length T satisfies

T ≥ (nu +1)nx +nu (6)

(namely, it is sufficiently long). Then, the following rank
condition holds:

rank
([

V d
0,T−1

Xd
0,T−1

])
= nu +nx. (7)

A. Characterizing the closed-loop dynamics from data

In a noise-free setting, the model-based representation (3a)
is equivalent to the following DD characterization:

x+ =
[
B A

][sat(u)
x

]
= Xd

1,T

[
V d

0,T−1
Xd

0,T−1

]† [
sat(u)

x

]
, (8)

with Xd
1,T =

[
xd(1) · · · xd(T )

]
, as stated next.

Lemma 2 (DD open-loop with saturation): Given the un-
known system in (3a) and a set of sufficiently long (in the
sense of (6)) noiseless data DT = {VT ,XT}, with VT being
persistently exciting of order nx +1, the dynamics in (3a) can
be equivalently characterized from data as in (8).

Proof: As in [7, Section III.A], the proof straightfor-
wardly follows from the definition

[
B A

]
=argmin

[B A ]

∥∥∥∥Xd
1,T − [B A]

[
V d

0,T−1
Xd

0,T−1

]∥∥∥∥
F
= Xd

1,T

[
V d

0,T−1
Xd

0,T−1

]†

, (9)

thanks to the rank property in (7).
Introduce the dead-zone nonlinearity dz(u) = dz(u) = u −
sat(u) induced by sat, with u defined in (5). Starting from the
identification-like result in Lemma 2, we provide the following
data-based representation of the closed-loop (3), (5):

x+ = Xd
1,T Gxx−Xd

1,T

[
V d

0,T−1
Xd

0,T−1

]† [
dz(Kx)

0

]
, (10)

with Gx ∈ R(T−1)×nx satisfying

Xd
0,T−1Gx = I. (11)

This result can be formalized as follows.
Lemma 3 (DD closed-loop with saturation): Given the un-

known system in (3), and a sufficiently long (in the sense
of (6)) set of noiseless data DT = {VT ,XT}, with VT being
persistently exciting of order nx + 1, the closed loop (3), (5)
is equivalent to (10), (11).

Proof: Replacing sat(u) = sat(Kx) = Kx− dz(Kx) and
applying Lemma 2, the closed loop (8), (5) can be written as

x+ =
[
B A

][Kx
x

]
−Xd

1,T

[
V d

0,T−1
Xd

0,T−1

]† [
dz(Kx)

0

]
=
[
B A

][K
I

]
x−Xd

1,T

[
V d

0,T−1
Xd

0,T−1

]† [
dz(Kx)

0

]
. (12)



Proceeding as in [7], the rank condition in (7) enables intro-
ducing a new variable Gx ∈ R(T−1)×nx , satisfying[

K
I

]
=

[
V d

0,T−1
Xd

0,T−1

]
Gx, (13)

whose existence is guaranteed by the Rouché-Capelli theorem.
Substituting (13) into (12), the closed-loop representation (10)
and the consistency characterization (11) follow.

Note that, according to (13), the static state-feedback gain
K in (5) can be uniquely computed from Gx as

K =V d
0,T−1Gx. (14)

The data-based closed-loop representation in (10) can be then
equivalently recast compactly as follows:

x+ = Ad
cl(G

x)x−Bd
cl dz(Kx), (15a)

where Gx should satisfy the consistency condition (11) and

Ad
cl(G

x) = Xd
1,T Gx, Bd

cl = Xd
1,T

[
V d

0,T−1
Xd

0,T−1

]† [
I
0

]
. (15b)

It is thus clearer from (15) that the state transition matrix
Ad

cl(G
x) of the closed-loop depends on the data and on the

variable Gx, which plays the role of design parameter, while
we need to exploit the estimate Bd

cl of the matrix B in (8) to
characterize the impact of the nonlinearity on the closed loop.

B. Regionally stabilizing static state feedback
To derive a design algorithm for a regionally stabilizing K

in (5), let us recall the regional sector condition [14] for the
dead-zone nonlinearity appearing in (15a), namely

dz(Hx) = 0 =⇒ dz(u)⊤W (u−dz(u)+Hx)≥ 0, (16)

which holds for any H ∈Rnu×nx , any u∈Rnu , and any positive
definite diagonal matrix W ∈Rnu×nu . Exploiting the quadratic
Lyapunov function candidate

V (x) = x⊤Px, (17)

with P∈Rnx×nx being symmetric and positive definite, we cast
the DD design K in (5) by solving the following linear matrix
inequality (LMI) in the decision variables Q = Q⊤ = P−1,
M=W−1 diagonal, F = GxQ ∈ R(T−1)×nx and N ∈ Rnu×nx :[

Q N⊤
j

N j ū2
j

]
≥ 0, j = 1, . . . ,nu, (18a)

He

 −Q
2 0 0

V d
0,T−1F +N −M 0

Xd
1,T F −Bd

clM −Q
2

< 0, (18b)

(where N j denotes the j-th row of matrix N and Bd
cl only

depends on data, as defined in (15b)) together with the
consistency condition

Xd
0,T−1F = Q. (18c)

The nu LMIs in (18a) have dimension nx+1 each, while LMI
(18b) has dimension 2nx + nu, thus depending on the order
of the system and the dimension of the input. Overall, also
the size of the decision variables depends on the system’s

features (and not on the length of the dataset), due to Q,
W and N amounting to nx(nx+1)

2 + nu + nunx variables. Only
F of size (T − 1)nx depends on the length of the dataset,
eventually making the proposed approach computationally
more demanding than traditional design when a large dataset is
available. This is the price to pay to avoid a full identification
step.

We state below our noise-free DD design result.
Theorem 1 (Regionally stabilizing DD design): Given (3)

and a noise free set of data DT satisfying the conditions in
(6) and (7), if there exist matrices Q = Q⊤, M diagonal, F ∈
R(T−1)×nx and N ∈ Rnu×nx satisfying (18), then the following
gain selection in (5)

K =V d
0,T−1FQ−1, (19)

guarantees exponential stability of the origin for the closed
loop (3), (5) with basin of attraction containing the set

E (Q,1) = {x ∈ Rnx : x⊤Q−1x ≤ 1}, (20)

of Lyapunov function V in (17), with selection P = Q−1.
Proof: Using the Lyapunov function candidate (17) with

P= P⊤ =Q−1, which is positive definite due to the (1,1) entry
in (18b), we may study exponential stability of the origin by
studying the sign of the increment

∆V (x) = (x+)⊤Px+− x⊤Px. (21)

Starting from the solution Q,F,M,N of (18) assumed in the
theorem statement, select Gx = FQ−1 so that, from (18c) the
consistency condition (11) is satisfied. Due to the consistency
condition and since (19) matches the assumed selection (14),
apply Lemma 3 to characterize the increment in (21) by the
following DD inequality, issued from (15),

∆V (x) = (22)

=
(

Ad
cl(G

x)x−Bd
cl dz(u)

)⊤
P
(

Ad
cl(G

x)x−Bd
cl dz(u)

)
− x⊤Px

=

[
x

dz(u)

]⊤([
(Ad

cl(G
x))⊤

(Bd
cl)

⊤

]
P
[
Ad

cl(G
x) Bd

cl

]
−
[

P 0
0 0

])[
x

dz(u)

]
.

Exploiting the sector condition (16) for any x satisfying
dz(Hx) = 0, we can upper bound

∆V (x)≤∆V (x)+2dz(u)⊤W (Kx−dz(u)+Hx)=ξ
⊤

Ξξ , (23)

where we denoted ξ =
[ x

dz(u)
]

and

Ξ = He

 −P
2 0 0

WK +WH −W 0
Xd

1,T Gx −Bd
cl −P−1

2

 . (24)

Based on the solution Q,F,M,N of (18), consider now the
following selection of the variables appearing in (24),

P = Q−1 > 0, Gx = FQ−1, (25a)

W = M−1 > 0 diagonal, H = NQ−1, (25b)

where positive definiteness of P follows from Q = Q⊤ > 0
induced by the (1,1) entry of (18b), and positive definiteness
of W is induced by the (2,2) entry of (18b). Then, pre- and
post-multiplying (18b) by diag{P,W, I}, and accounting for the



selection of K in (19), we obtain Ξ < 0, which may be used
in (23) to show that

dz(Hx) = 0 =⇒ ∆V (x)≤ λM(Ξ)|x|2 < 0, (26)

with λM(Ξ)< 0 denoting the largest eigenvalue of (the nega-
tive definite matrix) Ξ.

Consider now pre- and post-multiplying (18a) by diag{P,1},
which, exploiting (25), corresponds to[

P H⊤
j

H j ū2
j

]
≥ 0, j = 1, . . . ,nu. (27)

After a Schur complement,
H⊤

j H j

ū2
j

≤ P for all such values of j,

this clearly implies x ∈ E (Q,1) =⇒ dz(Hx) = 0, with E (Q,1)
defined in (20), which can be combined with (26) to show that
x ∈ E (Q,1)\{0} =⇒ ∆V (x)< 0, completing the proof.

It is worth remarking that the design conditions (18a)-(18c)
only depend on data and known features of the system under
control. Indeed, the LMI in (18a) solely relies on the known
saturation bound characterizing (3a). Instead, the LMI in (18b)
and the equality condition in (18c) only depend on data and
the DD description (10) of the closed loop dynamics.

Remark 2 (Feasibility & optimization): An interesting fea-
ture of the design conditions (18) is that they inherit the de-
sirable feasibility properties of the model-based case analysed
in [14]. In particular, a solution always exists under a mild
(necessary) stabilizability condition for pair (A,B). On the
other hand, while feasibility is not an issue for the LMIs (18),
the ensuing estimate (20) of the basin of attraction may result
to be small. Due to this fact, following parallel derivations to
the model-based scenario, we may include an additional LMI

αI ≤ Q, (28)

ensuring the set inclusion {x : |x|2 ≤ α} ⊂ E (Q,1) (recall
that P = Q−1), so that maximizing α enlarges the size of
E (Q,1). The conditioning of E (Q,1) may also be enforced to
a maximum preassigned value κ > 1 by replacing (28) with
αI ≤Q≤ακI. One may also maximize the volume of E (Q,1)
via “log det” optimization.

IV. HANDLING SATURATION WITH NOISY DATA

As discussed in Section III, the feasibility conditions in
(18a)-(18c) are equivalent to their model-based counterparts
in a deterministic setting only. Nonetheless, such a scenario is
rather unrealistic in practice, since measurements are always
corrupted by noise. Therefore, we now shift our attention
to a (more realistic) scenario, where the available data are
noisy according to (4). To this end, let us introduce the single
row Hankel matrices E0,T−1 and E1,T , comprising the noise
corrupting the state measurements.1

Combining (3a) and (4), it can be seen that the considered
data-generating system has an output error (OE) structure. As
such, when noise comes into the picture, the model in (8) is
biased as formalized in the following result.

1Note that vectors E0,T−1 and E1,T are not available for measurement.

Theorem 2: [On the consistency of (8))] With measure-
ments (4) corrupted by zero-mean, white noise e, the open-
loop model in (8) is asymptotically biased.

Proof: Based on (9), the data-based estimates of the
matrices A and B in (3a) are given by:

[
B̂ Â

]
= Xd

1,T

[
V d

0,T−1
Xd

0,T−1

]†

. (29)

Nonetheless, according to (3a) and (4), the data Xd
1,T can be

replaced with the following expression:

Xd
1,T =

[
B A

][ V d
0,T−1

Xd
0,T−1 −E0,T−1

]
+E1,T , (30)

where we have exploited (4) to replace the true (noise free)
states X0,T−1 driving Xd

1,T with their noisy counterparts as

X0,T−1 = Xd
0,T−1 −E0,T−1. (31)

As a consequence, (29) can be equivalently recast as

[
B̂ Â

]
=
[
B A

]
+(E1,T −AE0,T−1)

[
V d

0,T−1
Xd

0,T−1

]†

︸ ︷︷ ︸
:=εd

T

, (32)

where εd
T is the noise-induced bias. Let ∆E0,T =E1,T−AE0,T−1.

By using standard system identification arguments [12], for-
mulation (32) allows us to get

lim
T→∞

1
T

ε
d
T= lim

T→∞

∆E0,T

T

[
0

E0,T−1

]⊤([V d
0,T−1

Xd
0,T−1

][
V d

0,T−1
Xd

0,T−1

]⊤)−1

̸=0,

almost surely, due to its dependence on the product between
E0,T−1 and its transpose.

By using (10) in the noisy case, we thus disregard the
asymptotic result in Theorem 2, injecting the bias appear-
ing in (32) into the closed-loop representation used for DD
control design. This choice, in turn, might severely influence
the design, potentially jeopardizing closed-loop stability. To
overcome this problem, we initially exploit an instrumental
variable scheme [12] to recast (8).

Let us assume that we can perform an additional experiment,
by using the same input exploited in the construction of the
sequence VT in DT . This experiment results in an additional
state sequence X̃T = {x̃d(t)}T

t=0 made of the same noiseless
states constituting XT in DT , but corrupted by a different
realization of the noise. We then use this new state sequence
to construct the instrument

Zd
0,T−1 =

[
V d

0,T−1
X̃d

0,T−1

]
, (33)

which is uncorrelated with the noises E1,T and E0,T−1 cor-
rupting the states in the initial dataset, while satisfying the
conditions (6)-(7) by construction. The instrument allows us
to recast the DD open-loop description of the system as:

x+ = Xd
1,T (Z

d
0,T−1)

⊤
([

V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1 [

sat(u)
x

]
, (34)

as formalized in the following Lemma.



Lemma 4 (DD open-loop with noise): Given the unknown
system in (3a), a sufficiently long (in the sense of (6)) set of
noisy data DT = {VT ,XT}, with VT being persistently exciting
of order nx + 1, and the instrument Zd

0,T−1 in (33), then (34)
is asymptotically equivalent to (3a), i.e.,

lim
T→∞

Xd
1,T (Z

d
0,T−1)

⊤
([

V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1

=
[
B A

]
, (35)

almost surely.
Proof: The open-loop description in (34) stems from the

solution of the following instrumental variable problem

minimize[
B A

]
∥∥∥∥(Xd

1,T − [B A]

[
V d

0,T−1
Xd

0,T−1

])
(Zd

0,T−1)
⊤
∥∥∥∥

F
, (36)

from which it results that[
B̂ Â

]
= Xd

1,T (Z
d
0,T−1)

⊤
([

V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1

. (37)

Decomposing Xd
0,T−1 as in (30)-(31), we obtain that

[
B̂ Â

]
=
[
B A

]
+∆E0,T−1(Zd

0,T−1)
⊤
([

V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1

︸ ︷︷ ︸
:=ε̃d

T

,

where ∆E0,T = E1,T −AE0,T−1. Thanks to the choice of the
instrument, it then holds that

lim
T→∞

1
T

ε
d
T= lim

T→∞

∆E0,T

T

[
0

Ẽ0,T−1

]⊤([V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1

=0,

where Ẽ0,T−1 is the realization of the noise characterizing the
instrument, which is uncorrelated with E0,T−1 and E1,T by
construction, thus concluding the proof.

According to Lemma 4, we can then construct an alternative
closed-loop representation with noisy data, given by

x+ = Ãd
cl(G̃

x)x+ B̃d
cl dz(Kx), (38a)

with

Ãd
cl(G̃

x) = Xd
1,T (Z

d
0,T−1)

⊤G̃x, (38b)

B̃d
cl = Xd

1,T (Z
d
0,T−1)

⊤
([

V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1 [

I
0

]
, (38c)

and G̃x ∈ Rnx+nu×nx satisfying[
K
I

]
=

[
V d

0,T−1
Xd

0,T−1

]
(Zd

0,T−1)
⊤G̃x. (38d)

This result is formalized next.
Theorem 3 (DD closed-loop with noise): Consider the un-

known system (3a), a sufficiently long (in the sense of (6))
set of noisy data DT = {VT ,XT}, with VT being persistently
exciting of order nx+1 and the instrument Zd

0,T−1 in (33). The
closed loop (3), (5) is asymptotically equivalent to (38a).

Proof: The proof follows similar steps to those of the
proof of Lemma 3, In particular, thanks to the rank condition

(a) DD: state evolution

(b) DD: input

Fig. 2. Mean and standard deviation (shaded area) of states and inputs
over the 97 realizations of the initial condition leading to non-diverging
trajectories. The red dashed lines indicate the saturation limits ū.
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(a) DD: state evolution
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(b) DD: input

Fig. 3. States/inputs trajectories for one initial condition: first (magenta),
second (blue), third (black) components; saturation limits (dashed red).

(7), we can define G̃x as in (38d). Thus, the closed-loop
transition matrix Ãd

cl(G̃
x) becomes:

Ãd
cl(G̃

x)=Xd
1,T (Z

d
0,T−1)

⊤
([

V d
0,T−1

Xd
0,T−1

]
(Zd

0,T−1)
⊤
)−1 [

K
I

]
= Xd

1,T (Z
d
0,T−1)

⊤G̃x,

and the remaining terms in (38) easily follow.
Note that this closed-loop description still exploits a (now

asymptotically unbiased) estimate of B, while the matrix
Ãd

cl(G̃
x) enjoys the same form as in (15b), except for the

dependence on the instrument. Due to this change, the design
condition (18b) should be replaced by

He


 −Q

2 0 0
V d

0,T−1(Z
d
0,T.1)

⊤F̃ +N −M 0
Xd

1,T (Z
d
0,T.1)

⊤F̃ −B̃d
clM −Q

2


< 0, (39)

where F̃ = G̃xQ, and (18c) generalizes to:

Xd
0,T−1(Z

d
0,T−1)

⊤F̃ = Q. (40)

Remark 3 (On the length of the dataset): The consistency
of the closed-loop representation (38) is only guaranteed
asymptotically (i.e., as T → ∞). At the same time, differently
from the deterministic model in (38a), T does not dictate the
dimension of the variable G̃x (and, thus, F̃) any longer. As a
consequence, the dataset T can in principle be arbitrary long.

V. NUMERICAL EXPERIMENTS

Let us consider the open-loop unstable, LTI system S with
fully measurable state considered in [4], with

A =

[
1.01 0.01 0
0.01 1.01 0.01

0 0.01 1.01

]
, B= I.



(a) Index in (42) vs T (b) Index in (42) vs noise

Fig. 4. Performance index vs increasing noise and dataset length.

TABLE I
NUMBER OF INSTANCES IN WHICH (43) IS SATISFIED vs LENGTH OF THE

DATASET T OVER 100 REALIZATIONS OF DT

T [samples] 150 750 1500 7500 11250 15000
eq. (43) satisfied 42 48 58 82 84 97

This system is in cascade with a saturation, with ū in (3b) equal
to 1. Since the system is open-loop unstable, the dataset DT is
collected in closed-loop. Specifically, the system is stabilized
by a feedback law (5) with K = I and a closed-loop experiment
(of length T = 6000 steps) is carried out by considering a
random reference to be tracked, that is uniformly distributed
within the interval [−1,1]. It is worth pointing out that the
length and the features of the chosen input sequence guarantee
the necessary level of persistence of excitation (according to
Definition 1). In addition, the available state measurements are
corrupted by zero-mean white noise with standard deviation
0.02I. In designing the feedback law in (5), we solve2

minimize
α

−α (41a)

s.t. (18a), (28), (39)− (40). (41b)

By considering 100 initial conditions, extracted uniformly at
random within [−2,2], we initially assess the performance of
the proposed DD strategy by looking at the closed-loop state
and input trajectories3. As shown in Fig. 2, the states settle
to zero after about 40 steps, independently of the considered
realization of the initial condition. Meanwhile, the input fed
to the plant is saturated only few times at the beginning of
the simulation horizon, with this sporadic behavior being not
evident in Fig. 2. Focusing on a specific initial condition (see
Fig. 3), it is nonetheless clear that the DD control law allows
the input to recover from saturation, ultimately enabling the
states to converge to zero4.

We now evaluate the performance of the proposed DD
design approach against the dimension DT , considering 100
realizations of the dataset for each of the tested values of T
and setting the standard deviation of the noise to 10−3I. To
this end, we consider the following quality index

|α∗−α|
α∗ ·100 (42)

2The design problem was solved with Yalmip+SeDuMi [11], [13].
3We do not inject noise into the closed-loop, when performing these tests.
4Only 3 out of 100 initial conditions lead to diverging closed-loop states

with the DD controller, while initial conditions resulting in diverging states
increase to 6 when using system identification (36) and model-based design.

TABLE II
NUMBER OF INSTANCES IN WHICH (43) IS SATISFIED vs NOISE

STANDARD DEVIATION OVER 100 REALIZATIONS OF DT .

Noise std 10−6 10−5 10−4 6 ·10−4 4 ·10−3 10−2

eq. (43) satisfied 100 100 100 98 55 41

measuring the capability of the DD approach to result in a
cost (41a) that is comparable to that of the oracle (i.e., model-
based) solution, in turn dictated by α∗. As shown in Fig. 4(a),
by increasing the dimension of the dataset used for DD design,
the cost of the DD solution progressively matches that of the
model-based one, while closed-loop state trajectories (starting
from xi(0) = 1.5, i = 1,2,3) always converge to the origin.
Meanwhile, we check the condition

Q⋆−Q ⪰ 0, (43)

where Q⋆ and Q respectively dictate the oracle (model-
based) and the DD characterization of (20), which implies
that the data-driven estimate E (Q,1) contains the oracle-based
estimate E (Q⋆,1). Clearly, the more T increases, the more
times this condition is satisfied (see Table I). These behaviors
are in line with the asymptotic properties associated with the
employed instrumental variable scheme of Lemma 4. Finally,
we assess the performance of the proposed DD approach for
increasing levels of noise, when T = 6000. From the results
reported in Fig. 4(b), it is clear that the value of the quality
index in (42) increases (worsens) with the level of noise, along
with the number of instances in which (43) is not satisfied.
Note that all state trajectories always converge to zero.

VI. CONCLUSIONS

In this work we proposed a data-based strategy for the
design of a regionally stabilizing controller for input-saturated
plants by relying on generalized sector conditions. To handle
noise, we proposed an instrumental variable approach that
leads to an asymptotically unbiased description of the closed-
loop system. Future research will be devoted to extend the
proposed approach to a purely input/output setting and to
explore its finite sample properties.
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