Technology transfer of supercritical fluid deposition technology from research group to use in open nanotechnology facilities

Etsuko Ota, David Bourrier, Naoto Usami, Ayako Mizushima, Naonobu Shimamoto, Takeshi Momose, Akio Higo, Hugues Granier, Yoshio Mita

To cite this version:

Etsuko Ota, David Bourrier, Naoto Usami, Ayako Mizushima, Naonobu Shimamoto, et al.. Technology transfer of supercritical fluid deposition technology from research group to use in open nanotechnology facilities. ENRIS 2023, Renatech Euronanolab, May 2023, Paris Saclay, France. hal-04131030

HAL Id: hal-04131030
https://hal.laas.fr/hal-04131030
Submitted on 16 Jun 2023
Technology transfer of supercritical fluid deposition technology from research group to use in open nanotechnology facilities

Etsuko Ota1*, David Bourrier2, Naoto Usami3#, Ayako Mizushima3, Naonobu Shimamoto3, Takeshi Momose4, Akio Higo5, Hugues Granier2, and Yoshihito Mita3,1

1Systems Design Lab. (d.lab), School of Engineering, The University of Tokyo, Japan
2Laboratoire d’Analyse et d’Architecture des Systèmes, France
3Department of Electrical Engineering and Information Systems, The Univ. of Tokyo, Japan
4Department of Material Engineering, The University of Tokyo, Japan

Type of Contribution: no preference

Abstract:

[Summary]

Due to the high integration, the plating of thin films on microstructures is becoming more important. However, deposition in microstructured trenches is difficult using conventional methods such as CVD and PVD. ALD has become popular but its drawback is slow deposition rate. To fulfil both coverage and speed, we focused on a supercritical deposition (SCFD) technique. In UTokyo, the technology was first investigated in a research laboratory (Shimogaki -Momose lab.) [1], and transferred to our nanotechnology facility. During the technology transfer, deposition conditions and cleaning procedure was developed [2] [3].

[Experiment]

Our initial failure experiments suggested adhesion of supercritical fluid deposition is greatly affected by the cleanliness at the interface of substrate. The following cleaning methods were found to be effective: APM (Ammonium hydrogen peroxide mixture) cleaning and BHF (buffered hydrofluoric acid) cleaning for Si substrates and acetone and IPA cleaning for metal films on Si substrates [4]. The deposition was carried out in a budge reactor (Fig. 1). Figures 2 and 3 show SEM images and EDS analysis of the deposition of a sample with a Ru seed layer deposited by ALD on a Si substrate in an environment of CO2 1.0 MPa, H2 10.1 MPa, 13 mg Cu precursor and a substrate temperature of 200°C at about 17 MPa. The SCFD Cu uniformly covered the 1.5μm-wide, 30μm-deep trench. Subsequently, Electrical Cu plating on this sample was performed and resulted good adhesion on the entire surface of the sample.

References:


*Presenting Author: Etsuko Ota. #N. Usami is now with Japan Aerospace eXploratory Agency (JAXA).

Acknowledgments: This work was supported by MEXT Initiative to Establish Next-generation Novel Integrated Circuits Centers (X-NICS) Grant Number JPJ011438, Nanotechnology Platform, and ARIM.