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Joldes1, and Bruno Salvy3

1LAAS-CNRS, CNRS, Univ. de Toulouse, Toulouse, France.
2Crystal Lab., CNRS, Univ. de Lille, Lille, France.

3INRIA, LIP, ENS-Lyon, Lyon, France.

Abstract

Due to the increasing number of objects in Low Earth orbit, the
fast and reliable estimation of the collision risk is an important chal-
lenge for spacecraft owners/operators. Among the available risk in-
dicators, we focus on computing the instantaneous probability of col-
lision, which can be modeled as the integral of a three-dimensional
Gaussian probability density function over a Euclidean ball. We pro-
pose an efficient and accurate method for evaluating this integral. It
is based on the combination of two complementary strategies. For the
first one, convergent series and numerical error bounds are computed.
These bounds provide a tradeoff between the accuracy needed and
the number of terms to compute. The second one, using divergent
series, approximates the value of the integral with a good accuracy
in most cases with only a few terms computed. Based on those two
methods, a hybrid algorithm is tested on cases borrowed from the
literature and compared against existing methods. Several numerical
results and comparisons confirm both the efficiency and robustness of
our approach.
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Nomenclature
Pinst = Instantaneous probability of collision
Lf = Laplace transform of function f
B(M, δ) = Closed ball of center M and radius δ
Re(z) = Real part of complex number z
Im(z) = Imaginary part of complex number z
|A| = Determinant of the square matrix A
R = Combined harbody ball radius, m
Σ = Covariance matrix
σ = Standard deviation, m
diag(σ1, σ2, σ3) = Diagonal matrix with σi on the diagonal
Pr{·} = Probability of event ”·”
X▷N (µ, σ) = Normal random variable with mean µ and standard deviation σ
Γ(·) = Gamma function
⌈·⌉ = the ceiling function which maps a real number to the smallest following integer
n!! = double factorial of a number n, n!! = n(n− 2)(n− 4) · · ·
O(·) = The usual O-symbol as in fn = O(nα), meaning fn ≤ cnα, for 0 < c <∞, as n→∞
∼ = asymptotically equivalent
χ2 = Chi-square distribution

Subscripts
p = Primary object
s = Secondary object

1 Introduction

Due to an increasing congestion of objects (assets and debris included) or-
biting the Earth, space conjunction assessment has become a fundamental
task for space agencies and operators of the field. Based on the information
obtained from tracking systems (radars, telescopes for instance), the Opera-
tors/Owners (O/O) of active on-orbit satellites are able to assess the risk of
a possible collision between two objects.

Because of the uncertain nature of the data, the parameter most com-
monly used for evaluating this risk is the so-called probability of collision
between Resident Space Objects (RSOs). When its value exceeds some tol-
erance threshold, a maneuver is performed. As a consequence, sustained
efforts have been carried on during the past three decades, in order to prop-
erly characterize and accurately compute this parameter.

Nevertheless, the complexity of computing the collision probability is
twofold. First, a clear and sound framework for the encounter has to be
defined. This implies setting reasonable assumptions about the statistics
(nature of the distributions involved, independence and correlation charac-
teristics, time dependence of the distributions, etc.) of the uncertainty, dura-
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tion of the encounter, uncertainty affecting the relative velocities (see [9], [8],
[17] for examples of various possible assumptions). Secondly, depending on
the context of the encounter, the parameter quantifying the risk of collision
needs to be both modeled precisely mathematically as well as numerically
evaluated fast and reliably . Two main paradigms — the short-term and the
long-term encounters — have been widely accepted and implemented in the
field of in-orbit collision risk assessment [7]. In both cases, the collision prob-
ability can be modeled as cumulative (the overall probability during a given
time range) or instantaneous (at a single time instant). Significant efforts
have been devoted to quantifying the cumulative collision probabilities for
short-term [2], [30], [3], [7], [33], [14] and long-term encounters [31], [7], [4],
[9], [25] as this formulation better captures the overall risk on a time range.

Alternatively, the so-called instantaneous collision probability was defined
as an integral computing the probability for any 3-D Gaussian random vector
to lie in a Euclidean ball of given radius. This indicator can be used to analyze
and validate a maneuver plan, by checking that the collision risk remains
low at any given time after an avoidance maneuver. In addition, it is a
lower bound to the cumulative collision probability [4], [29]. Its evaluation is
thus required to be both very efficient and reliable at each time instant but
surprisingly enough, the dedicated literature is comparatively poor.

The available methods may be divided into two categories depending on
whether the stress is particularly placed on the computation of the integral
itself or on the propagation method used to build the data. The first class of
methods mainly gathers the two seminal methods proposed in Chan’s book
[7], and the more recent equivalent volume cuboid approximation [39]. While
Chan’s approximation methods are based either on the notion of equivalent
area, or on approximating the distributions, the method of [39] uses another
equivalent volume formulation, with a single cuboid approximating the hard
body shape.

The second class is mainly composed of two works, [20] and [1]. In [20],
polynomial chaos expansions are mixed with a Monte Carlo simulation to
evaluate the instantaneous collision probability. Adurthi and Singla make use
of the conjugate unscented transform, in [1], to estimate the first statistical
moments of the Probability Distribution Function (PDF) of the relative po-
sition vector which is then approximated via the maximum entropy method.
A direct numerical evaluation of the 3-D integral of this approximated PDF
completes the picture. All these methods either lack a sufficient accuracy
due to the rough approximations involved, or require intensive and expen-
sive computations due to numerical integration or Monte Carlo simulations.

In this study, we propose a new algorithm for the computation of the
instantaneous collision probability between two orbiting objects of spherical
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shape. Belonging to the first class discussed before, our algorithm focuses on
the reliable and efficient evaluation of a 3-D integral of a Gaussian density
function on a disk. This mathematical formulation is recalled in Section 2.
Our strategy is based on combining two new complementary methods. On
the one hand, we extend the 2-D method presented in [33] to the 3-D setting
– detailed in Section 3.1. This provides an approximation by a convergent
series with positive terms, as well as truncation error bounds. On the other
hand, the cases for which conjunction data is ill-conditioned (which increases
the number of terms required by the first method), are handled with a saddle-
point technique, explained in Section 3.2. The resulting hybrid algorithm
is briefly analyzed in Section 4 and then validated on several examples in
Section 5. Further comparisons against the existing methods confirm both
the efficiency and robustness of our approach, which is highlighted in the
concluding Section 6.

2 Instantaneous collision probability between

two spherical objects

We first recall the mandatory assumptions defining the general framework in
which the instantaneous probability of collision may be soundly defined. The
initial (at epoch) relative position vector is a Gaussian independent random
vector Xr▷N (µ,Σ) and each object is approximated by a spherical geomet-
rical shape of respective radius Rp and Rs. As it is common in probability
theory, a random variable is denoted by a capital letter, and the associated
lowercase letter is then defined to assign a value to the random variable.

2.1 Mathematical formulation

In his book [7, Chapter 13], K. Chan has been the first one to formulate the
problem of the computation of the instantaneous collision probability as the
computation of the integral of a three-dimensional (3-D) Gaussian density –
representing the objects’ relative position uncertainty – over a Euclidean ball
of given combined hard-body radius R (defined as the sum of the respective
radii of the two objects i.e. R = Rp +Rs):

Pinst =
1

(2π)3/2|Σ|1/2

∫∫∫
B(0,R)

exp

(
−1

2
(r − µ)TΣ−1(r − µ)

)
dr, (1)

where r is the position vector of the secondary object given in a reference
frame whose origin is located at the primary object and Σ is the combined
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covariance matrix describing the relative position uncertainty (see Figure 1
for an illustration of the different parameters). Rotating the (r1, r2, r3) axes

r2
level set

R
r1

µ

r3

ball of integration

Figure 1: Illustration of the parameters defining the instantaneous collision
probability.

to the principal axes (x1, x2, x3) of the covariance matrix Σ, we get that:

Pinst =
1

(2π)3/2
3∏

i=1

σi

∫∫∫
B(0,R)

exp

(
−1

2

3∑
i=1

(xi −mi)
2

σ2
i

)
dx1dx2dx3, (2)

where the integrand is a 3-D Gaussian function and the domain is a ball
of given radius R representing the hardbody radius. To the best of our
knowledge, there is no known closed-form solution to the problem of the
computation of the integral (2) (see also the account presented in [33] for the
2-D case). The aim is to evaluate the integral (2) which may be written as a
function g of the square of the hardbody radius, ξ = R2:

g : R+ 7→ R+,

g(ξ) = g(R2) = Pinst. (3)

This function g is in fact the cumulative density function (cdf) of the random
variable Ξ = X2

1 +X2
2 +X2

3 , i.e. g(ξ) = Pr {Ξ ≤ ξ} where X1 ▷N (m1, σ
2
1),

X2 ▷N (m2, σ
2
2) and X3 ▷N (m3, σ

2
3) are independent normal random vari-

ables. Within this perspective, it is important to notice that various ap-
proaches of the literature have been used to derive expansions of central and
non-central quadratic forms in normal variables using Laplace transform of
the cdf (see [19, Chapter29], [28, Chapter 4], [23] and [24] for a unified and
systematic presentation of these approaches).
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2.2 Laplace transform of the cumulative density func-
tion

A closed-form expression of the Laplace transform Lg of the function g may
be easily obtained as:

Lg(z) =

∫ +∞

0

exp(−zξ)g(ξ)dξ =
exp

(
−z

3∑
i=1

m2
i

2zσ2
i +1

)
z

3∏
i=1

√
2zσ2

i + 1

, for all Re(z) ≥ 0.

(4)
Details of this derivation are available in [33] and are based on the ones given
in [27]. Note that formula (4) for the Laplace transform of the cumulative
function of Ξ may easily be recovered from the Laplace transform of the
distribution function of Ξ [28, Chapter 4, p. 92].

At this point, two main strategies for obtaining a numerical approxima-
tion of the integral (2) may be considered. On the one hand, the Laplace
transform (4) is expanded in a Laurent series on which a term-by-term ap-
plication of the inverse Laplace transform provides a convergent power series
expansion. On the other hand, the inverse Laplace transform formula to
(4) leads to a complex-variable integral, which is evaluated by the so-called
saddle-point method [6, Chap. 6].

3 Series expansions for the computation of

instantaneous collision probability

3.1 A convergent series expansion using D-finiteness

As mentioned in the reference [33] (see also [5]), a direct expansion of the
function g as formulated in [14] or in [23] and [24] for power series suffers from
numerical issues owing to the fact that the computation in finite precision
arithmetic of such a partial sum is prone to cancellation [15] (not all the
coefficients of the series obtained are positive). Indeed, the sum in finite
precision arithmetic of consecutive terms that are close in magnitude, but of
different signs, contains very few correct significant digits. This makes the
power series evaluation practical only for small values of ξ = R2. Instead
of expanding directly (3), it has therefore been proposed in the reference
[33] to expand the function ψ · g where ψ : R2 7→ exp(pR2) is a so-called
preconditionner, in order to remedy these observed numerical shortcomings.
Some insights about the right choice for the parameter p are given in [34].
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Here, assuming without loss of generality that σ1 ≤ σ2 ≤ σ3, a good choice is
p = 1/(2σ2

1). The function (3) is finally obtained as a simple product between
an exponential term and a convergent power series with positive coefficients.
As a very interesting by-product, it is worth mentioning that simple closed-
form bounds on the truncation error may also be derived. The derivations
required for obtaining the series expansion for (3) where all coefficients are
positive may be summarized as follows:

- Compute the closed-form of the Laplace transform h(z) = Lg̃(z) =
Lg(z − p), of the preconditioned function g̃ = ψ · g of the variable
ξ = R2, for all z such that Re(z) > 0;

- Derive the Linear Ordinary Differential Equation (LODE) with poly-
nomial coefficients satisfied by h and the associated initial condition (h
is a so-called differentially finite function [32]);

- After analyzing the singularities of h(z), consider its Laurent series

expansion h(z) =
∞∑
k=0

αkz
−(k+5/2);

- From the previous LODE, deduce the recurrence satisfied by the coef-
ficients αk;

- The term-by-term inverse Laplace transform of the expansion of h(z)
provides the power series expansion (5) of g after multiplication by the
inverse of the preconditioner;

Pinst = g(R) = exp

(
− R

2

2σ2
1

) +∞∑
k=0

αk

Γ(k + 5/2)
R2k+3 = exp

(
−pR2

) ∞∑
k=0

ck,

(5)

where Γ is the Gamma function and the sequence of coefficients (αk)k∈N, and
respectively (ck)k∈N, satisfy the following linear recurrence relations:

2(k + 6)αk+6 =

6∑
i=1

((k + 6− i)qi − ωi)αk+6−i, (6)

2(k + 6)ck+6 =

6∑
i=1

R2i∏i−1
j=0(k + 6 + 5/2− j)

((k + 6− i)qi − ωi) ck+6−i, (7)

with q1, . . . q6, ω1, . . . , ω6 depending only on the problem parameters and not
on k and initial conditions α0, . . . , α5, c0, . . . , c5 defined directly in Algo-
rithm 1 for the sake of conciseness.
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Similar to the one used for the computation of the short-term collision
probability presented in [33], the series in (5) is particularly appropriate for an
efficient numerical computation of the instantaneous probability of collision
Pinst. Its key features are the numerical stability of the derived Algorithm 1 in

most of the cases and the fact that any partial sum Pn
inst = exp (−pR2)

n−1∑
k=0

ck,

provides a lower bound to the exact value of Pinst, due to the positivity of the
coefficients ck (see proposition 2 in Appendix A). In addition, the truncation
error is lower and upper bounded in the following proposition, whose proof
is given in Appendix A for completeness.

Proposition 1 The following truncation error bounds hold for Tn = Pinst−
Pn

inst:

� for all n > 0, ln ≤ Tn, with

ln =
α0p

nR2n+3

Γ(n+ 5/2)
exp(−pR2), (8)

or equivalently by replacing the value of α0:

ln =
pnR2n+3

2
√
2σ1σ2σ3Γ(n+ 5/2)

exp

(
−m

2
1

2σ2
1

− m2
2

2σ2
2

− m2
3

2σ2
3

− pR2

)
; (9)

� for all n ≥ ⌈2pR2⌉, one has un ≥ Tn, with

un =
α0p

nR2n+3

2nΓ(n+ 5/2)

4p√
γ3γ2

exp

(
m2

1p

2
+

θ2
2γ2

+
θ3
2γ3
− pR2

)
, (10)

and γi =
1

2σ2
1

+
1

2σ2
i

, θi =
m2

i

2σ4
i

.

The bounds un and ln may be used for estimating the number of terms
required for evaluating the instantaneous collision probability with a guar-
anteed accuracy. In short, given an absolute error threshold δ, the objective
is to get an estimation of a sufficient number of terms N to be included in
the series in order to guarantee that the prespecified accuracy holds. After
some tedious but straightforward derivations (see also the Appendix A for a
more detailed proof), using equations (8) and (45) with Stirling’s inequality
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Algorithm 1 ProbaComputationConvergentSeries((σi)
3
i=1,

(mi)
3
i=1,R,N)

Input: combined radius R, mean mi and standard deviation σ1 ≤ σ2 ≤ σ3,
number of terms N in the convergent series.

Output: P̃inst – truncated convergent series approximation of Pinst.

1: p = 1
2σ2

1
; γ2 =

1

2σ2
1

− 1

2σ2
2

; γ3 =
1

2σ2
1

− 1

2σ2
3

;γa = γ2 + γ3; γm = γ2γ3;

θ2 =
m2

2

2σ4
2

; θ3 =
m2

3

2σ4
3

; θ1 =
m2

1

2σ4
1

;

2: q0 = −2; q1 = 4γa+2p;q2 = −(2γa2+4pγa+4γm); q3 = (2γa
2 + 4γm) p+

4γaγm; q4 = −4pγaγm − 2γm
2;

3: q5 = 2pγm
2; q6 = 0;f0 = −θ3 − θ2 − γa; f1 = 2θ3γ2 + 2θ2γ3 + γa

2 + 2γm;
f2 = −θ3γ22 − θ2γ32 − 3γaγm;

4: f3 = 2γm
2; s0 = f0 − 2p; s1 = (−f0 + 4γa)p + f1; s2 = (−f1 − 4γm −

2γa
2)p+ f2; s3 = (−f2 + 4γmγa)p+ f3; s4 = −4γ2mp; s5 = 0;

5: ωi =
θ1
2
qi−1 + si−1, for i = 1, . . . , 6;

6: C =
e
−
(

m2
1

2σ2
1
+

m2
2

2σ2
2
+

m2
3

2σ2
3

)

2
√
2σ1σ2σ3

;

7: α0 = C; α1 =
−ω1α0

2
; α2 =

(q1−ω1)α1−ω2α0

4
;α3 =

(2q1−ω1)α2+(q2−ω2)α1−ω3α0

6
;

8: α4 = (3q1−ω1)α3+(2q2−ω2)α2+(q3−ω3)α1−ω4α0

8
; α5 =

(4q1−ω1)α4+(3q2−ω2)α3+(2q3−ω3)α2+(q4−ω4)α1−ω5α0

10
;

9: c0 =
4α0R3

3
√
π
; Note that Γ(5/2) = 3

√
π/4;

10: ci =
4αiR

2i+3

3
√
π

i−1∏
j=0

(j+5/2)

for i = 1, . . . , 5;

11: for k ← 0 to N − 7 do

12: ck+6 =
1

2(k+6)

6∑
i=1

R2i∏i
j=1(k + 6 + 5/2− j)

((k + 6− i)qi − ωi) ck+6−i.

13: end for
14: P̃inst ← exp (−pR2)

∑N−1
i=0 ck;
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[13], we get, for all δ > 0, that if N ≥ max(N0, N1, N2(δ)) then uN − lN < δ,
where

N0 = ⌈2pR2⌉, N1 = ⌈epR2 − 2⌉,
N2(δ) = ⌈(Ω + 1) log2 e− log2(δp

2Rπ
√
2σ1σ2σ3)⌉,

(11)

with Ω :=
θ2
2γ2

+
θ3
2γ3
− pR2 −

(
m2

1

4σ2
1
+

m2
2

2σ2
2
+

m2
3

2σ2
3

)
.

Despite the undisputable advantages of the convergent series algorithm,
it requires sometimes employing a very large number of terms in the series
for particular parameter values. Indeed, the sequence (ck)k is a convergent
sequence but the ck’s will grow until k ∼ R2/(2σ2

1) and then will converge
to 0. This is a known issue in the evaluation of certain power series and
can also be observed from the previous estimation of the number of terms,
which is in O(pR2). Roughly speaking, for some corner cases like e.g., a
combined object radius of R = 100, when one of the standard deviations is
very small with respect to the others, σ1 = 0.01, σ2 = σ3 = 1 for instance,
and the mean values are not too large, the order of magnitude of the number
of terms will be 108. Although the complexity of Algorithm 1 is linear with
respect to the number of terms, for even more extreme cases, one may argue
that the number of terms can be too high for efficient evaluation. A different
point of view is to consider directly (for these difficult cases) the inverse
Laplace transform formula, which is a complex-variable integral that can be
evaluated by the so-called saddle-point method [6, Chap. 6]. Note that a
complementary approach consisting in evaluating by a numerical inversion a
specific inversion formula of the associated characteristic function, may be
found in [11], [12]. Here, we focus on the saddle-point method which allows
for a very efficient evaluation, based on very few terms. The downside is
that the obtained expansion is divergent and consequently, the accuracy of
the evaluation cannot be improved arbitrarily by increasing the number of
terms. However, few terms usually suffice to palliate the problematic cases of
the approach based on the convergent series formulation of the instantaneous
collision probability as demonstrated in the numerical examples section.

3.2 A divergent series expansion using the saddle-point
method

The complementary algorithm we propose now approximates the instanta-
neous collision probability by truncating a divergent series of the inverse
Laplace transform of Lg. This series is obtained by a generalization of
Laplace’s method (see [37, Chap. II] and [6, Chap. 6]) to curvilinear in-
tegrals of the form (18) defined in the complex plane. This is known in the
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literature under the name of saddle-point method or steepest-descent method
[37, Sec. II.4]. The proposed method consists of two main steps, each of
which are detailed below:

2- First, the function g can be expressed by the Bromwich integral formula
as the inverse Laplace transform of Lg [26, Thm 7.2.1, Chap. 7]:

g(ξ) =
1

2iπ

∫ z0+i∞

z0−i∞
eξzLg(z)dz =

1

2iπ

∫ z0+i∞

z0−i∞

exp

(
ξz − z

3∑
i=1

m2
i

2σ2
i z+1

)
z

3∏
i=1

√
2σ2

i z + 1

dz.

(12)

For completeness, note that the (complex) singularities of the function
Lg are a pole at 0 and 3 essential singularities at −pi = −1/(2σ2

i ). The
integration path is a straight vertical line, t : R 7→ z0 + it, intersecting
the real positive axis at z0 > 0, such that the singularities of Lg are
all located to the left of the integration path in the complex plane, i.e.
in the open left half-plane. The Cauchy integral theorem [26, Thm.
4.3.1, Chap. 4] ensures that the value of this integral does not depend
on the choice of z0 > 0. However, the numerical quality of this specific
approximation method highly depends on the chosen integration path.

3- Considering this last issue, the saddle-point method consists in deform-
ing the contour in a new contour in order for the Laplace’s method to
be applicable.

As a preliminary step, a short and simplified mathematical overview of the
Laplace’s method is given in the following.

3.2.1 Overview of Laplace’s method.

Firstly, let us briefly describe the idea of Laplace, which allows for approxi-
mating real-variable integrals of the form:

f(λ) =

∫ +∞

−∞
euλ(x)dx, (13)

where uλ : R→ R depends on a real parameter λ which tends to some given
value λ0 ∈ [0,+∞]. The method is mainly based on the observation that
when λ → λ0, the largest contribution for the computation of integral (13)
comes from a small neighborhood of the point x0 ∈ R where uλ has a peak
or a maximum (u′λ(x0) = 0, u′′λ(x0) < 0):
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f(λ) =

∫ +∞

−∞
euλ(x)dx ≈

∫ x0+ϵ

x0−ϵ

euλ(x)dx. (14)

Therefore, one can approximate uλ (in that neighborhood) by simpler func-
tions like a parabola by expanding uλ in a truncated Taylor series around x0
at order 2 (the first non-vanishing term):

uλ(x) ≈M(λ)− α(λ)(x− x0)2, M(λ) = uλ(x0), α(λ) = −u
′′
λ(x0)

2
> 0,

for |x− x0| ≪ 1,

in which case the integrand is approximated by a Gaussian function, which
can be integrated in closed-form when taking the lower and upper limits of
the integral to infinity:

f(λ) ≈
∫ +∞

−∞
eM(λ)−α(λ)(x−x0)2dx = eM(λ)

√
π

α(λ)
. (15)

Note that the values of M and α depend on λ and that the Laplace approx-
imation above gives the dominant term of the asymptotic expansion of f(λ)
when λ → λ0. The determination of higher order terms requires the inclu-
sion of more terms in the Taylor series of uλ in the neighborhood of x0. Still
assuming that the function uλ has a maximum at x0 and hence u′λ(x0) = 0,
with u′′λ(x0) < 0, the following change of variables is defined:

uλ(x) = uλ(x0)− λs2. (16)

Using (16), the integral (13) becomes:

f(λ) =

∫ +∞

−∞
euλ(x)dx =

∫ s(+∞)

s(−∞)

euλ(x0)e−λs2
(
dx

ds

)
ds

≈ euλ(x0)

∫ ϵ̃

−ϵ̃

e−λs2
(
dx

ds

)
ds.

(17)

Usually, one derives a power series expansion of x and

(
dx

ds

)
in terms of the

new variable s, followed by interchanging the order of the series summation
and the integral. This may be rigorously justified by invoking Watson’s
lemma [37, Sec. I.6] and [6, Sec. 6.4] (including the extension of the lower
and upper limits to infinity (ϵ̃→∞), with a term-by-term integration which
finally gives an asymptotic expansion of integral (13).
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3.2.2 The saddle-point method.

First of all, the integral (12) to be computed is rewritten in a specific form,
which is similar to (13), except for the integration path, which needs to be
carefully considered:

g(ξ) =
1

2iπ

∫ z0+i∞

z0−i∞
eφξ(z)dz, (18)

with

φξ(z) = ξz − z
3∑

i=1

m2
i

2σ2
i z + 1

− log z − 1

2

3∑
i=1

log(2σ2
i z + 1),

= ξz +
3∑

i=1

(
m2

i p
2
i

z + pi
−m2

i pi

)
− log z +

1

2

3∑
i=1

(log pi − log(z + pi)) .

(19)

Choice of the integration path. Note that a point zs satisfying φ
′
ξ(zs) =

0 is also a zero of the derivative of the function eφξ . In addition, such a zs
is a saddle-point for φξ if φξ is analytic in a complex domain including zs
and because its real part is a harmonic function. When possible (since the
singularities of the function need to be taken into consideration), the Cauchy
integral theorem is used and the contour is deformed to pass through such a
saddle-point. Similarly to the Laplace’s method, this choice is most effective
on a contour where the value of the integral is very well approximated by
considering only a small neighborhood of this point. This can be achieved
if the contour chosen is (locally) one of steepest descent. Denoting the real
and imaginary parts of the function φξ as follows:

φξ(z) = Reφξ(z) + iImφξ(z) := uξ(z) + ivξ(z), (20)

this is defined as a constant phase contour, on which vξ(z) is constant and
which is everywhere orthogonal to the contour lines of constant uξ.

In brief, the contour C must be (locally) deformed into a new path of
integration C ′ such that:

� C ′ passes through one saddle-point, say zs;

� vξ(z) is constant on C ′, with vξ(z) = vξ(zs) for all z ∈ C ′.
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(a) Vertical path passing
through a point z0 ̸= zs.

(b) Vertical path passing
through the saddle point
zs.

(c) Quadratic approxi-
mation of the steepest
descent path.

Figure 2: Integrand eφξ(z) evaluated along three different paths and the cor-
responding Gaussian in dotted blue lines.

Such a deformation of C to C ′ is motivated by the fact that the oscillations of
the integrand are eliminated on a path where vξ(z) is constant. However, as
for the Laplace method, since only a small neighborhood of the saddle point
matters, a local knowledge of the structure of the lines of steepest descent
may be sufficient (see Figure 2).

In equation (18), the initial path is a vertical line t : R 7→ z0 + it, which
crosses the positive real axis at z0 > 0. One can prove that the function φ′

ξ:

φ′
ξ(z) = ξ −

3∑
i=1

m2
i p

2
i

(z + pi)2
− 1

z
− 1

2

3∑
i=1

1

z + pi
,

has only one positive real root1 , which is denoted by zs in what follows and
can be numerically found with the Newton method, for instance.

A first dominant term approximation. Since no singularities are present
in the right half-plane, the vertical line can be shifted to pass through zs,
which together with the variable change z = zs + it, gives:

g(ξ) =
1

2iπ

∫ zs+i∞

zs−i∞
eφξ(z)dz =

1

2π

∫ +∞

−∞
eφξ(zs+it)dt. (21)

Note that the integral (21) obtained after a deformation of the original inte-
gration contour is now defined on R even if the integrand is still a complex-
valued function. The new integration variable t is real and since the value of

1It suffices to see that: (i) φξ(z) ∼ − log(z) → +∞ when z → 0+; (ii) φξ(z) ∼ ξz →
+∞ when z → +∞; (iii) φ′′

ξ (z) > 0 for all z > 0.
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g(ξ) is real by definition, we are interested only in the real part of eφξ(zs+it)

(the contribution of the imaginary part will cancel), for which we can apply
the Laplace’s method. Expanding the function φξ in Taylor series around zs,
one has

φξ(zs + it) ≈ φξ(zs) +
φ′′
ξ (zs)

2
(it)2 := a0 − a2t2, with a2 > 0, (22)

and equation (15) directly gives:

g(ξ) ≈ ea0

2
√
πa2

. (23)

However, this classical Laplace approximation, given in equation (23),
may not be sufficiently precise, in which case, a more involved change of
variables and/or more coefficients in the Taylor expansion of φξ around zs
need to be considered.

Approximation via a divergent series. Following the steps outlined in
subsection 3.2.1 for obtaining higher order terms of the expansion that will
play the role of correction terms to the previous approximation, a different
change of variables is proposed:

φξ(zs + z) = a0 + a2(iw)
2, (24)

that is, the function φξ(zs+ z) exactly matches a parabola with a0 = φξ(zs),
a2 = φ′′

ξ (zs)/2 > 0 and w ∈ R. Along the path of steepest descent passing
through the saddle point zs, φξ(zs + z) − φξ(zs) is real so that one may
apply Laplace method on the transformed integral, now parameterized by
the new real variable w. Usually, such a change of variables is valid only in
a neighborhood of zs and not on the whole integration path (since the value
of the integral is concentrated around zs this is not an issue in practice). So
the overall strategy is:

� The vertical line t : R 7→ zs + it, which is the integration path in
equation (21) is deformed to locally match a constant phase contour
passing through the saddle point zs, which makes the change of vari-
ables in eq. (24) locally bijective for real w; note that in practice, one
does not need to compute an exact formula for this new path.

� After the variables change, the limits of integration in w are formally
extended to −∞ and +∞;
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� The integral (18) is then approximated by:

g(ξ) ≈ 1

2iπ

∫ +∞

−∞
ea0−a2w2

(
dz(w)

dw

)
dw, (25)

with the remaining challenge of expressing z as a function of w in

order to get an expansion of

(
dz(w)

dw

)
in terms of w. While in various

examples in the literature, the function φξ is sufficiently simple to allow
for the equation (24) to be solved in closed-form, this is not the case
here. Nevertheless, the function φξ may be expanded as a power series
near the saddle point zs:

φξ(zs + z) ≈ a0 + a2z
2 + a3z

3 + . . . , with an =
φ
(n)
ξ (zs)

n!
, (26)

and where the successive derivatives φ
(n)
ξ can be obtained for n ≥ 2, in

closed-form as:

φ
(n)
ξ (z) = (−1)n

(
n!

3∑
i=1

m2
i p

2
i

(z + pi)n+1
+

(n− 1)!

zn
+

(n− 1)!

2

3∑
i=1

1

(z + pi)n

)
.

(27)
Combining equations (24) and (26), one aims at writing also z(w) as a
power series:

z(w) = b0 + b1(iw) + b2(iw)
2 + b3(iw)

3 + . . . , (28)

for which the unknown coefficients bi can be found by an iterative pro-
cedure, which will provide a so-called formal inverse truncated series.

We now focus on the algorithmic procedure for computing the coefficients
bi’s, i.e. to obtain z as a function z := z(w).

� The first two coefficients b0 = 0 and b1 = 1 are readily obtained by set-
ting z(w) = b0+ b1(iw) in (26) and identifying the first two coefficients
with (24).

� To compute b2, take z(w) = iw + b2(iw)
2 and evaluate φξ(zs + z(w))

up to order 3:

φξ(zs + z(w)) = a0 + a2(iw)
2 + (2a2b2 + a3)(iw)

3 +O((iw)4).

The coefficient b2 is then chosen to cancel the third coefficient in the
previous expansion:

b2 = −
a3
2a2

. (29)

16



� Similarly, for b3, one obtains:

b3 =
−4a2a4 + 5a23

8a22
.

� More generally, for computing the n-th coefficient bn, firstly expand
φξ(zs + z(w)) as a power series in w, and then by identifying each
coefficient of wk (k = 0, · · · , n + 1) in the expression φξ(zs + z(w)) =
a0−a2w2, one obtains a triangular system with the last equation being
linear in the coefficient bn.

Algorithm 2 summarizes this procedure, while Tables 6 and 7 in Appendix
B list the coefficients an and the first few computed coefficients bn. Note
that if more coefficients in the expansion z(w) are needed, then they can be
straightforwardly computed by Algorithm 2. Note also that these coefficients
could be computed more efficiently by applying Lagrange’s formula [10, p.
125] or power series reversion by Newton iterations [22, Sec. 4.7]. In practice
however, only a few terms are needed in and Algorithm 2 is sufficient for this
purpose.

Algorithm 2 CoefficientsBn(N , (an)
N
n=2)

Input: Coefficients an (0 ≤ n ≤ N) of the formal series φ(zs + z) = a0 +
a2z

2 + · · ·+ aNz
N + . . . to be inverted.

Output: Coefficients bn of z(w) = b1(iw)+b2(iw)
2+ · · ·+bN−1(iw)

N−1 such
that φ(zs + z(w)) = a0 + a2(iw)

2 +O((iw)N+1).

1: b1 ← 1.
2: z(w)← iw.
3: for n = 2 to N − 1 do
4: z(w)← z(w) + bn(iw)

n. ▷ bn is an unknown variable
5: c ← [(iw)n+1]φ(zs + z(w)). ▷ the coefficient before (iw)n+1 in

φ(zs + z(w))
6: bn ← solution of c = 0.
7: end for
8: Return b1, . . . , bN−1.

Computation of the final divergent series coefficients. The change
of variables in (28) allows for rewriting (25) as:

g(ξ) ≈ ea0

2π

∫ ∞

−∞
e−a2w2

∞∑
n=0

(n+ 1)bn+1(iw)
ndw. (30)
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In general, the integral and the infinite sum cannot be inverted, since
the series is not uniformly convergent, but one can nevertheless truncate
the series and then evaluate term-by-term the corresponding integrals. A
straightforward computation shows that the integrals corresponding to odd
powers of w are zero (as expected, since the integral value is real). Computing
the remaining even coefficients gives:

1

2π

∫ +∞

−∞
e−a2w2

(iw)2ndw =
(−1)n(2n− 1)!!
√
π2n+1a

n+1/2
2

.

Thus, the final approximation for our integral (12) is:

g(ξ) ∼ ea0

2
√
πa2

N∑
n=0

cn, with cn = (−1)n (2n+ 1)!!

(2a2)n
b2n+1. (31)

Table 8 in Appendix B gives the first five coefficients cn in terms of the
coefficients an and bn, while Algorithm 3 summarizes the whole procedure.
The sum that is obtained diverges when N → ∞ and a finite number of
terms of the series has to be chosen and used in approximating the integral
(12). While the optimum number of terms (the minimum number of terms
to get the better precision) is not known a priori, the first five coefficients
(running Algorithm 3 with N = 5) contain sufficient precision in practice for
a precise evaluation of the integral (12) in many cases, as will be seen in the
numerical examples of the next section.
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Algorithm 3 ProbaComputationDivergentSeries((σi)
3
i=1,

(mi)
3
i=1,R,N)

Input: combined radius R, mean mi and standard deviation σi, number of
terms N in the divergent series.

Output: P̃inst – truncated divergent series approximation of Pinst.

1: Numerically compute the saddle point zs > 0, solution of:

R2 −
3∑

i=1

m2
i

(2σ2
i λ+ 1)2

−
3∑

i=1

σ2
i

2σ2
i λ+ 1

= 0.

2: Compute the coefficients an for 0 ≤ n ≤ 2N :

a0 = ξzs − zs
3∑

i=1

m2
i pi

zs + pi
− log zs −

1

2

3∑
i=1

log

(
zs
pi

+ 1

)
, (32)

a1 = ξ −
3∑

i=1

m2
i p

2
i

(zs + pi)2
− 1

zs
− 1

2

3∑
i=1

1

zs + pi
= 0, (33)

an = (−1)n
(

3∑
i=1

m2
i p

2
i

(zs + pi)n+1
+

1

nzns
+

1

2n

3∑
i=1

1

(zs + pi)n

)
, n ≥ 2.

(34)

3: Compute the coefficients bn for 0 ≤ n ≤ 2N − 1 and odd n with Algo-
rithm 2. See also Table 7 for precomputed coefficients b1, . . . , b9.

4: Compute the coefficients cn for 0 ≤ n ≤ N − 1 (see also Table 8 for
precomputed coeffs c0, . . . , c4):

cn = (−1)n (2n+ 1)!!

(2a2)n
b2n+1. (35)

5: Return P̃inst ←
ea0

2
√
πa2

(c0 + c1 + · · ·+ cN−1).
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4 Hybrid algorithm

The overall strategy consists in switching between the convergent-series method [35],
which was summarized in Algorithm 1 and the saddle-point alternative, given
by Algorithm 3, based on the estimation of a sufficient number of terms re-
quired for the first method given in equation (11). The resulting pseudo-code
is presented in Algorithm 4.

Algorithm 4 Computation of instantaneous probability of collision((σi)
3
i=1,

(mi)
3
i=1,R,δ).

Input: combined radius R, mean mi and standard deviation σ1 ≤ σ2 ≤ σ3,
required accuracy δ.

Output: P̃inst – approximation of Pinst.

1: Nmax = 4000; Ndiv = 5;

2: p = 1
2σ2

1
; γ2 =

1

2σ2
1

− 1

2σ2
2

; γ3 =
1

2σ2
1

− 1

2σ2
3

;γ2 =
1

2σ2
1

+
1

2σ2
2

; γ3 =
1

2σ2
1

+

1

2σ2
3

;θ2 =
m2

2

2σ4
2

; θ3 =
m2

3

2σ4
3

;

3: Ω =
θ2
2γ2

+
θ3
2γ3
− pR2 −

(
m2

1

4σ2
1
+

m2
2

2σ2
2
+

m2
3

2σ2
3

)
;

4: N0 = ⌈2pR2⌉; N1 = ⌈epR2 − 2⌉; N2(δ) = ⌈(Ω + 1) log2 e −
log2(δp

2Rπ
√
2σ1σ2σ3)⌉;

5: Nconv = max(N0, N1, N2(δ));
6: if Nconv ≤ Nmax then

7: P̃inst ← Algorithm 1 (σx, σy, xm, ym, R, Nconv);
8: else

9: P̃inst ← Algorithm 3 (σx, σy, xm, ym, R, Ndiv);
10: end if
11: return P̃inst.

More specifically, besides the usual input parameters given by the relative
mean, relative covariance and hardbody radius, the user inputs also an ab-
solute error parameter δ, which corresponds to the number of correct digits
required (e.g., δ = 10−15 corresponds to 15 correct digits after the decimal
dot). This is the value we chose in our experiments to allow for accurate
results. Depending on the parameter δ and the corresponding input data,
in line 5 of Algorithm 4, a sufficient number of terms Nconv, for Algorithm 1
to reach the desired accuracy, is computed. This directly affects the perfor-
mance of Algorithm 1, which requires O(Nconv) basic arithmetic operations
(addition, multiplication, division), plus a final evaluation of an exponential
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function. To compensate for the computational burden when Nconv > Nmax,
one switches to the second alternative given by Algorithm 3, which is usually
faster for Ndiv = 5, but cannot guarantee the final accuracy. So a trade-off is
to be made, function on the maximum number of terms Nmax. As previously
discussed, Nconv is in the order of R2

2σ2
1
and our practical numerical experiments

(detailed in the next section) suggest that, the majority of well-behaved cases
will need less than few hundreds terms (for 15 digits of guaranteed precision).
In our implementation, we propose to fix Nmax = 4000 in line 2. This is a
choice which favors accuracy over performance, and a different trade-off can
be simply set by tuning this parameter.

5 Numerical examples

In order to demonstrate the performance of the Hybrid Algorithm 4, three
different test cases borrowed from the references [4] and [38] are used to
compare the results with the ones given by three alternative methods of the
literature: the Equivalent Volume Cuböıd (EVC) method from [39] and the
methods of Equivalent Volumes (EV) and of Approximating Distributions
(AD) from Chan’s book [7, Chap. 13]. In addition, Monte Carlo simulations
are performed to compute the instantaneous collision probability on the given
time span and we assume that this result is the reference in each case. The
time of closest approach is set to t = 0. Every algorithm mentioned in
this article is implemented in Matlab R2021b® and all computations were
performed on a HP Dragonfly G3 laptop with an Intel i5 12th Gen processor
and 16Go RAM except for the Monte-Carlo simulations with a sample size
of 107 which were performed on a computing platform using 10Go RAM and
a parallel pool of 10 workers (Matlab® Parallel Computing Toolbox). All
details pertaining to the computation of Pinst by the various algorithms and
to the uncertainty propagation are given in the next two subsections.

5.1 Uncertainty propagation

When computing the instantaneous collision probability, the propagation,
from the epoch t0 to the desired time t, of a given set of initial orbit un-
certainty data related to each object (mean state vectors of positions and
velocities and the associated covariance matrix) requires a particular care.
Here, we use the Unscented Transform (UT) [21], possibly combined with
Gaussian Mixture Models (GMM) when the time span of the propagation is
too long. UT is known to be a valuable alternative to the usual and much
simpler propagation based on linearization. For the following numerical ex-
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amples, it is implemented using equation (3) from [21] with κ = 0.5 so that
the sample mean and covariance are unweighted. Note also that the sigma
points are computed again at each time step.

Still, propagating one single Gaussian distribution for each space object
over long orbital nonlinear arcs might produce uncertainties which are not
well represented by Gaussian distributions at time t [18]. For the third exam-
ple, a Gaussian Mixture Model (GMM) was implemented based on corollary
2.3 from [18] and the Gauss-Hermite quadrature scheme from [16] 2 to split
the initial Gaussian PDF of the primary and the secondary. The splitting can
be tuned through two parameters: the order of the Gauss-Hermite quadra-
ture 3 and the number d of eigendirections of the initial covariance matrix
along which to perform a split. Following [18], we chose the d eigendirec-
tions in decreasing order of eigenvalues magnitude (the ”d largest eigendirec-
tions”). Each component of each space object is then propagated using the
UT without updating the weights in the GMM.

5.2 Algorithms for the computation of Pinst

The main tuning parameters of our implementation of the different methods
are given here in order for the presented results to be easily replicated if
needed. First, Chan’s algorithms are implemented following [7, Chap. 13].
In particular, the Equivalent Volume method is implemented using Matlab®

function integrate with default values and the choice of the least aspect ratio
rule, i.e. the direction of integration is such that the remaining two eigen-
values yield the least aspect ratio. Both EV and AD implementations were
first validated on the numerical examples presented in [7, Chap. 13].

For the Monte-Carlo sample generation, we follow [4, Section III-D]. First,
the random samples are generated based on the known PDFs for each space
object at epoch. Secondly, each sample is then propagated in the Keplerian
dynamics, by a numerical scheme from [36]. Finally, the probability of col-
lision at time t is computed by counting the number of relative state vector
samples at time t whose Euclidian norm is lower than the hard-body radius
R.

2A Matlab® library is available at http://sparsegrids.de
3If k is the order, then the first k moments of the GMM and of the initial PDF are

equal [18].
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5.3 Two Satellites in Geosynchronus Equatorial Orbits
(GEO)

The first numerical example is the test case 4 of reference [4], which was
also analyzed in [39]. It describes two satellites in GEO with low relative
velocity (around 0.02 m/s at TCA). The number of samples for Monte-Carlo
simulation was set to 2× 106 in compliance with the Dagum bound given in
[4] while the time step was set to 10 min, for computational reasons. As in
[4] and [39], Pinst has been computed from t0 = 0 (TCA) to tf = 13200 s
(220 minutes). As mentioned in [4], the probability starts to accumulate 50
minutes after TCA. Since the time range is relatively small (less than one fifth
of one orbital period for each space object), we have assumed that the initial
density function of each object remains Gaussian for all time t ∈ [t0, tf ].

Firstly, the efficiency of our Algorithm 4 is analyzed, by fixing a target
accuracy of δ = 10−15 and tuning the value of the parameter Nmax, function
of which either the method of convergent or respectively, divergent series is
employed. The ratio of calls to either method is tested by running a total of
301 calls to Algorithm 4, on a uniform discretization of the time span chosen
above. Table 1 summarizes both the ratio and corresponding timings for
different choices of Nmax. Note that for the sake of more reliable timings, the
computations were repeated 30 times and the mean/median timings obtained
are recorded for completeness. As expected (since only 5 terms are employed

Nmax Mean/median timings (s) % calls of divergent series
10 0.2153/0.2509 100
400 0.2350/0.2705 52
1000 0.2495/0.2945 32.1
4000 0.3804/0.4503 0

Table 1: Mean/median timings (s) over 30 runs and percentages of calls of
the divergent series of algorithm 4.

in the divergent series), Table 1 shows a speed up of the computations when
switching more often for the divergent series. The trade-off is that only the
convergent series method can provide arbitrarily precise results. However, it
is interesting to note that in this particular test case, the results given by the
divergent series method are also very accurate as shown in Figure 3.

Secondly, all the collision probability computation methods - algorithm 4,
EVC, EV and AD algorithms - are compared both in terms of accuracy and
efficiency. The results are depicted in Fig. 3 with a time step of 1 minute. It
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is clear that the hybrid algorithm gives the best results as the red dashed line
almost fits perfectly the Monte-Carlo simulations represented by the green
stars. On the contrary, the approximations given by both of Chan’s method
are less precise. The EV method (dotted orange line) strongly underestimates
the instantaneous collision probability on the whole time span while the AD
method (dashed dot purple line) is more precise, still giving overestimated
estimations of Pinst on the whole time span. In this last case, two particular
features of the results are interesting: first, the AD method exhibits a non
negligible risk on time intervals (at the beginning and the end of the en-
counter time span) where there is no actual risk; secondly, the instantaneous
collision probability produced by the AD algorithm is not a lower bound of
the cumulative probability given in [4], as it should be, on more than half
of the time span. Finally, the EVC algorithm (solid blue line) gives a better
result. Nevertheless, it is affected by inaccuracies on the entire range, due to
the assumed approximations. Note that the assumption about the preserva-
tion of the Gaussian nature of the uncertainty throughout the encounter is a
posteriori validated by the good agreement between the results of the hybrid
algorithm and of the Monte Carlo simulations. Except for the MC method,
each method requires less than 1 s for computing the complete set of data
necessary to get the graph 3 as it may be seen in Table 2. This test case is
a first illustration of the capability of the hybrid algorithm to provide a fast
and accurate way to compute the instantaneous collision probability.

Alg. & propag. Alg. 4 + UT EVC + UT EV + UT AD + UT MC
Timings (s.) 0.2153 0.2045 0.70312 0.54688 1447

Table 2: Comparison of the different timings for the different algorithms.

5.4 Two satellites in Highly-Eccentric Orbits (HEO)

This is test case 9 of reference [4], in which the instantaneous collision proba-
bility, computed by the voxel method, is presented alongside the cumulative
probability. It describes two satellites in HEO with low relative velocity
(around 0.002 m/s at TCA). The same technical choices as the ones made
for test case 4 have been adopted here and Table 3 shows the timings and
percentages of instances the algorithm 4 chooses to use the divergent series
for different choices of Nmax. Even if the evolution of timings is not as mono-
tonic as in the previous example, there is an expected timing improvement
when the divergent series method is called more often.
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Figure 3: Alfano’s [4] test case 4: Pinst - Monte Carlo simulations (green
stars), Algorithm 4 with divergent series (red dashed line), AD method
(dashed dot purple line), EV method (dotted orange line), EVC method
(solid blue line).

Nmax Mean/median timings (s) % calls of divergent series
50 0.3107/0.3396 100
75 0.2828/0.3411 73.4
100 0.3355/0.3438 57.1
300 0.3239/0.3584 23.6
700 0.3687/0.3877 0

Table 3: Mean/median timings (s) over 30 runs and percentages of calls of
the divergent series of algorithm 4.
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For the comparisons with all other methods, note that the number of
samples for Monte-Carlo simulation was set to 2 × 106 in compliance with
the Dagum and the Chernoff bounds given in [4] and that the time step
was set to 10 minutes for computational reasons. The overall results can be
seen in Fig. 4 and comparisons of timings are given in Table 4. First, note
that the results of algorithm 4 and of the Monte-Carlo simulations are very
similar to the ones exposed in [4]. In particular, the respective maximum
probabilities of collision are similar up to the third digit (less than 0.02% of
relative error). In terms of accuracy, the results of the other algorithms are
quite consistent with the ones obtained for the first example except for the
EV method, which suffers from severe numerical difficulties. For the whole
computation, Algorithm 4 is the fastest while the EVC method is 4 times
slower. The two other methods, AD and EV are faster than the EVC method
but, AV strongly underestimates Pinst on most of the time span, while EV
produces no usable results due to numerical instabilities. As expected, the
Monte Carlo method requires a heavy load of computations and is therefore
not competitive with respect to the timing criterion. As previously, only one
Gaussian density may be used to describe the initial relative uncertainty and
propagated during the whole time span.

Figure 4: Alfano’s [4] test case 9: Pinst - Monte Carlo simulations (green
stars), algorithm 4 (red dashed line), AD method (dashed dot purple line),
EVC method (solid blue line).
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Alg. & propag. Alg. 4 + UT EVC + UT EV + UT AD + UT MC
Timings (s.) 0.3107 1.2031 0.90625 0.54688 2172

Table 4: Comparison of the different timings for the different algorithms.

5.5 Two Satellites in Low-Earth Orbits

This test case was first presented and analyzed in [38]. It describes two satel-
lites in LEO and it is built from two test cases from [4] : the values of the
means are from test case 5 while the covariance matrices are from test case
7. For this case the propagation was performed from t0 = 0 s (epoch) to
tf = 102600 s = 28 h 30 min that is, a long propagation period of more than
18 orbit periods for both objects. Since their respective PDFs are not likely
to remain Gaussian, we implemented a Gaussian Mixture Model (’GMM’)
propagation method, beside the previously introduced single Gaussian model
(’1G’). As mentioned earlier in Subsection 5.1, a GMM, through its initial
splitting procedure, can be characterised by two parameters : the order k
of the Gauss-Hermite quadrature and the number d of eigendirections along
which to perform a split. Here, we choose a GMM with parameters k = 5
and d = 3, which has good propagation performances 4 while having a lim-
ited number of components (25 components with Genz-Keister’s splitting
algorithm), and compare it with the 1G model. Both propagation methods
were combined either with the Equivalent Volume Cuboids or the Algorithm
4 (Nmax = 4000) for computing the collision probability over the whole time
span. The results are plotted in Fig. 5. The time window for the plot was
centered around a local maximum of probability to better visualize the per-
formance of each method.
As expected, the propagation method is of paramount importance here.

For both probability computation methods, using GMM propagation model
yields closer results to Monte-Carlo simulations than the ones obtained using
a single Gaussian propagated by UT method. The relative error with respect
to the Monte-Carlo result for the computation of maximum probability of
collision, Pmax

inst , is given in Table 5 and clearly illustrates this point. Indeed,
as depicted in Fig. 6, the difference between the 3-sigma PDF contours re-
spectively propagated by the UT method, the GMM and the distribution
of the relative position uncertainty projected in the radial-intrack plane at
t = tf propagated by the Monte-Carlo method readily explains the obtained
results.

4On this test case, the third largest eigenvalues of the combined covariance matrix was
significantly higher than the fourth, hence the choice of d = 3.
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Figure 5: 2 satellites in LEO orbits: Pinst - Monte Carlo (green stars),
GMM+algorithm 4 (red dash), GMM+EVC (blue line), 1G+ algorithm 4
(purple dash), 1G+EVC (orange line).

Figure 6: Distribution of the relative position uncertainty projected in the
radial-intrack plane at t = tf propagated by the Monte-Carlo method (106

samples, blue dots) and 3-sigma PDF contours propagated by UT (black
dashed line) and by GMM (colored lines).
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Method Timings Pmax
inst × 104 (error)

1G+EVC 4.3 0.76163 (47.5%)
1G+algo. 4 4.5 0.76654 (47.2%)
GMM+EVC 177 1.1087 (23.6%)
GMM+algo. 4 406 1.1255 (22.5%)
Monte-Carlo 25200 1.4520 (0%)

Table 5: Timings and error for two satellites in LEO orbits.

The illustrative timings of Table 5 show that Algorithm 4 with Nmax =
4000 is here slower than the EVC method but with a slightly better accu-
racy. Nevertheless, the results of both Table 5 and Figure 5 show that it
can be efficiently combined with more complex and demanding propagation
techniques, while maintaining good accuracy and performance metrics.

6 Conclusion

In this work, the problem of the fast and reliable computation of the instan-
taneous probability of collision has been addressed. This can be modeled
as the integral of a three-dimensional Gaussian probability density function
over a Euclidean ball representing the hardbody. The method proposed for
evaluating this integral is based on the combination of two semi-analytical
complementary strategies. Firstly, a preconditioned convergent power series
expansion in the square of the hardbody radius has been employed. From
a computational viewpoint, this expression has two important features: (1)
all its coefficients are positive, which prevents the well-known cancellation
phenomenon which occurs in finite-precision evaluation; (2) the computation
of these coefficients is very simple since they satisfy a linear recurrence rela-
tion, with known initial conditions. In addition, the proposed method allows
for an evaluation with guaranteed accuracy, function of an absolute error
threshold provided by the user. This is possible thanks to the derivation of
rigorous lower and upper bounds on the truncation error, which can be also
used for an a priori estimation of a sufficient number of terms required in the
series.

Still, for some numerically challenging cases, this number can be too large
(with respect to the efficiency constraints imposed). We have therefore pro-
posed an alternative approximation method based on saddle point techniques,
which can be seen as a generalization of the classical Laplace approximation
method for integral evaluation. This method requires few terms (only five
terms have been used in our algorithm) obtained via straightforward alge-
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braic operations to get a very good approximations. However, these terms
correspond to a divergent series, so this strategy cannot provide arbitrarily
good accuracy.

Hence, a hybrid algorithm was designed, which selects one of these two
complementary methods, depending on the accuracy required and a fixed
threshold value for the maximum number of terms to be used in the series.

The results from three test cases directly borrowed or adapted from the
literature have then been presented and comparisons with the current state
of the art, including a Monte Carlo method taken as a reference, have been
made. The first two test cases show a very good accuracy of the proposed
hybrid algorithm with respect to the reference results when the assumption
that the uncertainty remains Gaussian all along the time span is validated.
These numerical tests show that our method is more accurate than the cur-
rent state of the art, while also alleviating the difficult cases which required
a high number of terms. For the third case, the propagation time span is
longer, so a refined Gaussian mixture representation of the uncertainty is
necessary. The experimental results show that the proposed hybrid algo-
rithm scales up in this computationally challenging context. Moreover, on
this particular example, the hybrid algorithm turns out to be slightly slower
than the EVC method but also slightly more accurate.

Future studies include providing truncation error bounds for the saddle-
point approach and the use of these computational algorithms for designing
collision avoidance maneuvers.

Acknowledgement

The Authors would like to thank CNES and ANR-20-CE-48-0014NuSCAP
for a partial financial support of this study.

A Proofs for the convergent series recurrence

Proofs of results pertaining to the convergent series approach are now pre-
sented.

Proposition 2 The coefficients (αk)k≥0 and (ck)k≥0 in equation (5) are pos-
itive.

Proof 1 Let h̄(z) :=
1

z
5
2

Lg̃(
1
z
). The function h̄ has a convergent power series

expansion h̄(z) =
∞∑
k=0

αkz
k for |z| ≤ p−1 and satisfies the following linear
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Ordinary Differential Equation (ODE) of order 1:

h̄′(z) =
P (z)

Q(z)
h̄(z), h̄(0) = C, (36)

with the partial fraction decomposition of
P (z)

Q(z)
given by:

P (z)

Q(z)
=

p

1− pz
+

θ2
2(γ2z − 1)2

+
θ3

2(γ3z − 1)2
+

γ2
2(1− γ2z)

+
γ3

2(1− γ3z)
+
θ1
2
.

(37)

The general term of the series expansion of the function
P (z)

Q(z)
=

∞∑
i=0

βiz
i

is therefore given by:

βi = pi+1 +
(i+ 1)θ2γ

i
2

2
+

(i+ 1)θ3γ
i
3

2
+
γi+1
2

2
+
γi+1
3

2
, +

θ1
2

if {i = 0}, (38)

Injecting in the differential equation (36), we have:

(k + 1)αk+1 =
k∑

i=0

βiαk−i, k ≥ 0, α0 = C > 0. (39)

By induction, we get that αk > 0 for all k since βk > 0 by (38).

Proof of Proposition 1. Denoting x = R2, let the series Tn be defined

by Tn = R exp(−pR2)
∞∑
k=0

αk+nx
k+n

Γ(k + n+ 5/2)
, whose coefficients are positive and

x ≥ 0. Furthermore, it is easily seen that the coefficients βi in eq. (38) are
lower-bounded by pi+1 ≤ βi, for i ≥ 0, which gives α0p

i ≤ αi, for i ≥ 0 by
induction. Then, the inequality

∞∑
k=0

αk+nx
k+n

Γ(k + n+ 5/2)
≥

∞∑
k=0

α0p
k+nxk+n

Γ(k + n+ 5/2)
≥ α0(px)

n

Γ(n+ 5/2)
, (40)

provides a lower bound ln for Tn.
Secondly, for an upper bound on Tn, one can use the following inequalities:

∞∑
k=0

αk+nx
k+n

Γ(k + n+ 5/2)
≤

(x
ρ
)n

Γ(n+ 5/2)

∞∑
k=0

αk+nx
kρn

Γ(n+ 5/2)

Γ(k + n+ 5/2)

≤
(x
ρ
)n

Γ(n+ 5/2)

∞∑
k=0

αk+nρ
k+n xk

ρk(n+ 5/2)k
,

(41)
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which provide an upper-bound of the form:

un,ρ =
R2n+3

ρnΓ(n+ 5/2)
h̄(ρ) exp(−pR2), (42)

for any ρ < 1/p and n ≥ n0, with n0 = ⌈R2

ρ
⌉. In particular, setting ρ = 1

2p

leads to:

un, 1
2p

:=
α0p

nR2n+3

2nΓ(n+ 5/2)

4p√
γ3γ2

exp

(
θ1
4p

+
θ2
2γ2

+
θ3
2γ3
− pR2

)
, (43)

for all n ≥ ⌈2pR2⌉.

Proof of equation (11). One has

un ≤
2pnR2n+3

√
2σ1σ2σ32nΓ(n+ 5/2)

exp

(
θ1
4p

+
θ2
2γ2

+
θ3
2γ3
− pR2 −

(
m2

1

2σ2
1

+
m2

2

2σ2
2

+
m2

3

2σ2
3

))
(44)

Using Stirling’s inequality Γ(n+ 1/2) ∈
[
2π
e
, e
]

nn

en
, one has

un ≤
eR3

π
√
2σ1σ2σ3

(pR2)n

2n
en+2

(n+ 2)n+2
exp (Ω) , (45)

≤ 4

p2Rπ
√
2σ1σ2σ3

(
epR2

2(n+ 2)

)n+2

exp (Ω + 1) , (46)

where Ω =
θ2
2γ2

+
θ3
2γ3
− pR2 −

(
m2

1

4σ2
1
+

m2
2

2σ2
2
+

m2
3

2σ2
3

)
.

The term
epR2

2(n+ 2)
is less than

1

2
as soon as n ≥ N1 := ⌈epR2 − 2⌉.

Therefore, the inequality un ≤ δ is satisfied for n ≥ N2 := ⌈(Ω + 1) log2 e −
log2(δp

2Rπ
√
2σ1σ2σ3)⌉.

B Tables of precomputed coefficients an, bn
and cn involved in the computation of Pinst
via the saddle point method

This appendix gathers the different tables of the various coefficients involved
in the steps of Algorithm 3.
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b1 = 1,

b3 =
−4a2a4 + 5a23

8a22
,

b5 =
−64a32a6 + 224a22a3a5 + 112a22a

2
4 − 504a2a

2
3a4 + 231a43

128a42
,

b7 =
1

1024a62

[
−512a52a8 + (2304a3a7 + 2304a4a6 + 1152a25)a

4
2+

(−6336a23a6 − 12672a3a4a5 − 2112a34)a
3
2 + (13728a33a5 + 20592a23a

2
4)a

2
2

−25740a2a43a4 + 7293a63
]
,

b9 =
1

32768a82

[
−16384a72a10 + (90112a3a9 + 90112a4a8 + 90112a5a7+

45056a26)a
6
2 + (−292864a23a8 + (−585728a4a7 − 585728a5a6)a3−

292864a4(a4a6 + a25))a
5
2 + (732160a33a7 + (2196480a4a6+

1098240a25)a
2
3 + 2196480a3a

2
4a5 + 183040a44)a

4
2 − 1555840a23(a

2
3a6+

4a3a4a5 + 2a34)a
3
2 + (2956096a53a5 + 7390240a43a

2
4)a

2
2−

5173168a2a
6
3a4 + 1062347a83

]
.

Table 7: bn coefficients of the change of variables (24), as functions of the
coefficients an.

a0 = ξzs − zs
3∑

i=1

m2
i pi

zs + pi
− log zs −

1

2

3∑
i=1

log

(
zs
pi

+ 1

)
,

a1 = ξ −
3∑

i=1

m2
i p

2
i

(zs + pi)2
− 1

zs
− 1

2

3∑
i=1

1

zs + pi
= 0,

an = (−1)n
(

3∑
i=1

m2
i p

2
i

(zs + pi)n+1
+

1

nzns
+

1

2n

3∑
i=1

1

(zs + pi)n

)
, n ≥ 2.

Table 6: an coefficients as functions of ξ = R2, zs, mi and pi = 1/2σ2
i .
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c0 = b1, c1 = −
3

2

b3
a2
, c2 =

15

4

b5
a22
, c3 = −

105

8

b7
a32
, c4 =

945

16

b9
a42
.

Table 8: The first five cn coefficients of the divergent series (31).
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