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Abstract

Resource-Constrained Project Scheduling Problems (RCP-
SPs) are NP-complete, which makes it challenging to effi-
ciently solve large instances and robustify solutions in the
presence of uncertainty. To remedy this, we learn to effi-
ciently mimic the solutions produced by Constraint Program-
ming (CP) solver, using a Graph Neural Network (GNN) ar-
chitecture designed to capture the structure of RCPSPs. Since
the GNN solution may violate constraints, we ensure sched-
ule feasibility at inference time by extracting the task or-
dering from the GNN schedule and post-processing it with
the well-known Schedule Generation Scheme (SGS). We find
that STREN, the resulting algorithm, produces schedules that
are of higher quality than those produced by the CP solver
within the same computation time budget. The speed and so-
lution quality of STREN make it suitable as a component of an
on-line scenario-based optimisation procedure for RCPSPs
with stochastic durations. This leads to the SERENE system,
which robustly selects, in real-time, the best next tasks to start
in order to minimise the average makespan over the scenarios.
Empirically, SERENE achieves better average makespan over
different realisations of uncertainty than deterministic algo-
rithms that continuously reschedule on the basis of either the
worst, best or average task durations.

Introduction

Scheduling tasks constrained by precedence relations and
shared limited resources is an ubiquitous problem found
in many areas of human activities, e.g. university class
timetabling, public transport optimisation, manufacturing
task scheduling, and daily activity planning, to name but a
few. Such problems belong to the widely studied class of
Resource-Constrained Project Scheduling Problems (RCP-
SPs) (Ozdamar and Ulusoy 1995). Unfortunately, solv-
ing RCPSPs optimally is NP-complete in general (Ganian,
Hamm, and Mescoff 2020), which makes computing high
quality schedules for large problems challenging. Many
polynomial-time heuristics have been designed to compute
schedules for large RCPSPs in reasonable time, but their
quality remains far from that of the best-known solutions
obtained with Constraint Programming (CP) (Schutt et al.
2013). One of those heuristics, known as Schedule Gener-
ation Scheme (SGS), generates a feasible schedule, i.e. a
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schedule respecting all the precedence and cumulative re-
source constraints, from a given ordered list of the tasks
(Hartmann and Kolisch 2000). Many different task ordering
heuristics have been proposed in the literature to feed SGS,
for instance based on latest task finish times (Hartmann and
Kolisch 2000) or on genetic programming (Regnier-Coudert
and Povéda 2021).

In this paper, we investigate the use of machine learn-
ing to provide good and fast solutions to RCPSPs. Specif-
ically, we consider Graph Neural Networks (GNNs) which
are an extension of Deep Neural Networks to learn to ap-
proximate functions whose values are correlated following a
graph structure (Wu et al. 2021). GNNs have proven to pro-
vide good approximation metrics in, e.g., path finding, social
media networks (Fan et al. 2019), molecule design (Mercado
et al. 2021), and classical planning heuristics (Shen, Tre-
vizan, and Thiébaux 2020). We show that an RCPSP can be
naturally represented as a graph linking resource nodes and
task nodes, where the starting dates of the task nodes depend
on the remaining level of resources fed by the predecessor
resource nodes and on the ending dates of the predecessor
task nodes. A GNN with this graph structure can be trained
to learn an approximation of the task starting dates. More-
over GNNs have the property that they are able to work with
different graph structures and inputs of varying sizes, and are
hence applicable to unseen RCPSPs with different number
of tasks and resources, and different constraint structures —
at least provided that the distribution of the test instances fol-
lows a similar distribution to that of the training instances.'

We use our GNNs to learn to mimic the solutions pro-
duced by OR-Tools’ CP-SAT solver (Perron and Furnon
2022), by training on a set of more than 1600 RCPSPs of
different size and structure. Since the GNN infers an approx-
imate schedule which does not need to exactly satisfy the
precedence and resource constraints, we make the schedule
feasible by extracting the task ordering from the task starting
dates inferred by the GNN, and passing them to the SGS pro-
cedure. Our experiments on a test set of over 400 RCPSPs of
different size and structure show that the learned GNN fol-
lowed by the SGS procedure is able to infer schedules up to 4
orders of magnitude faster than the vanilla CP solver for the

"Note that we do not study the ability of our GNNs to handle
instances of larger sizes than those they were trained on.



same schedule quality, and that the quality of the inferred
GNN solutions corrected by SGS are on average only 5%
worse than the CP solutions. We name our approach STREN,
for Scheduling wlth gRaph nEural Networks.

Building on the ability of SIREN to efficiently find good
solutions, we then extend our approach to stochastic RCP-
SPs with uncertain task durations by adapting Hindsight Op-
timisation (HOP) (Chong, Givan, and Chang 2000), a well-
known framework for on-line scenario-based stochastic op-
timisation. At each given step of the execution, we sample
a number of task duration scenarios for the tasks that have
not yet been executed. We then solve the corresponding de-
terministic RCPSPs using STREN, and select, amongst the
set of tasks which any of the scenarios’ solutions prescribe
to start next, the subset which results in the smallest ex-
pected makespan. This requires adapting HOP to choose sets
of tasks to start without exploring an exponential number
of subsets. We call this extension SERENE for Stochastic
schEduling with gRaph nEural NEtworks. Our experiments
show that the quality of the schedules produced by SERENE
significantly exceeds that of standard reactive baselines that
reschedule from the current executing state on the basis of
the scenario with average, longest, or shortest task dura-
tions. SERENE also produces solutions of similar quality as
those obtained by substituting CPSAT for SIREN in HOP,
albeit with significantly reduced computation time, thereby
enabling fast and robust schedule adaptation in the face of
uncertainty.

To summarize, this paper’s contributions are:

1. a Graph Neural Network encoding of RCPSPs;

2. the SIREN framework which combines GNNs and SGS
to produce feasible solutions to RCPSPs with different
sizes and structures;

3. the SERENE extension to RCPSPs with stochastic task
durations which adapts Hindsight Optimisation to ro-
bustly select the next tasks to start.

Related Work

In recent years, there has been much interest in leverag-
ing progress in machine learning (ML), especially deep
neural networks, to solve combinatorial optimization (CO)
problems. This includes work on specific problems such as
the traveling salesman problem (TSP) (Joshi et al. 2022;
Deudon et al. 2018) and job-shop scheduling (Park et al.
2021; Song et al. 2022), as well as work on problem-
agnostic techniques such as satisfiability (SAT) (Kurin et al.
2020) and mixed-integer programming (MIP) (Khalil, Mor-
ris, and Lodi 2022; Nair et al. 2020). Graph neural networks
(GNNG5) enjoy particularly high popularity due to their abil-
ity to capture and exploit the inherent graph structure of
these problems.

The majority of proposed approaches fall into three ma-
jor categories as identified in (Bengio, Lodi, and Prouvost
2021). The first directly imitates an optimal solver by learn-
ing to produce the same kind of solutions. The second em-
ploys ML to replace parts of a classical optimization algo-
rithm. And finally the third uses ML to configure an opti-

mization algorithm. In the following we focus on the first
two of these categories.

Integrating ML into an existing solver. The aim is to
guide a classical solver to find solutions more quickly and
has the advantage of maintaining the guarantees of said clas-
sical algorithm, e.g. optimality or the ability to provide up-
per and lower bounds of the objective. Gasse et al. (2019)
represent a MIP as a bipartite graph with nodes for variables
and constraints. They then train a GNN to efficiently approx-
imate the well known strong branching heuristic (Applegate
et al. 1995), which makes high-quality branching decisions,
however at a considerable computational cost.

MIP-GNN developed by Khalil, Morris, and Lodi (2022)
follows a somewhat similar approach. Here a GNN is trained
to estimate the average values of the variables in a binary
MIP, the so called variable bias. This bias can then be used
to either directly produce partial variable assignments for
warm-starting the MIP-solver, or to predict a score for each
variable that can ultimately be used as a branching heuristic.

In theory, any instance of an RCPSP can be encoded as a
MIP by either discretizing time or using more advanced ap-
proaches like (Artigues, Michelon, and Reusser 2003). How-
ever, both types of encodings might produce prohibitively
large MIPs for large RCPSP instances. Thus, while both of
the previously mentioned architectures for MIPs could work
for RCPSPs in principle we argue that it is more efficient to
encode the RCPSP directly as a graph. By relaxing the strict
bipartite topology, we are able to encode precedence con-
straints between task nodes alongside resource constraints
between task and resource nodes. Furthermore, state of the
art RCPSP solvers are based on CP methods rather than MIP
(Schutt et al. 2013; Laborie 2018).

Direct learning of solutions. Given a sufficiently large
CO problem or strict runtime constraints, employing an op-
timal solver might be intractable in general. In these cases,
neural approaches belonging to the second category, i.e. that
produce high quality solutions on their own (independently
of a classical solver) become of interest. Apart from the ap-
proach proposed in this paper, there exist further examples
in the literature. Khalil et al. make use of the structure2vec
network architecture (Dai, Dai, and Song 2016) to produce a
graph embedding for typical graph problems like TSP, min-
imum vertex cover and maximum cut. Based on this embed-
ding, a greedy policy is learned using reinforcement learning
(RL). While their algorithm produces suboptimal solutions
in general, it does find high quality solutions more quickly
than the optimal solver CPLEX and of higher quality than
established heuristic approaches from the literature. Addi-
tionally, it is able to run on GPUs and thus exploit their par-
allelization capabilities.

More closely related to the RCPSP problem structure
is the work on Job-Shop problems in (Song et al. 2022;
Park et al. 2021). For instance, Song et al. employ a GNN
working on a similar graph structure as STIREN, i.e. oper-
ations and machines are represented as two types of nodes
and precedences as well as dependencies on machines can
be specified simultaneously. Still, the Job-Shop formulation
only allows for exclusive resource access, whereas RCPSPs



in general include cumulative resources. Moreover, these
works focus on Deep Reinforcement Learning (DRL) meth-
ods, whereas we try to exploit the strengths of model-based
approaches, by learning the solutions produced by a CP
solver with a GNN. The advantage of our supervised method
over DRL is a substantial saving in training budget.

Stochastic problems. Finally and perhaps most impor-
tantly, all of the aforementioned contributions focus on de-
terministic problems. In contrast, the proposed SERENE-
algorithm is able to solve stochastic RCPSPs, i.e. problem
instances where the duration of a task is non-deterministic.
It does so by combining STREN with hindsight optimiza-
tion (HOP). Since this leads to multiple calls of SIREN,
execution speed is top priority. Luckily, SIREN produces
high-quality solutions in, on average, significantly less time
than optimal solvers. To our best knowledge, there currently
exists no approach to stochastic RCPSPs that leverages the
reasoning power and generalization ability of GNNs.

Resource-Constrained Project Scheduling

A resource-constrained project scheduling problem
(RCPSP) considers limited resources and tasks defined by
durations, resource needs and precedence relations. The
problem usually consists in finding a schedule of minimal
duration (or makespan), by assigning a start time to each
task, so as to satisfy the precedence relations and the
resource availability constraints.

Problem Definition

Formally a RCPSP is defined by a tuple (T, R, P,r,C,d)
where: T is a set of tasks; R is a set of resource types; P C
T xT is a set of precedence constraints between tasks so that
each pair (4,j) € P indicates that task ¢ should be finished
before task j can be started; r = (r; 1 )ier, ke g Where 7; i is
the quantity of resource of type £ € R required to perform
task i € T; C = (ck)rer Where ¢ is the total resource
capacity of resource k available at any time; d = (d;)ier
where d; is the duration of task 7. Solving an RCPSP consists
in assigning a start time x; to each task ¢ € T, so as to
minimize the makespan defined in (1).

f= f?eaTX(m +d;) (D

This is subject to the following constraints: the prece-
dence constraints eq. (2) and the cumulative resource con-
straints eq. (3) stating that at any time within the schedul-
ing horizon h, the capacity of each resource must not be ex-
ceeded by the tasks that are concurrently running.

zi+di <5 V(i,j) € P )
Z ik <cpk VkERVES h 3)
€T s.t.
z; <t<w;+d;

For more information on RCPSPs, we refer the reader to
(Artigues, Demassey, and Neron 2008). Solving an RCPSP
is known to be NP-hard, but efficient algorithms have been
developed in the last decades to get reasonably good solu-
tions. Methods fall mainly into two classes: inexact meth-
ods based on local search and meta-heuristics, and exact

mathematical programming methods including Mixed Inte-
ger Linear Programming (MILP) and Constraint Program-
ming (CP). Overview of methods can be found in (Pellerin,
Perrier, and Berthaut 2020). CP has gained popularity in the
last decade and outperforms other approaches on classical
benchmarks (Schutt et al. 2013; Laborie 2018). In this paper,
we will use OR-Tools” CP-SAT solver (Perron and Furnon
2022) as an efficient solver to learn from, and as a baseline
in our experimental results. OR-Tools won several CP con-
tests involving scheduling benchmarks, including the latest
Minizinc Challenge?.

Serial Schedule Generation Scheme

A schedule generation scheme is a routine able to compute
a feasible schedule solution from another representation of
a solution. For RCPSPs, the input space of a generation
scheme is a priority list of tasks (equivalent to a permutation
of task), from which the SGS algorithm is able to compute
a feasible schedule as the output. Different schedule genera-
tion schemes have been introduced in (Kolisch 1994). They
are widely used to quickly compute solutions, feeding from
local search algorithms that optimize the priority list given to
the SGS procedure (Ayodele, McCall, and Regnier-Coudert
2017; Van Peteghem and Vanhoucke 2014). In this paper we
will use the serial SGS routine: it takes the tasks in the order
of the priority list and insert them in the schedule at their
earliest possible date, considering currently scheduled tasks.
It can be shown that for classical RCPSPs, there exists a pri-
ority list from which the serial SGS routine will compute an
optimal schedule.

Learning to Solve Deterministic RCPSPs

In this section we present our first contribution. It consists
of a GNN that we train to imitate and directly output the so-
Iutions found by an exact CP solver. Before developing the
method presented in this section, we first experimented with
various Deep Reinforcement Learning (DRL) approaches,
also shaping the reward with well known RCPSP heuris-
tics. Except for the smallest instances, the DRL agents kept
exploring the huge space of feasible solutions without ever
finding any of the (rare) reasonably good ones. On the con-
trary, we found that training the GNN in a supervised fash-
ion, using the solutions provided by the CP solver as labels,
produced the best results by harnessing the relationship be-
tween the feasible solutions and the structure of the CP mod-
els.

GNNss are designed to have an inductive bias that is ap-
propriate for data that is best represented as a graph (Bron-
stein et al. 2021). A distinctive property of GNNss is the in-
variance of the model regarding the ordering of the nodes.
Furthermore, the same model and parameters can be ap-
plied to graphs with different number of elements and dif-
ferent topologies. This is what allows us to use a single
GNN model across different RCPSP instances. Also, like in
CNNss, the models have local connectivity. This is important
because it significantly reduces the computational cost (i.e.

*https://www.minizinc.org/challenge2022/results2022.html



in contrast to a fully connected model), and it has some reg-
ularizing effect.

The use of GNNs to learn to solve RCPSPs raises two
major issues which we address below. The first is that of de-
signing the right GNN architecture to capture the most im-
portant relations in RCPSPs. The second is how to obtain
a feasible schedule at inference time, given that the GNN-
predicted schedules are approximate and are not necessarily
feasible. We name our overall learning and inference frame-
work STREN, for Scheduling with gRaph nEural Networks.

Graph Neural Network Representation of RCPSPs

Given an instance of an RCPSP as introduced previously
we define the GNN graph as a tuple G = (T, R, E, V,E)
where tasks 7" and resources R are directly represented as
two different types of nodes. Furthermore, there are three
types of edges £ = Ep U Er U E,,, i.e. precedence
edges Ep = P, resource demand edges Er = {(i, k), €
T,k € R|riy > 0} and parallel reverse links Fr, =
{(4,9) | (i,7) € Ep U ER} that are added to enable bidirec-
tional information propagation. Each edge (7, j) € E is as-
sociated with an edge feature e;; € E, that allows the encod-
ing of resource consumption and the distinction of the differ-
ent edge types. Features for precedence edges (i,j) € Ep
are defined as follows:

e;; = [1,0,0,0,0]; reverse link ej; = [0,0,1,0,0], (4)

while features for resource consumption edges (k,7) € Er
take the following form:

er; = [0,1,0,0,r; x]; reverse link e;;, = [0,0,0,1,r; x].
&)
Analogously, the task durations and quantities of avail-
able resources are represented by task node features v; €
Vr,i € T and resource node features vy, € Vg, k € R

respectively:
v; =10,1,0,d;], i €T 6)
vi =[1,0,¢x,0], k€ R @)
ez3 = [1,0,0,0,0]
1 vi=101,04d] 2 3
‘\/

e32 = [0,0,1,0,0]

Task node Precedence edge ———3» Reverse link

Resource node Resource edge

Va =[1,0,cq,0]
eqq =[0,1,0,0,74 4]

a 4 b
Y\/

ey =[0,0,0,1, 74 3]

Figure 1: GNN graph representation of an RCPSP. Note that
all edges and nodes are annotated with features but only
some examples are shown here for the sake of simplicity

As opposed to the edge features E, the node features V. =
V1 U Vg are changed by each Graph Transformer layer as
described in the following paragraph.

There are certainly multiple possible ways of representing
an RCPSP as a graph. The representation discussed above
and depicted in Figure 1 enables an immediate processing
with known GNN models.

GNN architecture. The architecture used in this work is a
graph transformer as defined in (Shi et al. 2021) and im-
plemented in pytorch-geometric (Fey and Lenssen 2019).
This is a message passing model consisting of multiple lay-
ers. Each layer transforms the current graph G into a graph
G’ with identical topology but updated node features. Each
node ¢ € T'U R aggregates information from its connected
neighbors N'(i) = {j € TU R (j,i) € E} according to
v, =¢(vi; V,E)

=Wyv; + Z Qg (WQVj + W5eji) s ®)

JEN (i)

where the weights «; ; are calculated using an attention

mechanism similar to (Vaswani et al. 2017):
(Wivi) T (Wyv, + Wseji)) 9)

7 .

The transformation in egs. (8) and (9), is parameterized by

the learnable weight matrices W, i € {1,...,5}.Ineq. (9),

o denotes the output dimension of the layer which we set to

256 in our experiments. Note that each layer has its own set

of weights.

To facilitate the training of the neural network, we use a
residual connection (He et al. 2015) for each layer. Addition-
ally, a non-linear transformation ReLU(z) := max(0, z)
and a normalization 1) are applied to the input of the resid-
ual layer. The complete chain of operations of one residual
transformer layer is

vi =v;+ ¢(ReLU(¥(v4)), V.E),  (10)

Y(v;) = v;/C where C = ||v;]|2. (11)

Note that partial derivatives with respect to C' are discarded
during gradient descent. We stack a total of 15 such residual

transformer layers in order to allow information to propagate
through large graph diameters.

o i = softmax (

Variable magnitude encoding. Our GNN is trained to ap-
proximate the task starting dates. Since we have RCPSPs of
different sizes, we can have a large variability in the magni-
tudes of these starting dates.

Instead of letting the GNN directly predict the starting
dates for task i as a scalar 27", we have found that a differ-
ent encoding of the output by the GNN can lead to faster
convergence. We apply a standard multi-layer perceptron
with linear activation to the output of the last transformer

layer in order to obtain N scalars z{}",j € {1,..., N} for
each task ¢. The final starting date 27" is then calculated by
N
2™ =) 207 gl (12)
j=1

In our experiments, we use N = 8. This encoding is fully
differentiable.



Algorithm 1: STREN: GNN training

Input: Set P of RCPSP problems with their corresponding
known solutions X’ = (xp)pep
Output: GNN weights W trained to fit the solutions of P’s
problems
> Build set By,qin Of training batches containing GNN
encodings of problems in P and their solutions from X’
for all 0 < epoch < nb_epochs do
for all batch b € By, do
> Predict starting dates X; from the GNN batch b
> Compute the mean-squared error loss L5k be-
tween X; and the known solutions x; of the RCPSPs
encoded in the GNNs in b
> Backpropagate £,/sr and update W
end for
end for
return W

The SIREN Training and Inference Framework

The overall training and inference procedures of SIREN?,
which are detailed below, are illustrated in Figure 2.

Training. Algorithm 1 presents our training procedure. It
consists first in building a batch of GNNs which represent
each a RCPSP problem as described in the previous sub-
section. Each batch contains a set of GNNs which are pro-
cessed at once, which is helpful for the back-propagation
phase where the GNN weights are updated to improve the
prediction fitness. In Algorithm 1 we note x;, (resp. X;) the
solution vector obtained when concatenating the solution la-
bels (resp. GNN predictions) of all the RCPSPs encoded in
the GNNs of a given batch b.

We trained our GNN weights on RCPSP instances from
psplib (Kolisch and Sprecher 1997) obtained from the github
kobe-scheduling repository*. 1632 random instances
of various sizes and structures (80% of the instances)
have been chosen for training during 50000 epochs, which
took less than a day on a AWS machine image equipped

3https://github.com/fteicht/gnndrcpsp
*https://github.com/ptal/kobe-scheduling
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Figure 2: STREN’s learning and inference
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Figure 3: SIREN’s training statistics. The horizontal (resp.
vertical) axes represent the learning steps (resp. metrics val-
ues).

with 32 Intel(R) Xeon(R) CPU running at 2.30GHz and 2
GM204GL [Tesla M60] GPUs. The solutions were provided
by CP-SAT which was run with a timeout of 15 minutes.
Note that our approach is totally agnostic to the RCPSP
solver used to label the RCPSP problem data with their re-
spective solutions. Figure 3 shows the training statistics av-
eraged over all the training instances: even if only the loss
is used to train the GNN weights, we also report the evolu-
tion of the makespan (relative to the labeling solutions’ av-
erage makespan) and of the constraint violations in terms of
percentage of violated constraints and violation magnitude.
The precedence (resp. resource) violation magnitude is the
average absolute value of the overlapping duration for prece-
dence tasks (resp. of the over-consumption of resources be-
yond their capacities). The precedence violation percentage
increases during training because the GNN tries to learn
schedules of makespans minimized by the CP solver, in-
creasingly pressuring the precedence constraints as learn-
ing goes. Resource constraints are not impacted by this phe-
nomenon: the GNN improves its ability to satisfy those con-
straints from the CP solution examples. Although the con-
straint violation percentage is roughly in the range 15%-
20%, the magnitude of the violations is less than 1 unit,
which means that the GNN can find nearly feasible sched-
ules; in terms of precedence constraints for instance, it indi-
cates that the resulting scheduled tasks overlap by less than
1 time unit.

Inference. The slight violation of the constraints by the
GNN prediction observed during training tells us that the
GNN predictions must be corrected in order to make a feasi-
ble schedule. The first approach we tried consisted in calling
the CP-SAT solver that we warm-started with the solution
inferred by the GNN in order to find the first feasible solu-



Algorithm 2: STREN: GNN inference with SGS correction

Input: Given RCPSP P with unknown solution; GNN
trained weights W

Qutput: Solution schedule x of P
> Build GNN G'w p from P and using weights W
> Predict from Gw p the solution X of P
> Extract tasks ordering Oy from inferred starting dates x
> Construct solution schedule x* by running SGS on Ox
return x*

tion of the problem from the GNN prediction. Unfortunately,
this proved inefficient since for many RCPSP instances, the
total computation time of the GNN prediction followed by
the CP solver feasibility request, exceeded that of the vanilla
CP solver to get the same solution quality. The CP solver of-
ten could not figure how to slightly move the task starting
dates in order to satisfy all the constraints, even if the GNN
solution was of high quality with very little task overlapping.

We thus went for another strategy described in Algo-
rithm 2 and in the bottom picture of Figure 2. Instead of
calling CP to get a feasible schedule, we extract the tasks
ordering from their starting dates, and pass it to the Serial
SGS procedure described earlier in order to build a feasible
schedule. Since the Serial SGS procedure is proven to build
optimal schedules from tasks ordering corresponding to op-
timal schedules, we expect the schedules reconstructed from
the nearly optimal GNN schedules to be of high quality.

Comparison of SIREN with Pure Search

Our test dataset consists of 408 random instances (the re-
maining 20% of instances) of varying complexity and size
from the kobe—scheduling, all different from the train-
ing ones. The distribution of the training (resp. testing) sets
per instance size in terms of number of tasks is the follow-
ing: 23.7% (22.5%) instances of size 30, 23.5% (23.5%) of
size 60, 22.8% (26.5%) of size 90, 30% (27.5%) of size 120.

SIREN vs CP

In this section we compare the performance of SIREN to
CP in two different ways. First we want to demonstrate that
SIREN is able to find good quality solutions in considerably
less time than CP.

Figure 4 compares the inference time of SIREN to the
runtime of CP when trying to achieve a similar makespan
as the former. As is apparent, in more than 82% of prob-
lems CP takes more time than STREN to achieve a solution
of comparable quality. In over 40% of the cases, there is a
considerable computational overhead ranging from 10 times
up to over 20,000 times the computation time of SIREN. In
contrast, in the cases where CP is superior, it is at most two
times faster than STREN.

Second, we compare the quality of SIREN’s solutions to
CP. In this experiment, CP was given a maximum computa-
tion time of 15 minutes. The results are shown in Figure 5.
As expected, STREN exhibits a measurable performance de-
cay compared to CP. However, in the large majority of cases,
it performs almost as good as CP, even returning optimal

solutions (same makespan as the known kobe optimum ref-
erence) for 203 out of the 408 test instances. And on aver-
age, SIREN produces schedules with less than 5% longer
makespans. Table 1 gives an overview over the results of
both experiments.

SIREN vs Custom Heuristics

Our previous analysis showed that STREN was on average
faster than CP to get to a specific quality. However it reflects
that STREN is only doing fast inference and post-processing,
leading to a feasible schedule before CP is able to produce
even 1 feasible solution. It is therefore important to compare
SIREN’s schedule quality with that of other fast heuristics.
We will compare with several heuristics:

* Dummy heuristic (DUM): it consists in running serial
SGS with the priority list of task [1,2..., |T[]

* Max Descendant Priority Rule (MDPR) from (Regnier-
Coudert and Povéda 2021), a greedy heuristic scheduling
first the available tasks that have the most descendants in
the precedence tasks graph.

Custom Critical Path Method (CCPM): it lexicographi-
cally orders tasks by the attributes (latest start date, lat-

Z ] e CP

10T 5 e

H 1| =+ =+ median

g 103§ = = equilibrium

g) ]

© ) ] 72 (17.75%)

o ERTTT I I L I L I I T L I I I L]
£

I L i

T T T
0 100 200 300 400
problem number

Figure 4: Runtime of vanilla CP relative to SITREN. Note
that the problems have been ordered by the time it took CP
to find a solution of similar quality to that of STREN
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Figure 5: Performance of SIREN relative to the best CP so-
lutions found within a timeout of 15 minutes. On average,
SIREN performs 4.2% worse than CP



relative performance relative % overcost compared to best CP solution
min max median | mean std mean std | 25% 50% 75% max

category algorithm
inf. time 0.513 | 2.05e4 7.74 91.8 1.02e3 DUM 12.07 | 10.12 0.0 | 11.81 | 20.46 | 36.79
CPvs SIREN MDPR 7.72 7.22 0.0 6.59 | 12.70 | 36.29
makespan 1.00 1.30 1.01 1.04 | 6.45e—2 CCPM 6.21 7.34 0.0 221 | 11.87 | 30.95
SIREN vs CP SIREN 4.16 6.45 0.0 0.93 5.73 | 30.32

Table 1: Summary of the data from Figures 4 and 5. For the
first row, we measured the time it takes CP to find a solution
of similar quality to that of SIREN. For the second row, CP
was given a timeout of 15 minutes

est start date — earliest start date), found by classical
forward and backward recursion, and runs SGS with this
prioritized list.

Table 2 shows the relative overcost of each of the meth-
ods compared to the best CP solution. The table shows that
SIREN produces shorter schedules statistically on our test
set, providing evidence that the GNN inference learnt a rel-
atively good ordering of tasks. SIREN is therefore competi-
tive with custom scheduling heuristics.

On-line Stochastic Optimisation with GNN
Prediction and SGS Correction

The fast inference time of SIREN compared to the com-
putation time of the vanilla CP solver allows us to inte-
grate STREN in an online stochastic scenario-based opti-
misation framework to solve RCPSPs with stochastic task
durations, which we name SERENE for Stochastic schEdul-
ing with gRaph nEural NEtworks. Every time the execution
of a task terminates, SERENE samples several deterministic

Table 2: Statistics of relative overcost compared to best CP
solutions on the 408 test instances. (% are for percentiles)

future scenarios reflecting possible durations for the tasks
still in play. These scenarios are each separately solved by
SIREN, in order to help SERENE decide of the next best
tasks to start and of their starting dates so as to minimize the
expected makespan of the executed schedule.

SERENE is depicted in Figure 6 and described in Algo-
rithm 3. It relies on two important bricks: the construction
of a “remaining” stochastic RCPSP, and a double-pass sam-
pling process which aims at approximating the best set of
tasks to start next, without having to enumerate all the possi-
ble subsets of tasks that could be potentially started, as their
number grows exponentially with the number of those tasks.

Stochastic RCPSP. A stochastic RCPSP is a tuple
(T,R,P,r,C,D) where T, R, P, r and C are defined as in
deterministic RCPSPs and D = (D););cr where D); is a prob-
ability distribution over the possible durations of task . We
assume that the actual duration d; of task ¢ is observed when
the task ends, which implies that the probabilistic remaining
duration of a running task evaluated at the current execu-
tion time, depends on how long this task has already been
running. The objective is to minimize the average makespan

Candidate N
task subsets =TT >\)_)‘-\_|
to start next _ =~ For each scenario, compute
the minimum makespan 1
#7 Infer GNN + when starting S, tasks r_ﬁxt
e ._‘_r:
- SGS pass r-»\’_)l-.__l
SO0 Ve
. = -3
Non Best task
ol Average | et S
: makespan | oo
—w Z - M, \_Nhen next in
= starting S, | torm of
"Remaining” RCPSP at - Infer GNN + — For each scenario, next minimum
e | 1 .
current time ¢ SGS pass recompute the earliest average
= ~ - Sstarting dates of S, tasks makespan
Original RCPSP withowt | o T T T ’\Dﬂ_ m,
tasks already executed — p.
and ended o, Sample remaining Populate a table of subsets of next tasks M,

N 4 1
\,‘\-)...\\\: task durations and to start extracted from each scenario

g ' resources Number candidate task subsets: L < N

Figure 6: SERENE: double-pass on-line scenario-based optimisation scheme with GNN prediction and SGS correction



defined as max;cr f0+oo(:vi + d;)dD;(d;). Because of the
stochastic duration of the tasks, it is impossible to decide of
the starting dates x; of the tasks upfront before the schedule
execution: they have to be adapted online to the observed
duration of the tasks that have already been executed.

Remaining stochastic RCPSP. Let’s consider a cur-
rent execution time ¢ and a stochastic RCPSP P =
(T,R,P,r,C,D). We define T, = {i € T : z; < t}
as the set of tasks that have been launched before time ¢,
Te = {i € T, : x; + d; < t} as the set of tasks that have
already ended, and T = {i € Tf, : x; + d; > t} as the set
of tasks running at time ¢. Since the solver does not need to
reason about the tasks that have already ended, we will rep-
resent all the tasks in Tz as an aggregated zero-duration task
€. While ¢ is not theoretically needed, we keep it in prac-
tice along with the precedence constraints from the tasks
in Ty, that we now make originate from ¢, to the tasks in
T\ T1, which remain to be executed. Indeed, all the RCPSP
benchmarks in the kobe-scheduling repository, from
which we have learned our GNN weights, have such a zero-
duration “source” task, which is why we prefer maintaining
this structure for inference. o

The remaining stochastic RCPSP P of P a
time ¢ is defined as the tuple P = (T, R, P, T, C

* T'=A{e}U(T\Tk);

e« P CTxTwith P = {(g75)
Te st (i,5) € P}U{(i,9)
TE, (Z,j) c P},

T = (Fi»k)iefkeR with 7., = 0 for all £ € R and
Tir=riforalli € T\ eand k € R;

e D =(D;), » withD, = Di(d) = Dild+t—zi)
D = (D;),cp with D, = ¢ and D;(d) = T .G
foralli € Tpand D; = D; foralli € T\ (T U TR)
where § is the Dirac probability distribution.

t the current
, D) where:

D j € T\ Tg3i €
i€ T\Tg,j € T\

Basically, the remaining RCPSP P is obtained by replacing
all launched and ended tasks in the original RCPSP P by a
single zero-duration task &, linking € to the successor tasks
of the ended tasks in P, and updating the probability distri-
bution on the duration of the running tasks according to the
time elapsed since they started.

Double-pass sampling process. SERENE, detailed in Al-
gorithm 3, builds the remaining stochastic RCPSP at the
current execution time, then it samples a number of deter-
ministic scenarios on which STREN is called to evaluate the
makespan and the best next tasks to start for each scenario.
We then statistically compute the average makespan over all
the scenarios for each set of next tasks to start in order to
select the set with the lowest average makespan. Note that
SIREN can be replaced in this framework with any other
deterministic RCPSP solver, especially CP-SAT, which we
will exploit in the experiments later in order to compare the
benefit of using GNNs over the vanilla CP-SAT solver when
solving online stochastic RCPSPs.

However, contrary to standard online scenario-based op-
timisation algorithms for sequential probabilistic planning
problems — sometimes named Optimisation in Hindsight or

HOP for short (Yoon et al. 2008) — we cannot enumerate all
the possible next actions to consider at the current time be-
fore statistically evaluating each of them on the set of sam-
pled scenarios. The reason is that, in scheduling, many dif-
ferent tasks can be potentially started simultaneously, which
leads to a number of task subsets to consider for starting
next which is exponential in the number of tasks that can
start given the constraints. In order to overcome this com-
binatorial explosion issue, we propose a double-pass sam-
pling approach (see Algorithm 3 for details). First, we sam-
ple different scenarios from which we extract the subsets of
tasks to start next found by SIREN, and we insert them in
a set C of candidate task subsets. This first phase allows us
to extract the most promising subsets of tasks to start with-
out enumerating all the possible combinations. Second, as
in traditional HOP frameworks, we evaluate each subset S
of tasks to start one by one by sampling different scenar-
ios on which SIREN is run. Contrary to the first pass, we
force SIREN to start the tasks in S but we let it decide
freely of the starting dates of the remaining tasks. We then

Algorithm 3: The on-line stochastic SERENE algorithm

Input: Current time ¢; Set 77, of launched tasks so far; Orig-
inal stochastic RCPSP P; GNN scheduler G; Number of
scenario samples N

Output: Best set of tasks to start next and their starting date
> Compute the set T’y of ended tasks at time ¢ from 77,
> Compute the set Tk of running tasks at time ¢ from 77,
> Compute remaining RCPSP P from ¢, Ty, T and P
> Create empty set C of candidate subsets of tasks to start
for all scenario 0 < ¢ < N do

> Sample deterministic RCPSP scenario P; by sam-
pling task durations from P
> Call SIREN on P; and add best tasks S; to start to C
end for
> Create a table M that maps candidate task subsets S¢ €
C to the average makespan value obtained when forcing
the tasks in S¢ to start next
> Create a table D that maps candidate task subsets S¢ €
C to the list of earliest possible starting dates of tasks in
Sc when forced to start next
for all Candidate task subset S¢ € C do
> M [Sc} 0
for all Scenario 0 < j < N do
> Sample deterministic RCPSP scenario P; by sam-
pling task durations from P
> Compute the earliest starting dates of tasks in S¢
when forced to start next and record them in D[S¢]
> Call SIREN on P; by forcing the SGS sub-
procedure to start tasks in S¢ at the dates stored
in D[S¢] and update M [Sc] online as the obtained

makespan M arises: M [S¢| < JM[;S#
end for
end for

> Best next tasks to start : So« «— argming,_ o M[Sc]
return Sc+ and average starting date mean(D[S¢+])




average the makespan obtained by SIREN over all the sce-
narios, which provides a statistical estimate of the average
achievable makespan when we start the tasks in S¢ next.

We should note here that, due to the stochastic remaining
duration of the running tasks, the starting date of the next
tasks to start depends on the sampled scenario. Moreover,
while the starting dates of the tasks of a given subset S¢
were all the same after the first sampling pass, it does not
need to be the case when we re-sample the scenarios in the
second pass. This is why we need to recompute the earliest
starting dates of the tasks in S¢ when we evaluate a given
scenario in the second pass. This can be done with a pro-
cedure not detailed in this paper but which is similar to the
insertion in the schedule of a task from the priority list in
SGS. Finally, since the starting dates of the tasks in the best
subset S+ can be all different for the same reason, we return
as best expected starting date the average starting date over
all the tasks in S¢=. If this value is 0, we start all the tasks in
Sc+ now, otherwise we will call SERENE again when one of
the currently running tasks finishes, informing in the mean-
time the user that we will probably start the next tasks in
Sc+ at their computed average starting date.

Empirical Evaluation of SERENE
We now compare SERENE to several other baselines:

* SIREN in reactive mode using the average scenario
(SIREN-REACTIVE_AVG)

* SIREN in reactive mode using the pessimistic scenario
(SIREN-REACTIVE_WORST)

* SIREN in reactive mode using the optimistic scenario
(SIREN-REACTIVE_BEST)

e CP-SAT solver in reactive mode using the average sce-
nario (CPSAT-REACTIVE_AVG). Each CP call has a
timeout of 0.5 sec.

* SERENE using CP-SAT in place of STREN to solve sam-
pled scenarios. (CPSAT-HINDSIGHT_DBP). Each CP
call has a timeout of 0.2 sec.

* Foresight : CP solver that knows the ground truth sce-
nario in advance. This method will play as a theoretical
upper bound.

SERENE and CPSAT-HINDSIGHT_DBP are sampling N =
30 sampled scenarios at each rescheduling steps. All reactive
methods recompute new schedules at each step of execution,
by solving one future scenario for the remaining stochastic
RCPSP P. In the average, pessimistic, and optimistic scenar-
i0s, task durations take their expected, maximum, and mini-
mum value, respectively.

The evaluation focuses on 37 base instances of the kobe
dataset that are the hardest for CP-SAT. For these problems
the CP solver took more than 0.5 seconds to produce solu-
tions as good as SIREN. Then 10 deterministic ground truth
scenarios per base stochastic instance are sampled to evalu-
ate our different methods. Therefore we end up having 370
experimental runs. Each stochastic instance corresponds to
one of the 37 aforementioned base deterministic instances
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Figure 7: Relative overcost (%) and mean computation time
per reschedule (s) joint-boxplot per methods

from the kobe dataset, where we replaced the determinis-
tic task durations of the original instances by uniform prob-
ability distributions centered around the original durations.
The support of the uniform distributions has a maximum de-
viation of 8 on both sides of the original durations, which
represents 80% of the original duration of the longest tasks
in the dataset. We truncate the support of the distributions
whenever necessary in order to ensure to sample positive
task durations.

Figure 7 represents the tradeoff between the computa-
tion time of each method (x-axis) and its overcost rela-
tive to Foresight (y-axis). For visualisation purposes we
only plot one SIREN-REACTIVE version. The three meth-
ods AVG, WORST, BEST indeed have very similar statis-
tics with ~ 2.5 - 1072 sec median computation time for
all methods, and respectively 14.3, 15.9, 16.3% as median
overcosts. Two algorithms have lower overcost than the oth-
ers: SERENE and CPSAT-HINDSIGHT _DBP, which empiri-
cally get results of similar quality. This demonstrates the ad-
vantages of hindsight optimisation over (REACTIVE) mono-
scenario re-optimisation. The variance of the overcost of
SERENE is however lower (¢ = 3.0) than that of CPSAT-
HINDSIGHT_DBP (¢ = 4.11). SERENE therefore has a
more “predictable” performance than the CPSAT version,
and it also has smaller overcost values: e.g pgoy, = 13.1
versus pggy, = 15.1 for the 90" percentile. Additionally to
difference in quality, each method has different computation
times at all rescheduling steps. Figure 7 highlights that reac-
tive methods are (as expected) the fastest, and that SERENE
is around 4 times faster than CPSAT-HINDSIGHT_DBP on
average (= 12s compared to ~ 45s). SERENE is therefore
the preferred method in this experiment, as it offers the best
compromise between computation time and quality.

Conclusion

To our knowledge, we propose in this paper one of the
first successful attempts to learn to solve any-size Resource-
Constrained Project Scheduling Problems, including in pres-



ence of uncertain task duration. Our method relies on a GNN
that learns task starting dates, from which task priorities are
extracted and passed to the SGS procedure in order to pro-
duce a feasible schedule of high quality. Uncertain task dura-
tions are handled by a double-pass scenario-based sampling
approach which allows us to greedily compute the best sub-
set of tasks to start next in real time, without requiring to
enumerate all the possible combinations of such subsets. Our
results show that we can infer schedules on unseen instances
of higher quality than those produced by CP within the same
computation time budget, in both deterministic and stochas-
tic settings.

This work can be extended in several interesting direc-
tions. In the short term, we would like to extend the frame-
work to more complex variants of RCPSPs of particular in-
terest in many real applications, e.g. Multi-Skill Preemptive
RCPSPs. This will require us to adapt the GNN architecture
to the additional constraint relations of those extended prob-
lem classes. Secondly, we used SGS as a schedule repair
method. To obtain solutions of higher quality, an interest-
ing alternative would be large neighborhood search. Finally,
another interesting direction is to use a similar GNN archi-
tecture to learn branching heuristics to guide the search of
CP algorithms.
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