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Abstract— In this paper, a zero-crossings based method is pro-
posed to improve the displacement sensing performance of non-
uniform sampling (NUS) theory based use of optical feedback in-
terferometry (OFI) under moderate optical feedback regime. The
incorporation of zero-crossings as phase quantization levels allows
doubling the samples for subsequent interpolation, without using
any dithering scheme. When compared to the simple dither-free
NUS method, the proposed method yields an overall improvement
in RMS error over a wide range of target motion amplitudes and
frequencies, with maximum improvement at low amplitudes. Exper-
imentally, an improvement of up to 87% is obtained in precision
as compared to simple NUS system for an OFI sensor with laser
wavelength of 785 nm.

Index Terms— Non-uniform sampling, Optical feedback interferometry, Self-mixing, Zero crossings, Displacement mea-
surement

I. INTRODUCTION

OPTICAL feedback interferometry (OFI) is a well-known
method for displacement measurement using a laser

diode (LD) as it benefits from its inherent self-aligned property
as well as its low-cost [1], [2]. As a result, OFI has been
applied in a wide range of sensing applications, including the
measurement of distance [3], displacement [4], velocity [5],
acceleration [6], flow [7], temperature [8], strain [9] vibra-
tion [10] and bio-sensing [11].

To retrieve the displacement information embedded in both
the amplitude modulation (AM) and frequency modulation
(FM) channel of OFI signals [12], different techniques have
been developed over the years from basic fringe counting [13]
to more advanced ones such as fringe-locking [14], fringe
duplication [15] and phase unwrapping [16]–[19].

An open-loop approach based on the inherent non-uniform
sampling (NUS) capability of the SM interferometer was
recently proposed to recover sub-λ0/2 displacement with
precision down to the nanometer in the moderate feedback
regime [4], [20] which corresponds to an optical feedback
factor C ∈ [1, 4.6]. In this optical regime where the fringes
are sawtooth like, optical feedback interferometers behave
as an inherent NUS system with its own embedded phase
level crossing detector. Consequently, it allows to perform
compressed sensing as the displacement can be reconstructed

from the information related to the fringe disconitnuity loca-
tions only. The main limitation of the NUS method [4] is its
degraded performance when the remote target’s displacement
amplitude is such that there are not sufficient number of fringes
needed to satisfy Nyquist’s sampling criterion [4]. So, when
remote displacement amplitude becomes comparable to λ0/2
then NUS based interpolation becomes imprecise. This limi-
tation was addressed in [4] by using dithering techniques to
increase the number of sampling events (or number of fringes).
For example, [4] added a mechanical dither by vibrating the
LD via an external shaker. However, this resulted in a bulky
laser-shaker setup with a limited system bandwidth. In another
work [20], phase dithering was used to introduce additional
fringes by modulating the LD driving current instead of using
an external shaker. Note that in both the cases [4], [20], the
effect of dithering had to be removed before actual remote
target’s motion could be measured.

This paper presents an alternate solution to dithering for
improving the resolution and precision of the NUS-based ap-
proach. The proposed method incorporates the zero-crossings
(ZC) of the OFI signal in addition to the fringe discontinuities
to double the samples for interpolation. The aim is to increase
the precision of recovered displacement around its local max-
ima and minima, especially when displacement amplitudes are
comparable to λ0/2.

The rest of the paper is organized as follows. Section
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II provides a brief overview of the fundamentals of OFI
and the theory behind NUS based OFI. Section III presents
the methodology of the proposed zero-crossings based NUS
method. In Section IV, the proposed method is tested on
simulated signals and parametric sweeps have been presented
to show its performance. Experimental results are presented
in Section V, followed by Discussion and Conclusion.

II. OFI AND NON-UNIFORM SAMPLING - REVIEW

A. OFI Overview
The basic principles of OFI have been thoroughly estab-

lished, such as in [1]. A brief overview is as follows.
OFI involves directing a laser beam, with wavelength λ0, at

a remote target vibrating with a displacement D(t), which then
back-scatters the beam back into the laser cavity. The electrical
and optical characteristics of the laser cavity are altered as a
result of this feedback. The modulated OOP signal P (t) is
given in [1] as

P (t) = P0[1 +m cos (ϕF (t))] (1)

where P0 is the emitted optical power under free-running
conditions, m is the modulation index, and ϕF (t) is the
laser phase with optical feedback. The signal PN (t) is the
normalized OOP, given by

PN (t) = cos(ϕF (t)) (2)

ϕF (t) is related to the laser phase without feedback ϕ0(t)
through the Lang-Kobayashi excess phase equation [21], given
as

ϕ0(t) = ϕF (t) + C sin(ϕF (t) + θ) (3)

where C is the optical feedback coupling factor [22] or
Acket’s parameter [23], θ = arctan(α) and α is the linewidth
enhancement factor or Henry’s factor [24]. These principal
equations allow measuring D(t) using the detected OOP signal
since ϕ0(t) can be expressed as

ϕ0(t) =
4π

λ0
D(t) (4)

B. Overview of OFI Non-Uniform Sampling
It has been shown in [4] that an SM interferometer can

be considered as an inherent NUS system with its own
built-in phase-level crossing detector. The phase quantization
levels (PQLs) are represented by ϕ0D (k) that occur at the
fringe discontinuity points of the OOP signal. We refer to
ϕ0D,R

(k) and ϕ0D,F
(k) as the phase ϕ0D when it is increasing

and decreasing, respectively. In terms of ϕF , the PQLs are
completely defined in [25] as

ϕFD,R
(k) = kπ − θ + β (5)

ϕFD,F
(k) = (k + 2)π − θ − β (6)

where k is an even integer and β = arctan
(
− 1

C

)
. Substituting

(5) and (6) in (3) gives us the PQLs in terms of ϕ0:

ϕ0D,R
(k) = kπ − θ + β +

√
C2 − 1 (7)
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Fig. 1. (a) Simulated normalized self-mixing signal obtained for a
sinusoidal displacement with amplitude 0.5 µm at 32 Hz using a laser
wavelength λ0 = 785 nm, C = 2 and α = 5, and corresponding interpo-
lated phase ϕ0 (dashed line): (b) with only the fringe discontinuities (red
markers) detected, and (c) with both discontinuities and zero-crossings
(green markers) detected.

ϕ0D,F
(k) = (k + 2)π − θ − β −

√
C2 − 1 (8)

It has been shown in [4] that the values of ϕ0 at rising phase
differ from those at falling phase by an amount, denoted as
∆ϕ, given by

∆ϕ = β +
√

C2 − 1− π (9)

It was demonstrated in [26] that C can be retrieved by
estimating this phase level difference ∆Φ. Thus, the simple
NUS based approach described in [4] interpolates just these
discontinuity points to recover the phase signal ϕ0(t). This
interpolated signal is then used in (4) to recover D(t), as
shown in Fig. 1 (b).

It was discussed in [4] that the existing NUS method does
not provide high measurement precision when the remote
target motion is of low amplitude because the corresponding
OFI signal has too few fringe discontinuity points available.
The concept of dithering (via laser diode current modulation or
mechanical dithering) [4], [20] was then used to increase the
number of samples (by increasing the number of fringes) so
that interpolation performance could be increased. The effect
of introduced dithering then had to be subtracted before actual
target motion could be recovered, as schematized in Fig. 2.

III. PROPOSED ZERO-CROSSING BASED NUS METHOD

In this paper, we propose to incorporate zero-crossings
of the OFI signal in addition to the previously used fringe

2
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Fig. 2. Schematic block diagram of OFI based non-uniform sampling
(NUS) system using dithering, reported in [4].

discontinuities in the time-phase pairs. This results in doubling
the number of detected samples/events so that better interpo-
lation performance can be achieved for the same target motion
without resorting to the use of dithering.

To achieve this objective, we need to first derive the laser
phase values ϕFZ

and ϕ0Z at the zero-crossing points in a
given moderate feedback regime OFI signal.

As per (2), the OFI signal, or OOP, is zero whenever

ϕFZ
(k) =

(2k − 1)π

2
(10)

where k is an even integer. Incorporating (10) into (3), we get
the phase ϕ0Z at zero-crossings for C > 1:

ϕ0Z (k) =
(2k − 1)π

2
− C cos (θ) (11)

We then find the phase difference between the zero-
crossings as in (11) and discontinuities as in (7) and (8) for
increasing phase and decreasing phase, respectively:

∆ϕDZ,R = ϕ0D,R(k)− ϕ0Z (k)

=
π

2
− θ + β + C cos(θ) +

√
C2 − 1

(12)

∆ϕDZ,F = ϕ0D,F (k)− ϕ0Z (k)

=
5π

2
− θ − β + C cos(θ)−

√
C2 − 1

(13)

Note that C is needed in the derived expressions. Here, the
C estimation method proposed in [26] is used, as shown in Fig.
3. The impact of error in C estimation on the reconstructed
displacement has been analyzed in the following section.

Expressions (12) and (13) are then used in the ZC quantizer
shown in Fig. 3 to incorporate the zero-crossing time-stamps
tk,Z provided by the zero-crossing detector. These new time-
stamps are then incorporated alongside the previously obtained
time-phase pairs [tk, ϕk]. This results in doubling the number
of time-phase pairs [t′k, ϕ

′
k] as compared to the simple NUS

method, as shown in Fig. 1 (c). All of these are then spline-
interpolated to reconstruct the phase signal ϕ0(t) which pro-
vides displacement via (4). This process is schematized in Fig.
3.

Fig. 3. Schematic block diagram of proposed zero-crossings based
NUS system using OFI. C estimation uses the method reported in [26].

Fig. 4. Simulated results of reconstructing the displacement from an
OFI signal corresponding to a harmonic motion with At = 0.5 µm, ft =
32 Hz, C = 2, α = 5, λ0 = 785 nm and Fs = 10 MHz. (a) Comparison of
reference target motion (dashed line) with reconstructed displacement
with- (blue line) and without-proposed zero-crossing (ZC) method (red
line). (b) Corresponding error in reconstructed displacement ϵ (unbroken
line) and its RMS value (dashed line).

IV. SIMULATED RESULTS

The newly derived ZC method and the simple dither-less
NUS method [4] were separately applied to recover the simu-
lated displacement of a remote target vibrating at a frequency,
ft, of 32 Hz with amplitude, At, of 0.5 µm such that C =
2, α = 5, λ0 = 785 nm, and sampling frequency, denoted
as Fs, is 10 MHz. Using the reference displacement, error in
reconstruction, denoted as ϵ, is computed for the two methods,
as plotted in Fig. 4 (b). Comparison of the two methods
indicates that the new method results in a 70% reduction in
root-mean-square (RMS) error, ϵrms. Also, it can be observed
in Fig. 4 that the new method is most beneficial around the
so-called humps of the OFI signal (or around the maxima and
minima of the remote vibration), where the previous method
[4] lacks samples for interpolation.

A detailed analysis of measurement performance of the
proposed method, as a function of various system parameters,
is now presented below.

3
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Fig. 5. Simulation based RMS Error (nm) of zero-crossing and simple
NUS methods as a function of C (1.0 ≤ C ≤ 4.6) and vibration
amplitude At (0.4 µm ≤ At ≤ 12 µm) for ft = 32 Hz, Fs = 10 MHz,
λ0 = 785 nm and α = 5.

A. Effect of C, Displacement Amplitude, and Frequency
Fig. 5 presents a comparison of simulation based RMS error

between the proposed ZC method and the simple NUS method
[4] as a function of C and At. As compared to the simple
NUS method, a 25% to 95% improvement in performance is
observed with the ZC method for 0.4 µm ≤ At ≤ 12 µm when
λ0 = 785 nm, equivalent to an OFI signal with approximately 2
to 60 fringes per cycle. A 50% reduction in ϵrms is noted when
At = 0.4 µm, analogous to an OFI signal with approximately
2 fringes per cycle. Moreover, ϵrms as low as 0.0645 nm is
obtained over the defined range when using the proposed ZC
method for C = 1 and At = 11.2 µm.

Similarly, Fig. 6 features the simulation based ϵrms com-
parison as a function of At and ft. Here, At spans 0.4 µm
≤ At ≤ 12 µm while ft ranges over 2 Hz ≤ ft ≤ 110
Hz. Fs = 10 MHz, while λ0 = 785 nm, C = 2 and α = 5.
Approximately 50% improvement in ϵrms is observed for the
specified ranges. A maximum of 94% improvement in ϵrms is
detected for At = 2 µm and ft = 50 Hz. Furthermore, ϵrms

varies from a minimum value of 0.0078 nm, when At = 13.2
µm and ft = 10 Hz, to a maximum value of 8.95 nm, when
At = 0.4 µm and ft = 10 Hz while using the ZC method.

B. Effect of error in C estimation
The new ZC method requires estimation of C and α to find

the phase difference between the zero-crossing and the fringe
discontinuity (12, 13). So, simulations were conducted to test
the robustness of the ZC method against possible errors in C
and α estimations.

First, the impact of the C estimation error is analyzed.
The proposed method was tested for two cases of C i.e., the
original simulated OFI signal Porg(t) has C = 1.5 and 3. The
value of Ĉ, i.e. the estimated C value used in reconstruction,
was varied by 2%, 5%, 10%, 20%, and 50% to recover
the displacement. This was then compared with the original
displacement to calculate the RMS error shown in Table I

Fig. 6. Simulation based RMS Error (nm) of zero-crossing and simple
NUS methods as a function of amplitude (0.4 µm ≤ At ≤ 12 µm) and
frequency (2 Hz ≤ ft ≤ 110 Hz) of target motion for Fs = 10 MHz, λ0

= 785 nm, C = 2 and α = 5.

and percentage improvement as compared to the NUS method
is shown in Table II. Here, the percentage improvement is
defined as:

% Imp. =
ϵrms, NUS − ϵrms, ZC

ϵrms, NUS
× 100 (14)

TABLE I
SIMULATION BASED RMS ERROR RESULTS OF THE PROPOSED ZC

METHOD AGAINST VARIATIONS IN THE VALUE OF Ĉ WITH α = 3 FOR A

TARGET MOTION OF 0.5 µM AMPLITUDE AT 32 HZ FREQUENCY.

% Error in
C

C = 1.5 C = 3.0

Ĉ
ϵrms

(nm) Ĉ
ϵrms

(nm)
0 1.50 4.4 3.00 3.1
2 1.53 4.1 3.06 7.9
5 1.58 4.0 3.15 17.1

10 1.65 4.5 3.30 32.8
20 1.80 7.2 3.60 64.6
50 2.25 19.0 4.50 160.1

The tabulated results show that for C = 1.5 there is no
significant change in RMS error for up to 20% error in
estimation of C but in the case of C = 3, there is a significant
change in the RMS error for even 2% error in estimation of C.
It is because of the shape and hysteresis in the OFI signal. For
C = 1.5 the separation between the zero-crossing and fringe
discontinuity is considerable (see Fig. 7 (a)) but as the value of
C increases, the inter-fringe distance decreases which results
in closely detected points on the rising phase (see Fig. 7 (c))
and this causes poor interpolation of the signal (see Fig. 7 (d)).
In the second case, the error is caused by the detection of a
fringe and discontinuity close to the hump. It is also visible
in the second case that the simple NUS method gives better
results for 20% or more inaccuracy in C estimation (see Table
II). Here, a negative percentage improvement indicates that the
NUS method performed better than the proposed method. For

4
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TABLE II
SIMULATION BASED PERCENTAGE IMPROVEMENT IN RMS ERROR OF

THE PROPOSED ZC METHOD AS COMPARED TO THE SIMPLE NUS
METHOD AS A FUNCTION OF ERROR IN Ĉ FOR A TARGET MOTION OF

0.5 µM AMPLITUDE AT 32 HZ AND α = 3.

% Error in
C

C = 1.5 C = 3.0

Ĉ % Imp. Ĉ % Imp.

0 1.50 88.8 3.00 91.7
2 1.53 89.4 3.06 78.6
5 1.58 89.8 3.15 52.6
10 1.65 88.5 3.30 4.8
20 1.80 81.1 3.60 -106.2
50 2.25 48.3 4.50 -588.7

example, this occurs when C value is large and a large error
in C estimation also occurs. This happens due to the fact that
for a large value of C, the distance between the ZC and the
discontinuity is small and therefore any mis-estimation of C
can have a higher impact on the reconstructed displacement.
Based on Table II), it appears that an accuracy of up to 5% in
C estimation should be sufficient to achieve high measurement
precision with the proposed ZC method as compared to the
NUS method.

C. Effect of error in α estimation
Similarly, tests were conducted to see the effect on RMS

error in case there is error in estimation of α. The original
OFI signal has α = 3. RMS error was calculated after using
different values of α̂, reported in Table III. Small inaccuracy
in α does not cause much change in RMS error but large in-
accuracy in α causes significant change in RMS error. Hence,
for better measurement performance, accurate estimation of α
is desired.

TABLE III
SIMULATION BASED RMS ERROR RESULTS AND PERCENTAGE

IMPROVEMENT OF THE PROPOSED ZC METHOD AS COMPARED TO THE

SIMPLE NUS METHOD AS A FUNCTION OF ERROR IN α̂ FOR A TARGET

MOTION OF 0.5 µM AMPLITUDE AT 32 HZ WITH C = 1.5 AND α = 3.

α̂ ϵrms (nm) % Imp.
3.0 4.4 88.8
3.3 7.0 82.0
3.6 9.5 75.5
4.0 12.4 68.0
5.0 17.9 53.9
6.0 21.7 44.2
7.0 24.4 37.1

D. Effect of time-varying C
A practical issue that arises in OFI is the occurrence of

speckle which manifests itself as a time-varying C such as
caused by variation in roughness of the remote target surface
[27]. For the proposed ZC method to perform well in a real-
world scenario, it needs to be robust to possible variations in C
due to speckle. So, simulations were conducted for a 0.4 µm,
32 Hz displacement signal with λ0 = 785 nm and α = 5 such

Fig. 7. Effect of error in C estimation on ZC method when At = 0.5 µm,
and ft = 32 Hz: (a) detected zero-crossings (green crosses) and fringe
discontinuities (red vertical lines) on simulated OFI signal when original
C = 1.5 and corresponding (b) interpolated phase ϕo based on all
detections (blue circles) in case there is 10% error in estimated C value
i.e. Ĉ = 1.65. (c) OFI signal when original C = 3 and corresponding (d)
interpolated phase ϕo with 10% error in estimated C value i.e. Ĉ = 3.3.

that C is varied by 20% in a sinusoidal manner with a mean
value of C, denoted as Cm, of 2 by using the model reported
in [28] (see Fig. 8 (a)). The corresponding ZC method based
recovered displacement signal in Fig. 8 (b) has a 75% lower
RMS error as compared to the simple NUS method [4].

It is observed in Table IV that this improvement in recon-
struction is most significant where At is small and comparable
to λ0/2. For higher At values, the simple NUS method
performs better.

E. Effect of noise
The determination of the ZC events is affected by noise,

thereby limiting the achievable performances by the proposed
method as any quantization level uncertainty induces error in
the reconstructed displacement [29]. Simulations with additive
white noise displacements of different power spectrum density
(PSD) were performed to assess the impact of noise and the
results are summarized in Table V. (Note that 100 pm/

√
Hz

is a typical PSD value for standard OFI signals whereas
significantly lower PSD values of ∼ 1 pm/

√
Hz can be

achieved for the FM channel of OFI [12].) Table V shows
that when PSD is less than 100 pm/

√
Hz, the obtained

performances with ZC are still about 40% better than without,
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Fig. 8. Simulated results of reconstructing the displacement from an
OFI signal corresponding to a harmonic motion with 0.4 µm at 32 Hz
with α = 5 and λ0 = 785 nm such that (a) C is varied by 20% in a
sinusoidal manner with a mean value of 2. (b) Comparison of reference
target motion (dashed line) with reconstructed displacement with- (blue
line) and without-proposed ZC method (red line). (c) Corresponding
error in reconstructed displacement ϵ (unbroken line) and its RMS value
(dashed line).

TABLE IV
SIMULATED COMPARISON OF RMS ERROR RESULTS OF THE PROPOSED

ZC METHOD AND THE SIMPLE NUS METHOD FOR OFI SIGNALS WITH

C VARYING SINUSOIDALLY BY 20%. ft = 32 HZ, λ0 = 785 NM AND α

= 5. At AND THE MEAN VALUE OF C , DENOTED AS Cm , ARE VARIED.

At

(µm)

ϵrms

NUS method
(nm)

ϵrms

ZC method
(nm)

Cm = 2 Cm = 4 Cm = 2 Cm = 4
0.4 33.0 255 8.15 27.7
0.8 16.0 38.2 9.46 26.3
1.2 13.9 29.0 10.1 32.5
5.0 13.4 30.1 15.2 63.6
10 14.3 30.9 10.9 43.6

which can be considered as significant for small displacement
amplitudes.

V. EXPERIMENTAL RESULTS

A. Experimental Setup
The proposed ZC method is tested on different experimen-

tally acquired OFI signals to quantify its performance. The
testbench shown in Fig. 9 was used to obtain the required
signals. Hitachi HL7851G laser diode package was used in
the experimental setup, having λ0 = 785 nm with an output
power of 50 mW, and a typical threshold current of 45
mA. Physik Instrumente (P753.2CD) piezoelectric transducer
(PZT) was used as the target, which consists of an internal
capacitive position sensor with a 0.2 nm resolution and 2

TABLE V
SIMULATION BASED PERFORMANCE AND PERCENTAGE IMPROVEMENT

OF THE PROPOSED ZC METHOD IN CASE OF ADDITIVE NOISE AS

COMPARED TO THE SIMPLE NUS METHOD. C = 2, α = 5 FOR A

TARGET MOTION OF 0.5 µM AMPLITUDE AT 10 HZ WITH λ = 785 NM

AND Fs = 1 MHZ.

Amp. (µm) PSD (pm/
√
Hz) Accuracy (%) % Imp.

0.5 0 99.31 87.8
0.5 10 99.30 87.7
0.5 100 98.24 68.5
0.5 200 95.03 17.9
0.5 1000 -125.16 -51.7
1 0 99.49 77.3
1 10 99.46 75.9
1 100 98.62 37.7
1 200 97.99 9.9
1 1000 59.25 26.3

Fig. 9. OFI testbench for experimentation of zero-crossing based NUS
approach. Piezoelectric transducer (PZT) containing internal capacitive
sensor with 2 nm resolution is used to generate target displacement
D(t).

nm repeatability. NI USB 6251 data acquisition system was
utilized to acquire data that was sampled at the rate of 5x105

samples/s with 16-bits resolution. The laser diode and the PZT
were positioned 35 cm apart.

B. Results
The proposed ZC method was tested for two different PZT

frequencies i.e., ft = 10 Hz and ft = 60 Hz, and at three
different amplitude values i.e., At = 0.25 µm, At = 1 µm,
and At = 4 µm (see Table VI and Table VII). For every
above-mentioned {ft, At} case, 5 acquisitions of one-second
duration each were saved, and used for the testing of the pro-
posed method. By using the reference PZT measurement, RMS
errors were quantified for each one-second long acquisition.
Then, using the 5 acquisitions for every {ft, At} case, mean
and standard deviation (SD) was computed, and reported in
Table VI and Table VII for C estimation and measurement
error. Same process was repeated by using the simple NUS
method without zero-crossings, and corresponding percentage
improvement was also calculated. It can be seen from Table
VI and Table VII that the proposed method gives improved
results in all reported {ft, At} cases. It is also apparent that the
maximum improvement in measurement precision is obtained
when the remote displacement has an amplitude comparable to
λ0/2, and this finding corroborates with the simulated results
of the previous section.

Few specific cases are also discussed here. When the ZC
method is applied to an experimental OFI signal corresponding
to 0.25 µm amplitude at 10 Hz with α̂ = 5 and Ĉ =
1.78 (estimated by using the method reported in [26] with
a precision of < 5%), an improvement of 92% in RMS error
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Fig. 10. (a) Detected zero crossings (green crosses) and fringe
discontinuities (red vertical lines) on filtered experimental OFI signal
obtained for a PZT motion with At = 0.25 µm at 10 Hz using HL7851
LD with wavelength λ0 = 785 nm, Ĉ = 1.78 and α̂ = 5. (b) Comparison
of reconstructed signals with- (blue line) and without-ZC method (red
line), with reference PZT displacement (orange dashed line), and (c)
corresponding error signals and RMS errors (dashed lines) obtained by
comparing the reconstructed signals with the reference PZT displace-
ment.

is observed (see also Fig. 10). For the given case, the simple
NUS method only detects the fringe discontinuities in the OFI
signal. On the other hand, the ZC method additionally detects
zero-crossings at the ‘humps’ in the OFI signal (see Fig. 10
(a)) as well, thereby doubling the number of time-phase pairs
that results in a better reconstruction of the displacement. The
RMS error without ZC method is measured to be about 155
nm, whereas the RMS error with ZC method is around 12 nm
(see Fig. 10 (c)).

Similarly, for the OFI signal acquired for At = 1 µm at 60
Hz (5 fringes per cycle) with Ĉ = 1.1838, an improvement of
43% in RMS error was observed for this case (see Fig. 11).

TABLE VI
PERFORMANCE OF THE PROPOSED ZC METHOD ON EXPERIMENTAL

OFI SIGNALS FOR PZT FREQUENCY OF 10 HZ AND DIFFERENT

AMPLITUDES. 5 ACQUISITIONS OF 1-SECOND DURATION WERE USED

FOR EACH CASE.

At

(µm)
No. of
fringes Ĉ

S.D.
of C

Average
ϵrms

(nm)

S.D.
(nm)

%
Imp.

0.25 1 1.78 0.0 22.4 5.9 85.5
1.00 5 1.04 0.07 38.7 4.5 15.0
4.00 20 1.34 0.02 161.9 0.7 3.9

VI. DISCUSSION

The proposed method provides high measurement preci-
sion when the remote target motion is of low amplitudes.

Fig. 11. (a) Detected zero crossings (green markers) and fringe
discontinuities (red lines) on filtered experimental OFI signal obtained for
a displacement with amplitude At = 1 µm at 60 Hz using wavelength λ0

= 785 nm, Ĉ = 1.78 and α = 5. (b) Comparison of reconstructed signals
with ZC method (blue) and without ZC method (red), with reference
sinusoidal displacement (orange), and corresponding (c) error signals
and RMS errors (dashed lines) obtained by comparing the reconstructed
signals with the reference displacement.

TABLE VII
PERFORMANCE OF THE ZC METHOD ON EXPERIMENTAL OFI SIGNALS

FOR PZT FREQUENCY OF 60 HZ AND DIFFERENT At . 5 ACQUISITIONS

OF 1-SECOND DURATION WERE PROCESSED FOR EACH CASE.

At

(µm)
No. of
fringes Ĉ

S.D.
of C

Average
ϵrms

(nm)

S.D.
(nm)

%
Imp.

0.28 1 1.78 0.0 19.6 7.16 77.8
0.97 5 1.21 0.03 19.9 0.59 33.3
4.00 20 2.39 0.04 77.8 0.4 2.0

However, error in C estimation will result in reconstruction
error because of the erroneous calculation of phase difference
between zero-crossings and fringe discontinuities. As a result,
the improvement provided by the proposed ZC method be-
comes less relevant than the classical NUS approach whose
precision directly benefits in case of increase in the number of
crossed quantization levels occurring for higher displacement
amplitude. Furthermore, the improvement is constrained by the
shape of the OFI signal. Maximum improvement is observed
when the so-called hump of the OFI signal cuts across the
zero-line, an aspect dependent on C, α and initial phase value
(e.g., the abrupt reduction in error observed in Fig. 5 and Fig.
6 (when At is around 2 µm) for the proposed method is due
to ZCs in the hump zones).

For a given remote motion, laser wavelength, and initial
phase value, occurrence of zero-crossings in an OFI signal is
a function of C and α (see Fig. 12 (a)). It can be seen that the
upward and downward OFI fringes both cross the zero-line
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only for certain combinations of [C α], shown as the green
zone in Fig. 12 (a) obtained for a peak to peak displacement
of 4.1λ0 (so greater than λ0/2 to generate fringes). As C
increases, due to the hysteresis in OFI signals, only upward
fringes cross the zero-line, shown as the blue zone. For further
increase in C, neither upward nor downward fringes cross the
zero-line, shown as the red zone. For the best performance
of the proposed method, [C α] combination should be such
that all possible zero-crossing points are available, i.e. the
operating conditions correspond to the green zone. Then, in
case of an increase in C, if the sensor is operating in the blue
zone then the proposed method still has zero-crossing points
to improve the performance as compared with the simple
NUS method. However, in case of strong feedback, it may
so happen that there are no more zero-crossings in the OFI
signal. This scenario is shown in Fig. 12 (b) where an OFI
signal with C = 9 and α = 3 has no zero-crossings due to
high C value. This [C α] combination is represented by the
yellow oval in Fig. 12 (a). Thus, the improvement provided
by the proposed method decreases with increase in C and
the performance eventually becomes comparable to the simple
NUS method for very strong feedback. However, note that in
case of strong optical feedback, phenomenon of fringe-loss
[30] also appears which limits the performance of most motion
retrieval algorithms. That is why, efforts have been previously
made to ensure that the optical feedback strength is controlled
to maintain the laser sensing in the moderate feedback regime,
such as by using a liquid lens [31].

Note also that the lower detection limit of the proposed ZC
method is the same as the NUS method in case of no dithering
in either method. One quantization level corresponding to
a fringe discontinuity is still required for the proposed ZC
method. Without this quantization level, it is not possible to
correctly quantify the amplitude of the displacement. But if
dithering is done and that the resulting average sampling rate
(fringes and ZC) of the input exceeds twice the input signal
bandwidth, then the lower limit would be given by the noise-
equivalent displacement. The ZC method will provide better
reconstruction in the case dithering is performed.

The experimental signals also require precise noise removal
filtering. Zero-crossings and fringe discontinuities can be de-
tected incorrectly on noisy signals, and inaccurate detection of
a single fringe-discontinuity or zero-crossing can degrade the
interpolation. Regardless, the method has shown improvement
in reconstruction compared to the simple NUS method over
a wide range of C, At and ft values in simulations. Up
to 85.5% improvement in RMS error is also reported for
experimental signals. Therefore, due to the inherent simplicity
of the proposed method and its ability to deal with small
amplitudes by doubling the number of samples or events for
NUS systems, the proposed method is considered to contribute
to this area of sensing and instrumentation.

VII. CONCLUSIONS

The zero-crossing based non-uniform sampling method for
OFI, proposed in this paper, has enabled higher measurement
precision for such a system operating under moderate optical
feedback regime.
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Fig. 12. (a) Occurrence of zero-crossings in an OFI signal as a function
of C and α for a peak to peak displacement of 4.1λ0. Upward and
downward fringes both cross the zero-line (green zone), only upward
fringes cross the zero-line (blue zone), or neither upward nor downward
fringes cross the zero-line (red zone). (b) An OFI signal with C = 9
and α = 3 in which no ZC occurs due to high C value. This [C α]
combination is represented by the yellow oval in subplot (a).

Parametric analysis of applying the proposed method shows
RMS error improvements of 25% to 95% for low-amplitude
motion in the moderate feedback regime compared to the pre-
vious dither-less NUS method. Similarly, experimental results
indicate an improvement of more than 80% in RMS error. This
improved reconstruction is a result of using zero-crossings
along with fringe discontinuities of the OFI signal to define
the phase quantization levels, which allows for more accurate
interpolation around the maxima and minima where the simple
NUS method lacks discontinuity points/events. The proposed
method thus mitigates the need to add (and later remove)
dithering for such low-amplitude motion.
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