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Solving nonlinear algebraic loops arising in
input-saturated feedbacks

Franco Blanchini, Senior Member, IEEE, Giulia Giordano, Senior Member, IEEE, Francesco Riz,
Luca Zaccarian, Fellow, IEEE

Abstract—We propose a dynamic augmentation scheme for
the asymptotic solution of the nonlinear algebraic loops arising
in well-known input saturated feedbacks typically designed by
solving linear matrix inequalities (LMIs). We prove that the ex-
isting approach based on dynamic augmentation, which replaces
the static loop by a dynamic one through the introduction of
a sufficiently small time constant, works under some restrictive
sufficient well-posedness conditions, requiring the existence of
a diagonal Lyapunov matrix. However it can fail in general,
even when the algebraic loop is well-posed. Then, we propose a
novel approach whose effectiveness is guaranteed whenever well-
posedness holds. We also show how this augmentation allows
preserving the guaranteed region of attraction with Lyapunov-
based designs, as long as a gain parameter is sufficiently large.
We finally propose an adaptive version of the scheme where
this parameter is adjusted online. Simulation results show the
effectiveness of the proposed solutions.

I. INTRODUCTION

Control of input-saturated plants, often denoted as bounded
stabilization of dynamical systems, received much attention in
the past 30-40 years from the nonlinear control community.
For the special case of a linear plant, fundamental limitations
have been characterized in the early work [1] and then con-
structive solutions have been given in [2], [3]. After those early
works, the community started addressing optimality-based
designs of bounded feedback stabilizers, wherein the whole
control algorithm is designed, and anti-windup augmentations,
where a filter is designed to augment an existing control
scheme whose performance is undesirable for signals large
enough to activate saturations. Comprehensive overviews of
results in this area can be found in [4], [5], [6], [7].

An important milestone for providing optimality-based de-
signs based on Linear Matrix Inequalities (LMIs) is given
by [8], which showed for the first time that the use of an
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algebraic loop wrapped around the saturation nonlinearity
can improve the transient response, especially in terms of
directionality compensation with multi-input saturated plants.
The pioneering work [8] did not formulate nor address well-
posedness of the ensuing nonlinear algebraic loop (that is,
existence and uniqueness of a solution of the ensuing nonlinear
algebraic interconnection [9]). This was later done in [10],
where sufficient well-posedness conditions were formulated
and shown to structurally hold in the LMI-based designs of [8].
Interesting features associated with this nonlinear algebraic
loop were also shown in [11] (see also [12]), where its solution
was shown to be as hard as solving a quadratic program.
Finally, [13] discussed certain fragilities associated with some
of these loops, and [14] discussed a possible approach to
ensuring a so-called “strong well-posedness” condition on the
loop, partially addressing such fragilities.

In later years, building upon this sufficient condition, several
stabilization and anti-windup schemes (see, e.g, [15], [16])
exploited the idea of designing optimality-based algebraic
loops in saturated control schemes, even though their solution
had only been partially discussed in [15, Remark 9], which
suggests an approximate implementation algorithm, without
proving why it is effective. Among other things, in this paper
we prove the effectiveness of the algorithm in [15, Remark 9]
when enforcing the above mentioned sufficient well-posedness
conditions, but show that those solutions may be destabilizing
in more general cases with well-posed algebraic loops.

A further understanding of the context was given in [17],
where necessary and sufficient well-posedness conditions were
given in terms of the determinants of certain matrices involving
the feedback gain characterizing the algebraic loop. In later
years, just a few methods have been given about how to solve
these nonlinear algebraic loops in practical implementations,
comprising the discussion in [7, §2.3.7], the method in [18,
§4], which works under a diagonal dominance assumption,
and the framework introduced in [19], where solving the
algebraic loop is cast as a mixed linear complementarity
problem, for which several iterative algorithms exist (as noted
in [19, §5], these comprise projected iterative methods, interior
point algorithms and pivoting schemes such as the Lemke
algorithm). An explicit formula was also reported in [20,
Lemma 3] (see also [21, Remark 2]), which only works for the
single-input case. Nonetheless, the use of these algebraic loops
in optimality-based saturated feedback design has persisted in
later works, such as [22], [23], [24], [25], [26], [27], [28],
[29], [30] and also [5, Ch. 7], by mostly relying on heuristics
for their solutions (e.g., the Simulink algebraic loop solver),
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or on finite enumeration (see [7, §2.3.7]), which is effective
when having a few input channels.

In this paper we solve asymptotically these nonlinear alge-
braic loops via a dynamic augmentation that is guaranteed to
converge exponentially to the unique solution whenever the
loop is well-posed. Our solution is based on the results of
[31] and is shown to be effective whenever the necessary and
sufficient conditions of [17] hold. We also revisit the solution
suggested in [15, Remark 9] and we 1) show that it is not
effective in general by way of an insightful counterexample;
2) prove its effectiveness whenever the sufficient conditions
assumed in [15] are satisfied. This last proof is nontrivial
and exploits the results of [32]. The dynamic augmentation
that we propose falls into the category of dynamic inversion
of nonlinear maps (see, e.g, the early works [33], [34] and
references therein), which have been recently extended to a
number of relevant scenarios (see, e.g., [31], [35], [36]), even
though in our case the situation is quite peculiar due to the
fact that the map under consideration is not differentiable, due
to the Lipschitz nature of the saturation nonlinearity. Due to
this fact, in our derivations, we rely on the use of Clarke’s
generalized gradients to prove our results.

The paper is organized as follows. In Section II we introduce
the setup, background work and counterexamples illustrating
the non-trivial nature of the problem at stake. In Section III
we present and prove the properties of the mere solution of
the nonlinear algebraic loop, while in Section IV we show
how that same solution can be used to implement a dynamic
augmentation recovering exponential stability of a feedback
comprising such nonlinear algebraic loop, without the need
of solving it statically as long as a tuning gain is selected
sufficiently high. Based on these results, in Section V we
revisit the solution of [15, Remark 9] and rigorously establish
its merits and limits. Finally, since both the solutions of
Sections IV and V require the tuning of a high-gain parameter,
we discuss in Section VI a generalized scheme where such
parameter is adapted on line. Simulation results are finally
discussed in Section VII.

Notation. Given two vectors u+ and u− in Rm having
positive elements, for each vector u ∈ Rm, the vector
saturation function sat[u−,u+](u) has components sati(ui) :=
max(min(ui, ui

+),−ui−). The deadzone function is defined
as dz[u−,u+](u) := u − sat[u−,u+](u). The subscript of sat
and dz will be sometimes omitted when it is clear from the
context. Given a square matrix M , He(M) := M + M>,
while ∆ = diag(δ1, . . . , δm) denotes a diagonal matrix having
diagonal elements δ1, . . . , δm and coS denotes the (closed)
convex hull of set S.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Deadzone-induced nonlinear algebraic loops

Consider the linear input-saturated plant

ẋ = Ax+B sat[u−,u+](ǔ), (1)

with state x ∈ Rn, input ǔ ∈ Rm and matrices A and B of
appropriate size. When dealing with the bounded stabilization
problem for (1), a large number of existing works provide

design techniques to optimally choose two gains K and L, of
appropriate dimensions, leading to the implicit equation

ǔ = ν + L dz[u−,u+](ǔ), ν := Kx, (2)

whose solution is guaranteed to exist and to enjoy desirable
globally Lipschitz properties. In particular, the following def-
inition has been introduced in [10].

Definition 1. The nonlinear algebraic loop (2) is well-posed
if, for each selection of ν ∈ Rm, there exists a single value
of ǔ satisfying the implicit equation (2).

Remark 1. According to (2), we could only consider selections
of ν in the image of matrix K; however, typically K is a large
matrix, with full row rank, hence its image is the whole space.

Figure 1 shows a block diagram of the interconnection (1),
(2). Based on the above definition, the results in [10] and [17]
proved the following necessary and sufficient conditions.

Proposition 1. The nonlinear algebraic loop (2) is well-posed
if and only if det(I − L∆) > 0 for all diagonal matrices
∆ ∈∆, where

∆ := {∆ = diag(δ1, . . . , δm) : δi ∈ {0, 1},∀i = 1, . . . ,m}.
(3)

Moreover, when the algebraic loop is well-posed, 1) its solu-
tion is given by a globally Lipschitz function ǔ = ζ(ν) and 2)
all the matrices in the set

S := {S := I − L∆ : ∆ ∈ co∆}
are non-singular. Finally, the existence of a matrix U satisfying

U > 0 diagonal, LU + UL> − 2U < 0 (4)

is a sufficient condition for well-posedness of (2). According to
[32, Def. 5], property (4) corresponds to requiring that matrix
L− I be Lyapunov Diagonally Stable.

Plant

x

L

K
ǔ sat(ǔ) x+

+

−+

dz(ǔ)

Fig. 1. Block diagram of the closed loop (1), (2) involving a nonlinear
algebraic loop.

B. An LMI-based design method

An example of control design providing well-posed selec-
tions of the gains K and L in (2) is the solution of the LMIs
in the next proposition, which is a classical result (see, e.g.,
[37], [25] but also the more recent works [22], [20] for its
proof).

Proposition 2. Given plant (1), define the conservative limits
vector ū := min{u+, u−}, containing the component-wise
minimum of the saturation limits u+, u− ∈ Rm. If there exist
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matrices Q = Q> > 0, U > 0 diagonal, and W,X, Y of
appropriate dimensions, satisfying

He

[
AQ+BW −BU +BX
W + Y X − U

]
< 0 (5a)[

u2
k Yk

Y >k Q

]
≥ 0 k = 1 . . .m, (5b)

where ūk indicates the k-th component of vector ū and Yk
denotes the k-th row of Y , then the feedback interconnection
(1), (2) with K = WQ−1 and L = XU−1 is such that

i) the nonlinear algebraic loop (2) is globally well-posed
and its solution is given by a globally Lipschitz function
ν 7→ ǔ = ζ(ν);

ii) selecting the Lyapunov function V (x) = x>Q−1x, there
exist cV > 0, cV > 0, and µ > 0 such that

cV ‖x‖2 ≤ V (x) ≤ cV ‖x‖2, ∀x ∈ Rn, (6)

and, for all x ∈ E(V, 1) := {x : V (x) ≤ 1},
V̇ (x) := 〈∇V (x), Ax+B sat(ǔ)〉 ≤ −µ‖x‖2. (7)

iii) if Y = 0, then (7) holds globally.

Remark 2. A consequence of item (ii) is that the origin
is a locally exponentially stable equilibrium for the closed-
loop system with basin of attraction containing the ellipsoidal
estimate E(V, 1). Item iii) implies that the origin is globally
exponentially stable. Well-posedness of the nonlinear algebraic
loop follows from the sufficient condition (4), which is guar-
anteed by (5a) because X = LU . �

Remark 3. The scheme of Figure 1 may represent any output
feedback controller with a linear plant and possibly also with
a linear anti-windup action (e.g., of the “Direct Linear Anti-
Windup” type discussed in [7, Part II]). In particular, any
such dynamics may be transformed into an “Augmented Plant”
whose state x comprises all the dynamical elements of such
nonlinear closed loops, while matrices K and L incorporate
the appropriate feedback selections (the strictly proper part in
K and the algebraic part in L). One such example, shown in
Figure 8, is discussed in Example 4 of Section VII. �

C. Problem statement

We aim at providing algorithmic solutions to find ǔ, given
Kx in (2). To this end, we rely on introducing additional states
in the loop, to address the following two goals:

1) Static goal: Given a constant selection of ν = Kx in
(2), obtain an asymptotic estimate of the solution ǔ of
the algebraic loop;

2) Dynamic goal: Given a closed-loop system (1), (2)
satisfying Lyapunov-induced (local or global) stability
properties, provide an implementation not requiring the
explicit solution ζ (of Proposition 1) while guaranteeing
the same estimate of the region of attraction.

Before presenting our proposed solution, we provide some
motivating examples, showing that a solution cannot be gen-
erally obtained by following an intuitive, empirical approach.
In particular, with reference to the two block diagrams repre-
sented in Figure 2, we will disprove the effectiveness of the

intuitive solution of transforming the algebraic relation (2) into
a sequential algorithm (discrete-time approach, represented
in Figure 2, left), or into a continuous-time first-order filter
(continuous-time approach, represented in Figure 2, right).

z−1L

u

+

sat(u)
−

dz(u)

+

ν +

1
1+τs

L

u

+

sat(u)
−

dz(u)
w

+

ν +

Fig. 2. Two heuristic approaches for solving the static goal of Section II-C.
Their failure is discussed in Examples 1 and 2.

Example 1. (Failure of a heuristic discrete-time approach.)
With reference to the left diagram of Figure 2, an intuitive
approach stems from the common practice of adding a so-
called “memory block” in the Simulink implementation of the
feedback loop multiplying L in the block diagram of Figure 1.
From the stability analysis viewpoint, this solution can be well
characterized by studying the discrete-time feedback shown in
Figure 2, left. Focusing on the static goal mentioned at item
1) above (which removes irrelevant complications induced by
the extra dynamics of the plant), this corresponds to studying
the discrete-time nonlinear system

u(k + 1) = Ldz[u−,u+](u(k)) + ν. (8)

While ǔ = ζ(ν) is certainly the unique equilibrium of dynam-
ics (8) under our well-posedness assumption (cf. Definition 1),
this does not imply attractivity of this equilibrium. Indeed, it
is rather simple to construct selections of L leading to a well-
posed algebraic loop, as easily checked from Proposition 1,
and at the same time to non-converging solutions to (8). For
example, consider the scalar examples

u(k + 1) = −3 dz[−1,1](u(k)) + 2, u(0) = 0, (9)
u(k + 1) = −2 dz[−1,1](u(k)) + 5, u(0) = 0, (10)

and note that with u being a scalar, the exact solution of the
algebraic loop can be determined by the following equation, 1

issued from [20, Lemma 3],

ǔ = ζ(ν) = ν + L(I − L)−1 dz[−1,1](ν), (11)

which provides ǔ = 5/4 and ǔ = 7/3, respectively, cor-
responding to the horizontal dashed lines in the two plots
of Figure 3. The two (unique) solutions to the initial value
problems (9) and (10) are also shown by the black dots at the
left and right of Figure 3, respectively. From these traces it
appears that (9) generates a non-converging and non-diverging
evolution, while (10) generates an exponentially diverging
solution, thereby showing the failure of the heuristic approach
at the left of Figure 2. ?

Example 2. (Failure of a continuous-time approach.) A vi-
able approach was suggested in [15, Remark 9], where the

1The explicit expression (11) for ζ is only valid for the special case m = 1,
as proven in [20, Lemma 3].
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Fig. 3. Solutions of the discrete-time systems in (9), left, and (10), right,
stemming from the heuristic solution shown at the left of Figure 2.

conservative well-posedness condition (4) was assumed. The
idea is to add a first order filter with transfer function 1

1+τs
in the feedback loop multiplying L in the block diagram of
Figure 1, as shown at the right of Figure 2. Without giving
a proof, [15, Remark 9] conjectured that there exists a small
enough value of the time constant τ > 0 (a sufficiently fast
filter) that provides a converging solution to the problem. In
this paper (see Section V) we show that this conjecture is
true when condition (4) holds, but the solution is not effective
for general well-posed algebraic loops. In fact, the dynamics
associated with this solution corresponds to the following
linear continuous-time differential equation:

ẇ =
1

τ

(
dz[u−,u+](Lw + ν)− w

)
, (12)

where τ should be sufficiently small. To show this is not a
viable approach for general well-posed loops, we rewrite the
dynamics as follows:

τẇ = −w + Lw + ν − sat[u−,u+](Lw + ν)

= (L− I)w − sat[u−,u+](Lw + ν) + ν,

and notice that matrix (L − I) is not guaranteed to be
Hurwitz. In particular, since sat is bounded, if (L− I) has an
exponentially unstable eigenvalue, then the results in [1] imply
that there are large enough initial conditions for w leading
to exponentially diverging solutions, and the exponential rate
becomes increasingly fast as τ becomes increasingly small.
A choice of L that satisfies both this defective condition
and the necessary and sufficient well-posedness conditions of
Proposition 1 cannot be found for the scalar case m = 1,
but can be found e.g. for the case m = 3: the selection
L =

[
0 3 0
0 0 3
−3 0 0

]
yields exponentially unstable eigenvalues of

L − I , while satisfying the well-posedness conditions. This
counterexample shows that, in general, the right scheme of
Figure 2 is not a viable solution to the static goal.

It is quite interesting that the sufficient condition (4) implies
that matrix L − I be Hurwitz (as certified by the diagonal
positive definite matrix U ). Since (4) was required in [15,
Remark 9], this counterexample does not contradict that state-
ment, which is indeed true, as proven in Section V. ?

Remark 4. Conditions for the convergence of the heuristic
solutions could be incorporated in the design of L through
appropriate robust stability conditions, e.g. enforced through
LMIs coupled with system (8) or (12). However, this would
introduce in the design of L additional restrictions, which we
show are not necessary.

Motivated by the fact that simple intuitive approaches are
not successful in general, we propose in the next section a
nonlinear dynamic augmentation solving both the static and
dynamic problems presented above.

III. SOLUTION TO THE STATIC PROBLEM

A. Proposed solution and main result

In this section we address the static goal presented at item 1)
of Section II-C. In particular, we disregard the plant dynamics
(1) and address the simpler (yet relevant) problem of providing
a dynamic algorithm to asymptotically determine the solution
ǔ := ζ(ν) of the algebraic loop

u = Ldz[u−,u+](u) + ν, (13)

for each constant selection of ν ∈ Rm.
The approach that we propose provides global guarantees

under the (non-restrictive) assumption that the algebraic loop
is well-posed, as per Definition 1. Given a constant tunable
gain ᾱ > 0 governing the speed of convergence, and inspired
by [31], our solution relies on the out-of-balance vector:

y = −u+ Ldz[u−,u+](u) + ν. (14a)

Based on y, we propose the following dynamic augmentation
through the new state variable u:

u̇ = ᾱ dz∗(y) := ᾱ(y −Dy sat[0,|L>y|cw](Dyy)), (14b)

where dz∗ is defined on Rm, while

Dy := diag(sign(L>y)), (14c)

and | · |cw denotes the vector containing the component-wise
absolute values of its argument. We emphasize that the right-
hand side of (14b) is continuous on Rm, because it returns zero
whenever the sign in expression (14c) is evaluated at zero.

The following lemma establishes desirable properties of the
right-hand side of (14b). Its proof is deferred to the end of
Section III-B.

Lemma 1. Function dz∗ in (14b) is globally Lipschitz and
independent of the conventional value chosen for sign(0).
Moreover, function dz∗ lies in the sector [0, 1] and if the
algebraic loop (13) is well-posed, then dz∗(y) = 0 if and
only if y = 0.

Theorem 1. Let the algebraic loop (13) be well-posed. For
any constant gain ᾱ > 0 and each constant input ν ∈ Rm,
the interconnection (14) has a globally exponentially stable
equilibrium point u = ǔ = ζ(ν) with exponential decay rate
proportional to ᾱ.

While we postpone the proof of Theorem 1 to Section III-C,
we provide in the next section a deeper insight about its game-
theoretic motivation.

B. Game-theoretic motivation of the proposed solution

We provide here the essential intuition behind selection
(14) together with a suitable interpretation in terms of game
theory. To this end, first observe that, from well-posedness,
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Proposition 1 establishes that matrix I − L∆ is non-singular
for all ∆ ∈∆, as defined in (3).

Then, inspired by [31], it makes sense to introduce the out-
of-balance vector y in (14a) and select a suitable dynamics
u̇ = v, where the selection of v, a design degree of freedom, is
carried out by inspecting the time derivative of the Lyapunov-
like function W (y) := 1

2y
>y. The remaining derivations stem

from the approach of [31], with the caveat that u 7→W (y(u))
is not a smooth function, hence we need to pay special
attention to the fact that there are points in the state space
where Ẇ is not defined. To deal with this issue, we exploit
results from Lipschitz Lyapunov functions, given in [38, §4.5].

In particular, denoting by
∂y

∂u
∈ Rm×m the Jacobian of y with

respect to u, and using the fact that, by Rademacher’s theorem,
the globally Lipschitz saturation function is differentiable
almost everywhere, we may write for almost all u ∈ Rm,

Ẇ = y>ẏ = y>
∂y

∂u
u̇ = −y> (I − L∆u) v, (15)

where ∆u ∈ ∆ represents the Jacobian of the deadzone
function dz[u−,u+], wherever it is differentiable. This matrix is
well defined almost everywhere and has diagonal terms either
equal to 1 or 0, therefore it belongs to the set ∆ in (3).

In an interpretation coming from game theory, in particular
coming from min-max games, it is possible to interpret the
time derivative of W in (15) as if it were governed by two
players. The first player, the minimizer, decides ∆u so as
to minimize −Ẇ , while the second player, the maximizer,
decides u̇ = v in order to maximize −Ẇ and then get
exponential stability. While the Jacobian matrix ∆u depends
on the state u, since we associate the choice of ∆u with a
clever “nasty” minimizer, we allow ∆ to take any value in the
set ∆ of (almost) all possible values of the gradient. Actually,
even more so, since we would like to exploit useful properties
of convex (and compact) sets, rather than allowing ∆ to take
values in the non-convex set ∆, we expand the allowable
selections to its convex hull co∆, which is also compact by
definition. Summarizing, we perform the selection of v in (15)
with the aim of finding the saddle point of the game γ+ = γ−

where, from (15),

γ−(y) = min
∆∈co∆

max
‖v‖≤α(y)‖y‖

y> (I − L∆) v (16a)

γ+(y) = max
‖v‖≤α(y)‖y‖

min
∆∈co∆

y> (I − L∆) v, (16b)

and where we restricted v to the compact convex set ‖v‖ ≤
α(y)‖y‖, for an arbitrary positive scalar α(y), to ensure
suitable regularity of the min-max problem.

Since the cost function in (16) is linear in the two decision
variables ∆ and v, which belong to convex and compact sets,
then γ+ = γ− (see [39, §7.13, Thm 1]). In particular, the
maximizer will always choose the maximal v in the direction
of (I − L∆?)y, where ∆? is the choice of the minimizer. As
a consequence, the resulting cost is necessarily non-negative
and the minimizer will aim at reducing its norm:(

min
∆∈co∆

‖
(
I −∆L>

)
y‖
)2

= min
0≤δi≤1

m∑
i=1

(yi − δi L>i y)2,

(17)

where Li denotes the ith column of matrix L. Since each
diagonal element δi of ∆ only appears in one of the scalars in
the sum at the right hand side, we can determine the following
selection of the diagonal elements δ?i of ∆?:

δ?i = sat[0,1]

(
yi
L>i y

)
if L>i y 6= 0,

δ?i = 0 = sat[0,0](yi) = sat[0,L>i y](yi), if L>i y = 0.

After some straightforward derivations, we may combine the
two previous conditions in the following unified expression:

δ?i L
>
i y = sign(L>i y) sat[0,|L>i y|]

(
sign(L>i y)yi

)
, (18)

which can be written in vector form as

∆?L>y = Dy sat[0,|L>y|cw] (Dyy) ,

where | · |cw denotes the vector containing the component-
wise absolute values of its argument and Dy is defined in
(14c). Finally, we may provide the complete expression of the
minimized vector in (17) as(

I −∆?L>
)
y = y −Dy sat[0,|L>y|cw] (Dyy) , (19)

which coincides with the vector dz∗(y) defined in (14b).
Note that the derivations above are independent of the

choice of function y 7→ α(y) appearing in (16). In particular,
selecting α(0) = 1 and, for y 6= 0, 2

α(y) = ᾱ
‖y −Dy sat[0,|L>y|cw] (Dyy) ‖

‖y‖ = ᾱ
‖dz∗(y)‖
‖y‖ > 0,

(20)

we obtain exactly the solution v = ᾱ dz∗(y) as in (14b).
Based on the derivations above, we are now ready to prove

Lemma 1.

Proof of Lemma 1. Let us first notice that expression (19)
and the properties of well-posed algebraic loops, established
in Lemma 1, imply that matrix I −∆?L> is invertible, so for
each y 6= 0 we have dz?(y) = (I −∆?L>)y 6= 0.

For the rest of the proof, due to the expression of dz∗

in (14b), it is enough to show that Dy sat[0,|L>y|cw] (Dyy) is
globally Lipschitz, independent of the value sign(0) and lies
in the sector [0, 1]. From (18) this function is decentralized, so
we can focus on each component i ∈ {1, . . . ,m} in (18). First
of all, notice that when L>i y = 0, the function is zero (because
sat[0,0] ≡ 0), regardless of the value of sign(L>i y) = sign(0).
Moreover, the function is globally Lipschitz and belongs to
the sector [0, 1], due to the corresponding properties of the
saturation function, and the fact that the saturation limit L>i y
depends linearly on y. �

C. Proof of Theorem 1

For the proof of Theorem 1 we will use the next lemma,
which is a corollary of [39, §3.12, Thm 1].

2Positivity of α(y) in (20) when y 6= 0 follows from the left expression
in (19) and the fact that, from Proposition 1, all the matrices in S are non-
singular.
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Lemma 2. Given a closed and convex set Z of Rm, the unique
solution z? of the minimization problem minz∈Z ‖z‖2, satisfies
z?>z ≥ z?>z?, for all z ∈ Z .

Proof. The result follows from [39, §3.12, Thm 1] applied with
the following selections: H = Rm, K = Z , x = 0, k0 = z?,
k = z. �

In addition, for the proof of the theorem, we will exploit
the continuity of function dz∗ and apply the following non-
smooth Lyapunov result, which is an immediate consequence
of the discussion in [40, page 99], or the recent result in [41,
Prop. 1] combined with [38, §4.5].

Proposition 3. Consider an autonomous system ξ̇ = f(ξ) with
f : Rn → Rn continuous, a compact set A and an open set
D such that A ⊂ D ⊂ Rn. Assume that there exists a locally
Lipschitz function V : D → R such that

c1‖ξ‖2A ≤ V(ξ) ≤ c2‖ξ‖2A, ∀ ξ ∈ D (21)
〈∇V(ξ), f(ξ)〉 ≤ −2c3V, for almost all ξ ∈ D, (22)

where ‖ξ‖A = minx∈A ‖ξ − x‖ denotes the point-to-set dis-
tance. Then A is locally exponentially stable with exponential
rate c3 and with basin of attraction containing any sublevel
set of V contained in D. In particular, if D = Rn, then A is
globally exponentially stable.

Proof: Under the stated assumptions, due to continuity of
the dynamics, even if (22) holds almost everywhere, we may
follow the derivations of the 8 steps reported in [40, page 99-
100], relying on Clarke’s generalized directional derivative, to
obtain an exponential bound on t 7→ V(ξ(t)), with decay rate
2c3, for any solution of ξ̇ = f(ξ). Then, using (21), we may
transform this bound in a uniform global exponential bound
for t 7→ ‖ξ(t)‖A, with decay rate c3.

Proof of Theorem 1. This proof is inspired by the techniques
in [31] and the ensuing derivations of the previous section,
combined with the non-smooth result of Proposition 3. First
note that the dynamics of system (14) is autonomous once
ᾱ and ν have been fixed. Consider then the Lyapunov-

like function W (y) :=
1

2
y>y, discussed in Section III-B.

Denoting by ζ the globally Lipschitz (with Lipschitz constant
`ζ) solution of (2) established in Proposition 1, we have from
(14a) that ǔ = ζ(ν), and u = ζ(ν − y), which imply

‖u− ǔ‖ = ‖ζ(ν − y)− ζ(ν)‖ ≤ `ζ‖y‖. (23)

Moreover, exploiting ν = ǔ− Ldz[u−,u+](ǔ), from (13), and
using the Lipschitz property of the deadzone nonlinearity, we
also get from (14a),

‖y‖ = ‖ǔ− Ldz[u−,u+](ǔ)− u+ Ldz[u−,u+](u)‖
≤ ‖ǔ− u‖+ ‖Ldz[u−,u+](ǔ)− Ldz[u−,u+](u)‖
≤ (1 + ‖L‖)‖u− ǔ‖. (24)

Combining bounds (23) and (24), we obtain

c1W ‖u− ǔ‖2 ≤ 2W (y) ≤ c2W ‖u− ǔ‖2, (25)

where c1W := `−2
ζ and c2W := (1 + ‖L‖)2.

To establish an upper bound on Ẇ , consider expression (15)
and notice that, with u̇ = v selected as in (14) and enforcing
the equality in (19), it leads to

Ẇ = y>ẏ = −ᾱz>z?, for almost all y, (26)

where, using the notation of Lemma 2, we defined

Z =
{(

∆L> − I
)
y
∣∣∆ ∈ co(∆)

}
,

z =
(
∆uL

> − I
)
y, z? =

(
∆?L> − I

)
y.

As proven in the previous subsection, in the discussion be-
tween equations (17) and (19), ∆? is a minimizer of (17)
over co(∆). This implies that z? is the (unique, by Lemma 2)
minimizer of ‖z‖ over Z . 3 Recalling the fact that ∆u ∈ ∆
and that ∆ ⊂ co(∆), we have that z ∈ Z and applying
Lemma 2, we get −z?>z ≤ −z?>z?, which provides the
following negative upper bound for (26):

Ẇ ≤ −ᾱz>z? ≤ −ᾱ‖z?‖2, for almost all y. (27)

As a final step of the proof, from item 2) of Proposition 1,
we have that y>(−I + L∆) 6= 0 for all ∆ ∈ co(∆) and all
y 6= 0. Therefore the following minimum exists and is positive:

inf
‖y‖6=0

‖z?‖
‖y‖ = inf

∆∈co(∆)
‖y‖6=0

‖y> (−I + L∆?) ‖
‖y‖

= min
‖y‖=1

‖y> (−I + L∆?) ‖ = β > 0,

which can be replaced in (27) to get

Ẇ ≤ −ᾱ‖z
?‖2
‖y‖2 ‖y‖

2 ≤ −ᾱβ2‖y‖2 = −2ᾱβ2W (y), (28)

which holds for almost all y. Even though bound (28) holds
almost everywhere, also using bounds (25), we may apply
Proposition 3 with A = {ǔ} to obtain a uniform global
exponential bound on u−ǔ, with decay rate given by ᾱβ2 > 0
for any solution of (14). �

Example 3. We provide simulation results for the 3-input
counterexample, with L =

[
0 3 0
0 0 3
−3 0 0

]
, constructed in Example 2

to illustrate the generic unsuitability of the linear solution
proposed in [15, Remark 9], in cases where the conservative
condition (4) does not hold. To see that this selection of L
does not satisfy (4), note that (4) would imply that L− I be
a Hurwitz matrix, whereas L − I has exponentially unstable
modes for this selection. In this example we fix the saturation
bounds at u+ = u− = 1 for all three inputs.

Figure 4 shows the exponentially converging responses
(solid lines) obtained from the nonlinear solution (14) com-
pared with the exponentially diverging responses (dashed
lines) obtained from the linear solution (12), thus confirming
the results in Example 2 and Theorem 1. Figure 5 also con-
firms the result of Theorem 1 in terms of speed of convergence,
which is clearly accelerated as ᾱ is increased in the nonlinear
solution (14). ?

3We emphasize the interesting fact that the minimizer ∆? is not unique,
whereas convexity of Z implies that the minimizer z? is instead unique, and
clearly coincides with the expression in (19).
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Fig. 4. Evolution of u for Example 3. Dashed lines: exponentially diverging
evolution of u for the linear solution (12). Solid lines: evolution of u for the
nonlinear solution (14) with ᾱ = 10, converging exponentially to the solution
of the nonlinear algebraic loop (2).
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Fig. 5. Example 3: evolution of u for the nonlinear solution (14) for
increasing selections of ᾱ = 10 (solid lines), ᾱ = 100 (dashed lines),
ᾱ = 1000 (dotted lines).

IV. SOLUTION TO THE DYNAMICAL PROBLEM

Let us now address the global and local formulations of the
problem at item 2 in Section II-C. In particular, let us assume
that a stabilizer as in (2) has been designed for a plant as in
(1), which ensures well-posedness of the algebraic loop and
the existence of a Lyapunov function V satisfying (6) and (7)
for some scalar µ > 0, either globally or in the ellipsoidal
sublevel set E(V, 1) = {x ∈ Rn : V (x) ≤ 1}.

By combining the approach of Section III with the original
interconnection, we propose the following dynamically aug-
mented implementation

ẋ = Ax+B sat(Kx+ w),

ẇ = ᾱ dz∗(y)

y = Ldz[u−,u+](u)− w,
(29)

where u = w + Kx and function dz∗ has been defined in
(14b). Since w = u − ν = u − Kx, then vector y in (29)
coincides with the out-of-balance vector y in (14a), namely

y = −u+ Ldz[u−,u+](u) +Kx. (30)

For this dynamically augmented feedback stabilization
scheme, which is represented in Figure 6, we establish the
following main result.

Plant

x

dz?
1
s Lα

K
u sat(u)

+ −

dz(u)+yẇ

w

+

w
−

xν = Kx

+

Fig. 6. Block diagram of the overall system (29).

Theorem 2. Suppose that the algebraic loop (2) is well-posed
and there exist a Lyapunov function V and a scalar cv > 0,
such that ‖∇V (x)‖ ≤ cv‖x‖, satisfying (6), (7) for all x ∈
E(V, 1) (respectively, globally), for the closed loop (1), (2).

Then there exists α∗ > 0 such that, for any ᾱ ≥ α∗, the
origin of the dynamically augmented implementation (29) is
locally exponentially stable with basin of attraction containing
the set

Ē := {(x,w) ∈ Rn × Rm : x ∈ E(V, 1), w = ζ(Kx)−Kx},
(31)

(respectively, globally exponentially stable).

While for the global case Theorem 2 shows that global
exponential stability properties are fully preserved by our
augmentation in (29), the local case needs more care. Indeed,
since we do not assume any property of V̇ (x) outside the
sublevel set E(V, 1), we can only recover convergence for any
x ∈ E(V, 1) as long as the initialization of w ensures y = 0
(namely w = ζ(Kx) − Kx). This is the motivation for the
guarantees of Theorem 2 about Ē . Alternative initializations
of w are also allowed but should be compensated by a smaller
amplitude of V (x). A quantitative margin can be extracted by
the composite Lyapunov-like function

U(x, y) := V (x) +W (y) = V (x) +
1

2
‖y‖2 (32)

that we use in the proof below. Indeed, the set where
U(x, y) ≤ 1 is contained in the basin of attraction. Note that
through the continuous dependence y = Ldz[u−,u+](Kx +
w) − w in (29), U(x, y) is actually a function of the state
(x,w).
Proof of Theorem 2 Using (6), we obtain for function U in
(32)

cU ‖[ xy ]‖2 ≤ U(x, y) ≤ cU ‖[ xy ]‖2 , (33)

where cU = min{ 1
2 , cV } and cU = max{ 1

2 , cV }.
To the end of computing U̇ along dynamics (29), we study

the two terms separately. For V̇ , from the global Lipschitz
property of the saturation function combined with (23), we
establish the bound:

‖sat(u)− sat(ǔ)‖ ≤ ‖u− ǔ‖ ≤ `ζ‖y‖. (34)

Then, exploiting (7), we obtain that for all x ∈ E(V, 1)
(respectively, for all x ∈ Rn),

V̇ (x) = 〈∇V (x), Ax+B(sat(u) + sat(ǔ)− sat(ǔ))〉
≤ −µ‖x‖2 + ‖∇V (x)‖‖B‖‖ sat(u)− sat(ǔ)‖
≤ −µ‖x‖2 + cv`ζ‖x‖‖B‖‖y‖. (35)
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To characterize Ẇ , note that the global Lipschitz property
of the saturation and of the solution ζ of the algebraic loop
implies that

‖Ax+B sat(ǔ)‖ ≤ ‖A‖‖x‖+ ‖B‖‖ζ(Kx)‖ ≤ θ‖x‖, (36)

with θ := ‖A‖ + `ζ‖B‖‖K‖. Moreover, since u = w + Kx,
then (29) provides

u̇ = ᾱ dz∗(y) +Kẋ.

Using again (34), the expression for y in (30), and the upper
bound in (28), for almost all y, we get

Ẇ (y) = y>ẏ = y>
(
∂y

∂u
u̇+

∂y

∂x
ẋ

)
(37)

= y>(−I + L∆u)(ᾱ dz∗(y) +Kẋ) + y>Kẋ

≤ −2ᾱβ2W (y) + y>L∆uK(Ax+B sat(ǔ))+

+ y>L∆uKB(sat(u)− sat(ǔ))

≤ −ᾱβ2‖y‖2 + θ‖y‖‖L‖‖K‖‖x‖+
+ `ζ‖y‖‖L‖‖KB‖‖y‖,

where we used the fact that ‖L∆u‖ ≤ ‖L‖ for all u ∈ Rm.
Combining the bounds in (35) and (37), for almost all (x, y) ∈
E(V, 1)×Rm (respectively, for almost all (x, y) ∈ Rn×Rm),
we get

U̇(x, y) ≤
[
‖x‖
‖y‖

]> [−µ 1
2 (cv`ζ‖B‖+ θ‖L‖‖K‖)

∗ −ᾱβ2 + `ζ‖L‖‖KB‖

] [
‖x‖
‖y‖

]
,

(38)
where “*” denotes symmetric elements. Then, for all

ᾱ > α? :=
µ`ζ‖L‖‖KB‖+ 1

4 (cv`ζ‖B‖+ θ‖L‖‖K‖)2

µβ2
,

(39)

the matrix in the quadratic form in (38) is negative definite.
This implies, for a small enough positive scalar ε and for any
such ᾱ,

U̇(x, y) ≤ −ε ‖[ xy ]‖2 ≤ − ε

cU
U(x, y), for a. all (x, y) ∈ D,

(40)

where we used the second inequality in (33) and where D :=
E(V, 1)× Rm (respectively, D := Rn × Rm).

Considering the last expression in (29) yields

‖y‖ ≤ (1 + ‖L‖)‖u‖+ ‖K‖‖x‖. (41)

Moreover, rearranging (30) and using the global Lipschitz
property of ζ, we get

‖u‖ ≤ ‖ζ(Kx− y)‖ ≤ `ζ‖K‖‖x‖+ `ζ‖y‖,

which then gives

‖w‖ = ‖u−Kx‖ ≤ (1 + `ζ)‖K‖‖x‖+ `ζ‖y‖. (42)

Combining (41) and (42) with (33), we prove that there exist
scalars c1U > 0 and c2U > 0 satisfying

c1U ‖[ xw ]‖2 ≤ U(x, y) ≤ c2U ‖[ xw ]‖2 . (43)

To complete the proof, we fist notice that U can be seen as
a function of the state ξ = (x,w) as follows

V(x,w) := U(x, Ldz[u−,u+](Kx+ w)− w), (44)

and then (40) and (43) establish (22) and (21), respectively.
As a consequence, applying Proposition 3 with V in (44) and
A = {(x,w) : x = 0, w = 0}, we establish exponential
stability of A (the origin).

While for the global case it is evident that the result is global
because D := Rn ×Rm covers the whole space, for the local
case, according to Proposition 3, an estimate of the basin of
attraction is given by

E(V, 1) := {(x,w) ∈ Rn × Rm : V(x,w) ≤ 1}.

In particular, since y = 0 if and only if u = ζ(Kx), or
equivalently w + Kx = ζ(Kx), then for any (x,w) ∈ Ē ,
as defined in (31), we have V(x,w) = U(x, y) = V (x) ≤ 1,
which implies (x,w) ∈ E(V, 1), thus completing the proof.

�

Remark 5. As ᾱ → +∞, the two eigenvalues of the matrix
in (38) tend respectively to −∞ and −µ. Therefore an upper
bound on the convergence rate to the origin is represented by
the rate µ of the feedback involving the exact solution of the
algebraic loop. However, with smaller values of ᾱ ≥ α∗, the
largest eigenvalue of the matrix in (38) gets larger than −µ,
thus we can only guarantee a slower convergence rate, while
still ensuring (global) exponential stability of the origin. �

Remark 6. In the existing literature (see, e.g., [15], [37],
[25]), algebraic loops of the type (2) are often encountered in
conjunction with quadratic performance guarantees in terms
of the L2 gain from an exogenous signal d entering linearly
in the closed-loop dynamics to a linear performance output
z = Czx + Dzu sat(u) + Dzdd. The typical scenario is that
the quadratic decrease (7) is augmented into the disturbance
attenuation bound

V̇ (x) +
1

γ
‖ž‖2 − γ‖d‖2 ≤ −µ‖x‖2,

where V̇ (x) = 〈∇V (x), Ax + B sat(ǔ)〉 and ž := Czx +
Dzu sat(ǔ) + Dzdd corresponds to the performance output
that one would obtain if implementing exactly the solution
ǔ = ζ(Kx) of the algebraic loop. Also in this case, the proof
technique of Theorem 2 applies and can be followed to obtain
the existence of a large enough α∗ such that, for any ᾱ > α∗,
the following quadratic performance condition is satisfied:

U̇(x, y) +
1

γ
‖z‖2 − γ‖d‖2 ≤ −ε‖ [ xy ] ‖2, (45)

where ε is constructed as in (40). Inequality (45) shows that,
for a large enough ᾱ, the original quadratic performance can be
fully recovered also when solving dynamically the nonlinear
algebraic loop. The detailed calculations, which essentially
exploit inequality (34), are not given here to avoid overloading
the notation. �
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V. LINEAR SOLUTION OF [15, REMARK 9]

We revisit in this section the approach already summarized
in Example 2, reinterpreting it as a linear counterpart of our
solution presented in Sections III and IV, which successfully
solves the problems in the case where the (conservative)
sufficient condition (4) is satisfied, namely matrix L−I is Lya-
punov Diagonally Stable. This result was already suggested
in [15, Remark 9] without making any precise statements.
Here, exploiting the stability proof in [32, Thm 4], we prove
rigorously the properties of the corresponding solution. To
simplify the discussion and make suitable comparisons with
the nonlinear approach of Sections III and IV, we write the
linear solution (12) in terms of a scalar gain ᾱ = τ−1.

Let us first consider the static case where ν is constant.
To the end of computing ǔ = ζ(ν), consider the following
selection, which can be seen as a linear counterpart of (14),
and which coincides with (12) when ν is constant:

u̇ = ᾱy = ᾱ(−u+ Ldz[u−,u+](u) + ν), (46)

where ᾱ is a constant gain and y is the out-of-balance vector
introduced in (14a).

We already established in Example 2 (see also Example 3)
that there are cases where the algebraic loop is well-posed but
the dynamical system (46) has an unstable equilibrium. How-
ever, we show below that when the (conservative) sufficient
condition (4) is satisfied (this was the case in [15, Remark 9]),
then (46) is an effective solution to our static problem.

Theorem 3. Assume that the conservative well-posedness
condition (4) holds. For any constant gain ᾱ > 0 and
each constant input ν ∈ Rm, system (46) has a globally
exponentially stable equilibrium point u = ǔ = ζ(ν) with
exponential decay rate proportional to ᾱ.

Proof: First of all note that, due to the strict inequality in
(4), there exists a small enough ε > 0 such that L− (1− ε)I
is Lyapunov Diagonally Stable.

Re-parametrize now time s = ᾱt, so that, using u′ = du
ds ,

(46) yields u′ = −u + Ldz[u−,u+](u) + ν. Following the
steps at the beginning of the proof of [32, Thm 4], define
z = u − ǔ = u − ζ(ν), where ζ has been introduced in
Proposition 1 and is well defined because (4) holds. Then,
exploiting Ldz[u−,u+](ζ(ν))− ζ(ν) + ν = 0, we obtain

z′ = −(z + ζ(ν)) + Ldz[u−,u+](z + ζ(ν)) + ν

= −z + LG(z) (47)
G(z) := dz[u−,u+](z + ζ(ν))− dz[u−,u+](ζ(ν)), (48)

as in [32, eq. (12)]. The incremental [0, 1] sector properties of
the deadzone function imply that function G in (48) belongs to
the sector [0, 1]. In particular, denoting by Gk the components
of G, we have

0 ≤
∫ zi

0

Gk(σ)dσ ≤ |zk|2, ∀k = 1, . . . ,m. (49)

Consider now dynamics (47) and, using the positive scalar
ε introduced at the beginning of the proof, rewrite it as

z′ = −εz − (1− ε)z + LG(z) = −εz + fz(z), (50)

where fz(z) satisfies the assumptions of [32, Thm 4], selecting
Ḡ = I , D = (1 − ε)I and T = L with the notation of [32],
because L − (1 − ε)I is Lyapunov Diagonally Stable. Using
the construction in [32, Thm 4], there exists a positive definite
matrix P and positive scalars ηk, k = 1, . . . ,m, such that the
continuously differentiable function

Y (z) := z>Pz +

m∑
k=1

ηk

∫ zk

0

Gk(σ)dσ (51)

satisfies

〈∇Y (z), fz(z)〉 ≤ 0. (52)

Using bounds (49) allows us to conclude that function Y in
(51) enjoys the following upper and lower bounds

cY ‖z‖2 ≤ Y (z) ≤ cY ‖z‖2, (53)

where cY = λmin(P ) and cY = λmax(P ) + max
k∈{0,...,m}

ηk.

Consider now the following bound, where we use the sector
[0, 1] properties of G:

〈∇Y (z),−εz〉 ≤ −2εz>Pz − ε
m∑
k=1

ηkGk(zi)zi (54)

≤ −2ελmin(P )‖z‖2. (55)

Combining this last bound with (52) and (53) we obtain

Y ′(z) ≤ −2ελmin(P )‖z‖2 ≤ −2
ελmin(P )

cY
Y (z),

so that, going back to the standard derivative V̇ with respect
to t = ᾱ−1s, we obtain

Ẏ (z) ≤ −2ᾱ
ελmin(P )

cY
Y (z), (56)

showing exponential convergence to zero of Y with speed of
convergence proportional to 2ᾱ. Exploiting bounds (53), the
exponential decay proportional to ᾱ is transferred to z = u−ǔ,
thus completing the proof.
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Fig. 7. Block diagram of the linear solution (57) to the dynamic problem.

Consider now the dynamic problem solved in Section IV via
our novel nonlinear approach. As suggested in [15, Remark
9], the linear approach solves the same problem under the
restrictive assumption (4). The proof of this fact was only
sketched in [15, Remark 9]. Unfortunately, that sketch does not
seem to lead to a viable proof path, even though the claimed
result is correct. The proof path that we follow here is based
on the developments of Sections III and IV and is a further
contribution of this paper.
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Inspired by (29), we rewrite the solution (12) as follows:

ẋ = Ax+B sat(Kx+ w),

ẇ = ᾱy

y = Ldz[u−,u+](u)− w,
(57)

which corresponds to the block diagram shown in Figure 7.
This scheme is evidently a linear version of the nonlinear
scheme shown in Figure 6. Under the restrictive assumption
(4), the following theorem parallels Theorem 2 and establishes
the effectiveness of this solution.

Theorem 4. Suppose that the conservative well-posedness
condition (4) holds and there exist a Lyapunov function V
and a scalar cv > 0, such that ‖∇V (x)‖ ≤ cv‖x‖, satisfying
(6), (7) for all x ∈ E(V, 1) (respectively, globally), for the
closed loop (1), (2).

Then there exists α∗ > 0 such that, for any ᾱ ≥ α∗, the
origin of the dynamically augmented implementation (57) is
locally exponentially stable with basin of attraction containing
the set Ē in (31) (respectively, globally exponentially stable).

Proof: The proof follows similar steps to those in the
proof of Theorem 2, by exploiting an extension of the function
Y constructed in the proof of Theorem 3, to the case with
z := u−ǔ, and ǔ := ζ(Kx), so that Y becomes indirectly also
a function of x. In particular, using the same symbol Y with a
slight abuse of notation, the function defined in (51) becomes
(using dz in place of dz[u−,u+] to simplify the notation)

Y (z, x) := z>Pz (58)

+

m∑
k=1

ηk

∫ zk

0

[dz(σ + ζk(Kx))− dz(ζk(Kx))] dσ

The challenge in adapting the proof of Theorem 2 is that
we need to establish suitable properties of the gradient of Y .
In particular, first notice that, for almost all (x, z),

‖∇zY (z, x)‖ = ‖2Pz + diag(η)(dz(z + ǔ)− dz(ǔ))‖
≤ (2‖P‖+ ‖η‖)‖z‖ =: c∇z

‖z‖, (59)

where we used the 1-Lipschitz property of the deadzone
function in the second line. For the gradient with respect to x,
recalling that ζ is globally Lipschitz with Lipschitz constant
`ζ , from (58) we get, for almost all (x, z),

‖∇xY (z, x)‖ ≤
m∑
k=1

ηk

∫ |zk|
0

2`ζ‖K‖dσ ≤ c∇x‖z‖, (60)

where we used again the 1-Lipschitz property of the deadzone
function, and where c∇x

:= 2m‖η‖`ζ‖K‖.
With the bounds (59) and (60) established above on the

gradient of Y , let us now follow similar steps to the proof of
Theorem 2 and, parallel to (32), consider z := u − ǔ, with
ǔ := ζ(Kx) (where ζ is characterized in Proposition 1) and
define

U(x, z) := V (x) + Y (z, x). (61)

Using (6) and (53), function U satisfies

cU ‖[ xz ]‖2 ≤ U(x, z) ≤ cU ‖[ xz ]‖2 , (62)

for some positive scalars cU , cU . Then, with (35) and the left
inequality in (34), we get

V̇ (x) ≤ −µ‖x‖2 + cv‖B‖‖x‖‖z‖, (63)

paralleling (35).
Consider now function Y in (58) and note that, exploiting

(46), (47) and (53), inequality (56) can be written as

〈∇zY (z, x),−z + Ldz[u−,u+](u)− Ldz[u−,u+](ǔ)〉
≤ −ᾱcY ‖z‖2, (64)

with cY := 2
ελmin(P )cY

cY
. Proceeding as in (47) and exploiting

Ldz[u−,u+](ǔ)− ǔ+Kx = 0, we may now write, using (57),
and for almost all x (recall that ǔ = ζ(Kx)),

ż = u̇− ˙̌u = ᾱy +Kẋ−∆ǔKẋ

= ᾱ(−z + Ldz[u−,u+](u)− Ldz[u−,u+](ǔ)) +Bǔẋ,

where Bǔ := K −∆ǔK satisfies ‖Bǔ := K −∆ǔK‖ ≤ b̄ for
some positive scalar b̄, due to the properties of ∆ǔ ∈ ∆, as
per (3). With the above expression of ż, exploiting (34) and
(36), we get from (64),

〈∇zY (z, x), ż〉 ≤ −ᾱcY ‖z‖2 + ‖∇zY (z, x)‖b̄‖ẋ‖ (65)

≤ −ᾱcY ‖z‖2 + b̄ c∇z
‖z‖(θ‖x‖+ ‖B‖‖z‖),

for almost all (x, z). We may proceed similarly for the gradient
with respect to x by upper bounding ‖ẋ‖ as in (65), to get
from (60),

〈∇xY (z, x), ẋ〉 ≤ ‖∇xY (z, x)‖‖ẋ‖ (66)
≤ c∇x‖z‖(θ‖x‖+ ‖B‖‖z‖),

for almost all (x, z). The proof is then completed just as in
the proof of Theorem 2 by
i) first combining bounds (63), (65) and (66) into a quadratic
form involving

[
‖x‖
‖z‖

]
, which can be made negative definite

with a large enough ᾱ;
ii) then performing a swap between variables z and w in
a similar way to what is done at the end of the proof of
Theorem 2, which is possible due to the bounds in (25),
establishing the equivalence between the error coordinates
‖y‖2 or ‖z‖2 = ‖u− ǔ‖2;
iii) finally applying Proposition 3 with V(x,w) := U(x,w +
Kx− ζ(Kx)), paralleling again the proof of Theorem 2.

VI. ADAPTIVE SELECTION OF THE GAIN α

Theorems 2 and 4 both establish the existence of a large
enough gain α∗ ensuring (global) asymptotic stability, but
determining such a gain, depending on the properties of the
dynamics (1) and the gains K and L in the feedback loop, as
represented by the Lyapunov function V , is challenging. The
expression of α∗ given in (39) contains constants whose value
is typically unknown and provides an extremely conservative
bound. While theoretically one could state that selecting very
large values of ᾱ in (29) or (57) is not problematic, undesired
behaviors may emerge in practical implementations due to
unmodeled dynamics, sampled-data implementations in real-
time systems and similar robustness issues.
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Due to this fact, inspired by the works in [42] and [43],
we provide in this section an adaptive selection of α, which
becomes a state of the extended dynamics, with the goal in
mind of addressing situations where the value α∗ is not known.
In particular, we propose the following generalization of the
dynamically augmented feedbacks (29) or (57),

ẋ = Ax+B sat(Kx+ w),

ẇ = −αΦ(y),

α̇ = ρ dz[0,ε](V (x)), α(0) ≥ 0

y = −u+ Ldz[u−i ,u
+
i ](u) +Kx,

(67)

where ρ > 0 is an arbitrary adaptation gain governing the
speed of the adaptation and function Φ(y) may either represent
the nonlinear solution Φ(y) = dz?(y) in (29) or the linear
solution Φ(y) = y in (57).

The adaptive closed loop (67) enjoys a few useful properties.
First of all, note that α is a non-decreasing function, which
intuitively speaking is supposed to asymptotically reach a large
enough value to ensure the decrease of function V . On the
other hand, rather than forcing V to decrease to zero, we seek
for a practical convergence property, deliberately stopping the
adaptation (namely imposing α̇ = 0) whenever V (x) ≤ ε, so
that the adaptive scheme is not sensitive to noise. In particular,
ε should generally be tuned to be larger than the image of
the measurement noise transformed through function V and
the practical convergence properties established in the next
theorem ensure that the plant state x asymptotically reaches
the set

E(V, ε) := {x ∈ Rn : V (x) ≤ ε}. (68)

Remark 7. The control proposed in (67) falls in the class of λ-
tracking control (in our case, ε plays the role of λ) discussed in
the book [44], to which the reader is referred for further details,
including a strategy, viable in the absence of noise, which does
not consider any deadzone in the adaptation equation.

The following theorem provides convergence guarantees for
the global case. While it is possible to provide restrictive
conditions addressing the non-global case, those would require
developing convoluted bounds on the initial value of the state
(x, u, α) that would be of little practical interest.

Theorem 5. Suppose that the algebraic loop (2) is well-
posed and there exist a continuously differentiable Lyapunov
function V and a scalar cv > 0, such that ‖∇V (x)‖ ≤ cv‖x‖,
satisfying (6), (7) for the closed loop (1), (2).

Then, for any value of ρ > 0, given any initial condition
(x(0), u(0), α(0)) ∈ Rn × Rm × R≥0, the corresponding
solution of (67) is such that

i) x converges asymptotically to the set E(V, ε) in (68);
ii) α converges asymptotically to a constant α∞ ≥ 0.

Proof: The proof is inspired by [43] and [42].

Proof of item ii). First note that α is uniformly continuous
(with a bounded derivative) and non-decreasing, due to dynam-
ics (67). Assume, to the end of establishing a contradiction,
that lim

t→+∞
α(t)→ +∞.

This implies that there exists a time t′ ≥ 0 such that

α(t) ≥ α∗, ∀t ≥ t′,
and the main steps of the proof of Theorem 2 may be followed
(for both the cases Φ(y) = dz?(y) in (29) and Φ(y) = y in
(57)) to obtain that function U(x, y) converges exponentially
to zero after time t′. As a consequence, there exists a time
t ≥ t′ such that,

V (x(t)) ≤ ε ⇒ α̇(t) = 0, ∀t ≥ t,
which clearly establishes a contradiction because α(t) cannot
become unbounded. Since α is non-decreasing and bounded,
then, from monotone convergence, it must converge asymp-
totically to its least upper bound α∞.
Proof of item i). Let us first prove that, for any initial condition,
the state x is bounded. For the specific global case addressed
here, this step is simplified 4 by the assumption that (6), (7)
hold globally, which implies global exponential stability. Then,
due to [1], this implies that A is Hurwitz, therefore the x
dynamics in (67) is BIBO stable and, due to the boundedness
of sat, the state x is bounded.

From boundedness of x and continuous differentiability of
V , we have that t 7→ V (x(t)) is uniformly continuous, and
so is t 7→ α̇(t) = ρ dz[0,ε](V (x(t))), due to the Lipschitz
properties of dz. As a consequence, the fact (proven above)
that t 7→ α(t) converges to α∞ as t → ∞, combined with
Barbalat’s lemma [45, Lemma 8.2], implies that t 7→ α̇(t) con-
verges to zero. Equivalently, t 7→ dz[0,ε](V (x(t))) converges
to zero, namely x converges to E(V, ε), as to be proven.

VII. SIMULATION EXAMPLES

We illustrate the linear and nonlinear augmentations pro-
posed in Sections IV, V and VI, corresponding to Theo-
rems 2, 4 and 5, on a few examples taken from the literature.
Since we already illustrated in Example 3 the situations where
the linear solution of Section V fails to work, we focus here on
examples where the sufficient condition (4) holds, so that both
the linear and the nonlinear solutions can be comparatively
applied. We choose small-dimensional examples for simplicity,
even though the advantage of the proposed approach, com-
pared to the lookup table one, is particularly significant when
the number of control inputs is relatively large.

q

-

d

u

ν2

ν1

uc sat
yc

z

y
xp

P

xc

C

xaw

AW

Fig. 8. Example 4: the external anti-windup augmentation scheme of [46]
for a linear saturated plant P under the action of a linear controller C and of
a linear dynamic external anti-windup filter AW .

4In the non-global case, the boundedness of x should be concluded by
a more involved argument contradicting boundedness of α by using radial
unboundedness of V .



12

0 5 10 15 20 25 30
Time t

-40

-20

0

20

40

60
O

u
t-
of

-b
al

an
ce

ve
ct

or
y

=
(y

1
;y

2
)

y1

y2

0 0.2 0.4 0.6 0.8 1
-4

0

4

8

0 5 10 15 20 25 30
Time t

-40

-20

0

20

40

60

O
u
t-
of

-b
al

an
ce

ve
ct

or
y

=
(y

1
;y

2
)

y1

y2

0 0.2 0.4 0.6 0.8 1
-4

0

4

8

Fig. 9. Example 4. Out-of-balance vector y obtained when using the
nonlinear solution (29), top, and the linear solution (57), bottom. The diverging
solutions with ᾱ = 0.01 are dashed and the converging ones with ᾱ = 10
are solid.

Example 4. As a first example, let us consider the longitudinal
dynamics of an F8 aircraft with a model first presented in [47]
and then revisited in later works, such as [15] and [46]. We
consider here the closed loop represented in [46, Figure 2],
which is reported here in Figure 8 for the reader’s convenience.
According to the observations in Remark 3, since all the
blocks of Figure 8 are linear (except for the saturation), then
the overall scheme can be transformed into the scheme of
Figure 1. For the numerical values of the quantities under
consideration, the reader is referred to the reduced-order anti-
windup selection described in [46, §5.2].

By construction, the algebraic loops arising from the designs
in [46] (which use the same sector condition as the one used
in our Proposition 2) guarantee the sufficient condition (4),
therefore both the linear and the nonlinear solutions in (29)
and (57) can be applied. Based on Theorems 2 and 4, for each
one of these solutions, there exists α? such that, for ᾱ ≥ α?,
the dynamically augmented feedback (29) or (57) is globally
exponentially stable (this is because the original designs of
[46] guarantee global exponential stability). We illustrate here
the results obtained by implementing different values of ᾱ with
both our linear and nonlinear augmentations.

Figure 9 shows the out-of-balance vector y in (14a) for the
nonlinearly augmented loop (29) (top) and the linearly aug-
mented loop (57) (bottom). For both the linear and nonlinear
cases, we run two sets of simulations. A first set (dashed lines)
corresponds to the selection ᾱ = 0.01, which is smaller than
α? and leads to diverging responses in both plots. A second set
(solid lines) corresponds to the larger selection ᾱ = 10, which

provide a graceful transient and desirable convergence in both
cases. The two insets show the initial transient of the out-of-
balance vector. With ᾱ = 10 (solid lines), we may observe a
slightly more graceful transient for the nonlinear solution in
this specific case. Nevertheless, the two approaches provide
comparable desirable responses. ?
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Fig. 10. Example 5. Out-of-balance vectors y when simulating the closed
loop of [13, §5] with an unmodeled delay of 0.1 seconds in the algebraic
loop (green). The linear (red) and nonlinear (blue) simulations both show
asymptotic convergence to zero, while the exact solution (black) is associated
with an identically zero response.

Example 5. The authors of [13] pointed out important fragility
issues associated with the implementation of certain well-
posed nonlinear algebraic loops wherein the Lipschitz constant
of the explicit solution is excessively large (see also [48]).
As a motivating example, [13, §5] discusses a specific feed-
back controller (initially introduced in [8]) where introducing
an arbitrary small time delay in the algebraic loop has a
destabilizing effect (see [13, Fig. 6, right]). We emphasize
that the negative effect of this unmodeled delay confirms our
discussions reported in Example 1, wherein an arbitrarily small
delay can destabilize the feedback.

When focusing on that fragile example, our nonlinear and
linear solutions of (29) and (57) provide desirable results, as
expected from Theorems 2 and 4. For those two cases, the blue
(nonlinear) and red (linear) curves reported in Figure 10 repre-
sent the out-of-balance vector y in (29) and (57), respectively
as obtained when running our algorithm with ᾱ = 0.5 (similar
curves are obtained for alternative selections of α). In the same
figure, we report in black the results of a simulation performed
by solving exactly the algebraic loop following the lookup
table technique in [7, §2.3.7, item (3)], which corresponds
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to w = Ldz[u−,u+](u), therefore y ≡ 0. Finally, following
[13, §5], we introduce a time delay of 0.1 seconds between
Ldz[u−,u+](u) and w, and the green curve represents the
arising exponentially diverging evolution of the arising signal
y, as per the last equation (29) and (57). ?
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Fig. 11. Example 6. Adaptive algorithm (67) with the linear (dashed) and
nonlinear (solid) solutions. The top plots represent the components of the
out-of-balance vector y, while the bottom plot represents the adaptive gain α.
Different colors represent different selections of parameter ρ.

Example 6. We illustrate in this example the adaptive ap-
proach of Section VI and, in particular, Theorem 5. To this end,
we reconsider the system discussed in Example 4 (taken from
[46]) where, instead of selecting a constant ᾱ, we implement
the adaptive control law (67). Based on the simulations of
Example 4 (see Figure 9), we expect the asymptotic value
α∞ of α(·) (as characterized in Theorem 5) to be larger than
the value ᾱ = 0.01 that led to instability in Figure 9. Since no
explicit expression of the Lyapunov function certifying global
exponential stability is given in [46], we apply the global
condition at item (iii) of Proposition 2 and select function V
in (67) as V (x) := x>Q−1x, where Q is obtained by solving

the LMIs (5) with Y = 0, yielding

Q−1 =


34.119 0.034299 −273.25 300.42

0.034299 0.0027672 −0.35325 0.37088
−273.25 −0.35325 2193.5 −2410.4
300.42 0.37088 −2410.4 2649.4

 .
We run simulations for both the nonlinear and the linear

solutions (corresponding to (67) with Φ(y) = dz?(y) and
Φ(y) = y, respectively) and we represent by dashed lines the
linear ones and by solid lines the nonlinear ones. Figure 11
shows the simulation results for various values of ρ. The top
two plots report the two components of the out-of-balance
vector y = (y1, y2), while the bottom plot shows the evolution
of α in logarithmic scale (to ease comparison). Three values
of ρ are tested in our simulations, corresponding to ρ = 10−6

(black), ρ = 10−4 (red) and ρ = 10−2 (blue), while the value
of ε in (67) has been set to 10−6. The initial value of α is set
to zero for all our simulations.

We emphasize that the closed-loop response is highly oscil-
latory in the initial “learning” phase, when α is too small and
potentially associated with instability. Once α becomes large
enough, the out-of-balance vector quickly converges to zero.
Note also that the red and black curves have not reached their
steady-state behavior at the end of the displayed simulation
horizon t = 10. For each one of them, the adaptive gain α
reaches the asymptotic values reported in Table I. Interestingly,

TABLE I
ASYMPTOTIC VALUES OF THE ADAPTIVE GAIN α IN EXAMPLE 6.

ρ
Linear solution Nonlinear solution

Φ(y) = y Φ(y) = dz?(y)

10−6 0.15152 0.15098
10−4 0.48617 0.49356
10−2 5.562 6.3398

for this specific example, the asymptotic value of α seems to
be a monotonically increasing function of the gain ρ. Also
note that all these asymptotic values are well below the value
ᾱ = 10 used in Example 4. ?

VIII. CONCLUSIONS

In this paper we provided a comprehensive characterization
of solutions to algebraic loops arising in control systems with
saturations and deadzones. We presented a nonlinear scheme
converging to the exact solution and allowing to preserve sta-
bility properties of algebraic-loop-based feedback controllers
via dynamic augmentation. In addition to giving a nonlinear
solution, whose effectiveness is rigorously proven whenever
the algebraic loop is well-posed, we fully characterized the
limits of an alternative intuitive approach, already suggested
(without any proof) in the literature, and fully characterized
the sufficient conditions under which the approach successfully
solves the problem. Finally, since the ensuing constructions
are based on the tuning of a large enough gain parameter,
we discussed an adaptive implementation, based on high-gain
adaptation. Simulation examples illustrated the relevance of
our results and their relation with existing works.
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