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Equilibria, Stability, and Sensitivity for the Aerial
Suspended Beam Robotic System subject to

Parameter Uncertainty
C. Gabellieri1 IEEE Member, M. Tognon2 IEEE Member, D. Sanalitro3,4, A. Franchi1,3,5, IEEE Fellow

Abstract—This work studies how parametric uncertainties
affect the cooperative manipulation of a cable-suspended beam-
shaped load by means of two aerial robots not explicitly commu-
nicating with each other. In particular, the work sheds light on
the impact of the uncertain knowledge of the model parameters
available to an established communication-less force-based con-
troller. First, we find the closed-loop equilibrium configurations
in the presence of the aforementioned uncertainties, and then we
study their stability. Hence, we show the fundamental role played
in the robustness of the load attitude control by the internal
force induced in the manipulated object by non-vertical cables.
Furthermore, we formally study the sensitivity of the attitude
error to such parametric variations, and we provide a method to
act on the load position error in the presence of the uncertainties.
Eventually, we validate the results through an extensive set of
numerical tests in a realistic simulation environment including
underactuated aerial vehicles and sagging-prone cables, and
through hardware experiments.

Index Terms—Cooperative Aerial Manipulation; Aerial Sys-
tems: Mechanics and Control; Motion Control

I. INTRODUCTION

IT is nowadays acknowledged that the interest in Unmanned
Aerial Vehicles (UAVs) is becoming wider and wider by

virtue of their ability to embrace an ample set of applications.
A very recent and popular topic in aerial robotics is physical
interaction using aerial manipulators [1], [2], [3] for appli-
cations such as contact-based inspection, assembly, human
assistance, etc. To solve these challenges, aerial platforms are
endowed with physical interaction tools, such as cables [4] or
more complex robotic arms [5].

Researchers have considered taking advantage of the co-
operation between multiple robots to enhance the overall
payload and manipulate large objects [6], [7], [8], [9]. Dif-
ferent methods have been developed to tackle multi-robot
aerial manipulation. In [10] and [11] the authors use passive
manipulation tools to solve the cooperative aerial transporta-
tion of rigid and elastic objects, respectively. Multiple flying
arms are instead used in [12], [13]. Cables have been often
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considered in multi-robot manipulation scenarios, because, in
addition to being lightweight ad low-cost, they also mitigate
the coupling between the system dynamics and the robots’
attitude, which can simplify the control problem, especially
when using underactuated aerial platforms.

A. Related Works
The problem of manipulating a cable-suspended load

through a team of aerial vehicles has been studied, e.g., in
[14], [15], [16], [17], [18], [19]. In [20], a robust pose
controller for a cable-suspended load manipulated by multiple
UAVs is presented. Stability is ensured through gain tuning
given a bound on the uncertainties affecting the kinematic
parameters. Formation control to transport the payload with
a focus on robustness is described in [21], where modeling
uncertainties are also taken into account.

A standard system that has attracted substantial interest in
the research community is composed of two aerial vehicles
manipulating a beam-like load through cables [22], [23],
[24], [17], [25], [26], [27]. Such standard configuration is of
interest for several real-world applications, especially in the
construction field, where we find columns, wooden pillars,
iron beams for cement walls, scaffolds, pipes, pieces of roofs,
and other beam-like building elements. Two is the minimum
number of aerial robots allowing to control both the position
and attitude of a cable-suspended beam-like load [23]. While
three aerial robots allow controlling the entire pose of a generic
rigid body [28], using more than two robots for a beam-like
load it is arguably not the optimal solution in most of the cases
because of the increased complexity of the system without
being necessary for the control of the load.

In [23] and [29], the authors propose a method for the
transportation of a cable-suspended beam load by two aerial
vehicles that have access to the state of the load; they consider
rigid and elastic cables, respectively. In [24], centralized and
decentralized model predictive control is proposed for a system
of two UAVs manipulating a beam load through cables.

Decentralized algorithms as [30] are more robust and scal-
able with respect to (w.r.t.) the number of robots. However,
decentralized communication-less approaches have been also
intensively studied in the literature [31] because communica-
tion delays and packet losses are among the principal causes
undermining the performance and stability of the system in
real implementations, and because the hardware and software
complexity can be reduced by confining explicit communica-
tion. In [26], a method relying on visual feedback is presented.



As an alternative to vision, a force-based method that uses
admittance controllers and a leader-follower scheme is typi-
cally used to address communication-less aerial manipulation
of cable-suspended objects [25], [32], [33], [34]. The leader
robot guides the system following a predetermined trajectory,
while the second robot, which carries a portion of the load
weight, follows its lead by sensing the cable force variations.

A primary goal of [25] is to keep the cables always
vertical during transportation, meaning that no internal force
is induced in the object. The authors in [32] extend the results
of [25] towards the N−robot case and provides a method
for tuning the gains of the admittance controllers to improve
the robustness against unmodeled dynamics and parametric
uncertainties. In both works experiments are shown in which,
however, the altitude of the robots is set to a predetermined
reference, implying either a centralized vertical movement
coordination or restricted vertical motion.

For such a popular class of communication-less, admittance-
controlled, and leader-follower schemes, the formal analysis of
the closed-loop system equilibrium configurations and their
stability was presented for the first time in our previous
work [33]. There, we showed that inducing an internal force on
the load through non-vertical cables is required for full-pose
regulation, especially to prevent arbitrary vertical movements
of the robots that would interfere with the regulation of the
load pitch and center position. In [34], we considered N robots,
empirically showing through extensive simulations the effect
of changing the number of leader robots on the stability and
robustness against disturbances. Both works tackle only the
ideal case where perfect knowledge of the system parameters
is available to the admittance controllers of each aerial robot.

Despite being of primary interest, it has been unclear until
now if and how in-practice-unavoidable uncertainties impact
the pose regulation in the aforementioned control framework.
Such a gap is filled in this work by introducing uncertainties
on those system parameters used in the control action.

Adaptive control laws have been proposed in the literature
for the system in question, however, they are based on different
assumptions than those used in this work. For instance, the full
state has been considered available for feedback in [31], or the
robots rigidly attached to the object [35], [36]. Other works
assume the load mass is the sole uncertain parameter and only
focus on the translational velocity regulation [13], or rely on
a communication network [37].

In this work, we have found that the internal force induced
by non-vertical cables plays a fundamental role in enabling
task execution, especially in realistic conditions characterized
by uncertainties. The importance of this is masked when
vertical movements of the robots are prevented or the leader-
follower approach is used solely to regulate the load motion
in the horizontal plane, as in [25], [32]. On the other hand,
the role of the internal force is crucial if the admittance-based
communication-less approach is applied in the full 3D space
and, hence, communication-less full-pose regulation is sought.

While some loads may be damaged by internal forces, this is
easily prevented in practice by enclosing the loads in suitable
cases. Also, internal forces require additional control effort,
which is justified by the benefits in terms of convergence and

robustness of the load pose control, as will be clear in the
following. Indeed, internal forces have been often proposed
also in the robotic grasping literature as a tool to make the
grip on the object robust thanks to friction [38].

B. Contributions of the Work and Outline of the Paper
The contribution of this work is showing the effects of

parametric uncertainties on the static regulation of the load
pose when the usual approach [25], [32], [33], [34] based
on admittance-controlled leader-follower aerial robots is used
for manipulating a cable-suspended beam in the absence of
explicit communication. In this approach, each robot knows
only its own state and the force in its cable, retrievable from
the robot’s state using an external force observer.

Note that, unlike in [29], it is not feasible to assume all
robots have knowledge of the object state. This is because
the object state is based on the state of all robots, but data
exchange among them is not considered in our scenario.

Throughout the manuscript, we show that it is best to avoid
the intuitive idea of having the cables vertical when performing
the manipulation with force-based methods in real scenarios,
i.e., when uncertainties are present. We address the problem
aiming at a mathematically-sound point of view. We point
out that we restrict the analysis to pose regulation, hence, to
quasi-static motion of the load. Tracking of more aggressive
trajectories is left to future work. With the above context in
mind, the key contributions can be succinctly summarized:
• after formally studying the equilibrium points of the

closed-loop system in the presence of uncertain parame-
ters, their stability is proved using Lyapunov’s theory;

• the impact of an internal force induced by non-vertical
cables on the robustness of the load pose control is
formally studied;

• the effect of the internal force of diminishing the sensi-
tivity of the load attitude error to parametric uncertainty
or variations is shown;

• a method for correcting the load position inaccuracy
induced by the uncertainties is also presented;

• we present extensive numerical results and hardware
experiments supporting the claims conveyed by the the-
oretical analysis;

• last but not least, this work generalizes the system model
by considering a generic position of the center of mass
(CoM) of the load rather than assuming it to be in the
middle of the cable anchoring points as done in [33].

The paper is organized as follows. Sec II contains some
background useful to better understand the results of the work.
In Secs III to V, we present the three main contributions of the
work: Sec III contains the derivation of the equilibrium points,
and Sec IV their stability analysis; Sec V highlights the role of
the internal forces in the load error robustness and sensitivity
to parametric variations. The results of the simulations and
experiments are presented in Sec VI and Sec VII, respectively.
Conclusive discussions are in Sec VIII.

II. BACKGROUND

In this section, we provide the background needed to un-
derstand the contribution of the work. Specifically, we quickly
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TABLE I: Notation—General symbols and reference frames

Ii i× i identity matrix
ei i−th column of I3
S(?) skew operator
Ker(?) nullspace of ?
diag(?) diagonal matrix
?> transpose of ?
‖?‖ 2-norm of ?
?̄ desired value of ?
?Eq value of ? at the equilibrium
?̂ uncertain value of ?
∆? ?− ?̂
FW inertial reference frame
FL load reference frame
FRi i−th robot reference frame
{OA,xA,yA,zA} Origin, X−, Y−, and Z− axis of FA
L? ? expressed in FL
?̇ time derivative of ?

TABLE II: Notation—System variables

g gravity acceleration
pL, ṗL, p̈L load position, velocity, acceleration
RL rotation of FL w.r.t. FW
ωL load angular velocity
qL set composed of (pL,RL)

vL [ṗ>L
LωL

>
]>

ψ,θ yaw and pitch of the load
Bi i−th cable attaching point on load
b1 position of point Bi
mL, JL load mass and rotational inertia
L load length, with `= 1/L
ML diag(mLI3,JL)
gL gravity terms in load dynamics
cL Coriolis terms in load dynamics
G load grasp matrix
pRi, ṗRi, p̈Ri i−th robot position, velocity, accel-

eration
RRi rotation of FRi w.r.t. FW
qR [p>R1 p

>
R2]
>

ki stiffness of the i−th cable
l0i rest length of the i−th cable
li pRi−bi, vector along the i−th cable
fi force of the i−th cable on the load
f [f>1 f>2 ]>

q set (qR,qR)
v [v>R v

>
L ]>

x (q,v)
uRi control input of robot i−th
MAi i−th robot control gain: apparent in-

ertia, MA diag(MA1,MA2)
BAi i−th robot control gain: apparent

damping, BA diag(BA1,BA2)
KAi i−th robot control gain: virtual

spring stiffness,KA diag(KA1,KA2)
πAi feedforward term of i−th robot’s

control, πA=[π
>
A1 π

>
A2]
>

tL load internal force
ξ

(
b1mL− b̂1m̂LL

L̂

)
m(q,v,πA) closed-loop dynamics
Q(tL, q̄L) {q satisfying Theorem 2}
Q+(tL, q̄L) Q(tL, q̄L) where R

eq
L e1 has same

sign of (17)
R

eq
L

+
R

eq
L in q ∈Q+(tL, q̄L)

R
eq
L
−

R
eq
L

+
RzL (π)

Q−(tL, q̄L) q ∈Q(tL, q̄L) s.t. Req
L =R

eq
L
−

Q1(0, q̄L) q ∈Q(0, q̄L) s.t. (Req
L e1)

>e3 =+1
Q2(0, q̄L) q ∈Q(0, q̄L) s.t. (Req

L e1)
>e3 =−1

X(0, q̄L) {x : q ∈Q(0, q̄L), v = 0}
Xi(0, q̄L) {x : q ∈Qi(0, q̄L), v = 0}
X (tL, q̄L)

± {x : q ∈Q(tL, q̄L)
±, v = 0}

eRL , epL load attitude and position errors

recall the system’s main variables, the dynamics equations, and
the already established findings.For the sake of readability, the
notation is also summarized in Tables I and II.

The considered system, sketched in Fig. 1, is the typical
rigid beam load attached to two aerial robots through cables.

1) Load Model: The beam-like load has mass mL ∈ R>0
and positive-definite rotational inertia JL ∈ R3×3. The frame
FL = {OL,xL,yL,zL}, where OL coincides with the load
CoM, is rigidly attached to the load. The inertial frame is
denoted with FW = {OW ,xW ,yW ,zW} where zW is oriented
in the direction opposite to the gravity. The position and
orientation of FL w.r.t. FW , defined by the vector1 WpL ∈R3

and the rotation matrix RL, respectively, describe the full
configuration of the load. We recall that the rotation along
the axis that passes between the two cable anchoring points
is not controllable by the robots. Being the load a beam, only
the yaw angle, ψ , and pitch angle, θ , are used to describe its
attitude. The usual equations of a rigid body subject to gravity
and contact forces describe the dynamics of the load as

v̇L =M−1
L (−cL(vL)−gL +G(qL)f) , (1)

where qL = (pL,RL); vL = [ṗ>L
LωL

>
]> with LωL ∈ R3

the angular velocity of FL w.r.t. FW expressed in FL;
ML = diag(mLI3,JL) with I3 ∈ R3×3 the identity matrix;
gL = [mLge>3 0]>, where g is the gravitational acceleration
and ei is the canonical unit vector with a 1 in the i-th entry.
Coriolis and centrifugal terms are given by

cL =

[
0

S(ωL)JLωL

]
where S(?) is the skew operator2, and the grasp matrix is

G=

[
I3 I3

S(Lb1)R
>
L S(Lb2)R

>
L

]
.

The load is suspended by two cables from two anchoring
points, Bi with i = 1,2, for which the position w.r.t. FL is
described by the vector Lbi ∈ R3. Each cable exerts on the
load a force fi such that f = [f>1 f>2 ]> in (1). By simple
kinematics, the position of Bi w.r.t. FW is then given by
bi = pL +RL

Lbi. Since we are considering a beam-like load,
the object CoM is aligned with the two anchoring points
of the cables. Without loss of generality, we assume that
Lb1 = [b1 0 0]> and Lb2 = [−b2 0 0]>, where bi ∈ R>0, for
i = 1,2. We also define the beam’s length L = b1 +b2.

2) Robot Model: We define a frame
FRi = {ORi,xRi,yRi,zRi} rigidly attached to the i−th
robot and centered in its CoM. The i-th cable is attached
to the i-th aerial vehicle at the point ORi, which allows
decoupling the robot’s attitude dynamics from the rest [25],
[29]. FRi is used to describe the position and rotation of the
vehicle w.r.t. FW , denoted by the vector pRi ∈ R3, and the
rotation matrix RRi ∈ SO(3), respectively.

The use of recent controllers for unidirectional- and
multidirectional-thrust vehicles [39], [40] and disturbance ob-
servers for aerial vehicles has been experimentally proven to

1The left superscript indicates the reference frame. From now on, FW is
considered as a reference frame when the superscript is omitted.

2Given x ∈ R3, S(x) ∈ R3×3 is such that S(x)y = x×y for all y ∈ R3.
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Fig. 1: Representation of the system and its major variables. The two
aerial vehicles do not need to be necessarily quadrotors since the
analysis and control design is valid for general aerial vehicles.

result in negligible tracking errors even in the presence of
external disturbances.

Consequently, due to the time-scale separation between
the fast attitude dynamics and the slow translational dy-
namics [41], the closed-loop translational dynamics of the
robot under the influence of the position controller effectively
behaves like that of a double integrator p̈Ri = uRi, where
uRi is a virtual input. In other words, it is safe to assume
that the aerial robots together with a sufficiently accurate
position controller can track any desired C2 trajectory with
negligible error in the domain of interest [42], independently
from external disturbances [33]. In this work, we follow such
experimentally validated common practice for the theoretical
derivations contained in Secs III, IV, and V (see, e.g., the
experiments on cooperative load transport in [25], [32]), and
we utilize underactuated quadrotors for both the numerical and
experimental validations in Sec VI and Sec VII.

3) Cable Model: Cable-to-robot and cable-to-load connec-
tions are modeled as passive and mass-negligible rotational
joints. Besides, the i-th cable is represented as a unilateral
spring along its principal direction, which is a frequently
adopted model [43], [33], [44], [45]. As commonly done
in the state of the art, the cables’ mass and inertia are
assumed negligible in comparison to the robots’ and load’s.
Its parameters are the constant elastic coefficient ki ∈R>0 and
the constant rest length denoted by l0i.

The attitude of the i-th cable w.r.t. FW is expressed by
the normalized vector 3 li/‖li‖ ∈ S2, where li = pRi−bi. The
force acting on the load at Bi, given a certain length ‖li‖ of
the cable, is given by the simplified Hooke’s law:

fi = ‖fi‖
li
‖li‖

, ‖fi‖=

{
ki(‖li‖− l0i) if ‖li‖− l0i > 0
0 otherwise

.

(2)

The force produced on the other hand of the cable, i.e., on the
i-th robot at ORi, is equal to −fi.

4) Controller: We recall that to regulate the pose of the
manipulated load to a desired configuration q̄L = (p̄L,R̄L), an
admittance controller is used on the robots [33]:

uRi =M
−1
Ai (−BAiṗRi−KAipRi−fi +πAi) , (3)

where the positive-definite symmetric matrices
MAi,BAi,KAi ∈ R3×3 are, respectively, the virtual inertia

3S2 = {v ∈ R3 | ‖v‖= 1}

Fig. 2: Schematic representation of the overall system including both
physical and control blocks. The input of the admittance controller
is affected by the uncertainty of the system parameters.

of the robot, and the damping and stiffness coefficients of
a virtual spring-damper system that links the robot and a
desired reference frame; πAi ∈ R3 is an additional forcing
input that is properly set to steer the load to the desired
configuration.

Remark 1. One can notice that (3) requires only local infor-
mation, i.e. the robot’s state (pRi, ṗRi), which can be retrieved
with standard onboard sensors like IMU, GPS, and cameras;
the force applied by the cable fi, which can be directly
measured by an onboard force sensor or estimated by a
sufficiently precise model-based observer as done in [46], [25].
Therefore, the described method is decentralized and does not
require explicit communication between the robots.

5) Closed-loop Model: From equations (1) and (3),
the closed-loop system dynamics can be written as v̇ =
m(q,v,πA) where

m(q,v,πA) =

[
M−1

A (−BAvR−KAqR−f+πA)

M−1
L (−cL(vL)−gL +Gf)

]
, (4)

with qR = [p>R1 p>R2]
>, q = (qR,qL), vR = [ṗ>R1 ṗ>R2]

>

and v = [v>R v>L ]
>; πA = [π>A1 π>A2]

>. Furthermore
MA = diag(MA1,MA2), BA = diag(BA1,BA2) and
KA = diag(KA1,KA2).

In order to coordinate the motion of the robots in a decen-
tralized way, a leader-follower approach is used. In this way,
only the designated leader will have active control over the
position of the load. On the other hand, the other robot will fol-
low, partially sustaining the weight of the load and contributing
to the control of the load attitude. Choosing without loss of
generality, robot 1 as the leader and robot 2 as the follower, the
leader-follower approach is achieved as previously proposed
in [25], [32], [33], [34] by setting KA1 6= 0 and KA2 = 0.

In the following, we present Theorem 1, from [33], along
with two definitions that will help the reader comprehend the
contribution of this work.

Definition 1 (Equilibrium configuration). q is an equilibrium
configuration, indicated as q̄, if ∃ πA s.t. 0= m(q,0,πA), i.e,
if the corresponding zero-velocity state is a forced equilibrium
for the system (4) for a certain forcing input πA.

Definition 2 (Load internal force). For the considered system,
the load internal force is defined as

tL := 1
2f
> [I3 −I3

]>
RLe1, (5)
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where
[
I3 −I3

]>
RLe1 ∈ Ker(G). We have that

• if tL > 0 the internal force causes a tension in the load;
• if tL < 0 the internal force causes a compression.

The following result, proven in [33], provides the expression
of the forcing input πA and the robot configurations qR for
which, given a desired load configuration q̄L, q = (qR, q̄L) is
an equilibrium configuration of the system.

Theorem 1 (equilibrium inverse problem, provided in [33],
reported here for completeness). Consider the closed-loop
system (4) and assume that the load is at a given desired
configuration q̄L = (p̄L,R̄L). For each internal force tL ∈ R,
there exists a unique constant value of the forcing input
πA = π̄A (and a unique position of the robots qR = q̄R) such
that q̄ = (q̄L, q̄R) is an equilibrium of the system.

In particular π̄A and q̄R = [p̄>R1 p̄
>
R2]
> are given by

π̄A(q̄L, tL) =KAq̄R + f̄(q̄L, tL) (6)

p̄Ri(q̄L, tL) = p̄L + R̄L
Lbi +

(
‖f̄i‖

ki
+ l0i

)
f̄i

‖f̄i‖
, (7)

for i = 1,2, where

f̄(q̄L, tL) =
[
f̄1
f̄2

]
=

[ b2mLg
L

b1mLg
L

][
I3
I3

]
e3 + tL

[
I3
−I3

]
R̄Le1. (8)

From (6), we can see that the forcing input is made up of
two parts: one that depends on the robots’ positions computed
from the load equilibrium configuration according to kinematic
relations, and the other one that depends on the equilibrium
forces. The equilibrium forces are composed, according to (8),
by one term that compensates the gravity and one term that
produces an internal force on the load whose intensity is tL.
[33] confirms that, if π̄A is exactly applied to the closed-loop
system (4), q̄L is an isolated load equilibrium configuration if
tL 6= 0, which is asymptotically stable if tL > 0 and unstable
if tL < 0. Instead, q̄L belongs to a continuum of equilibrium
points containing any possible attitude of the load if tL = 0.
In the remainder, Sec. III-Sec. V contain the main theoretical
contributions of the work.

III. EQUILIBRIA UNDER UNCERTAINTY

In this section, the uncertainties are introduced and the
equilibrium configurations of the system subject to those
uncertainties are derived. Note that, in reality, π̄A in (6)
cannot be applied exactly because of parametric uncertainties.
Instead, one can apply only a version of π̄A, denoted with ˆ̄πA,
computed using the nominal, uncertain values of the system
parameters, (see Figure 2 for a schematic representation of
the control scheme with the nominal forcing input). In the
following, if not differently stated, we consider the general
case in which a whole set of uncertainties are present. These
uncertainties affect the control law (6) and, in turn, affect the
system equilibrium configurations. The uncertainties are the
following:
• mL is unknown, but only its nominal value m̂L is available

for the control design. We define the corresponding
uncertainty as ∆m = mL− m̂L;

• b1 is unknown, but only its nominal value b̂1 is available.
The corresponding uncertainty, affecting the load CoM
position, is ∆b = b1− b̂1;

• L is unknown, but only its nominal value L̂ is available,
and we define ∆` =

1
L −

1
L̂
= `− ˆ̀ and ∆L = L− L̂;

• the model of the cable i-th is inexact. Therefore, the
nominal length l0i and stiffness ki are unknown, but
their nominal values l̂0i and k̂i are available for the
control design. We define the uncertainties ∆ki = ki− k̂i,
∆l0i = l0i− l̂0i.

Note that the nominal value of b2, b̂2, depends on the
previously defined quantities according to the relationship
b̂2 = L̂− b̂1. However, for convenience, we also define ∆b2 =
b2− b̂2.

We shall now study the system’s equilibrium configurations
when ˆ̄πA is applied.

Theorem 2 (equilibrium direct problem). Given a desired load
configuration q̄L = (p̄L,R̄L) and the internal force tL ∈ R,
assume that the forcing input ˆ̄πA is computed from (6) and
is applied to the closed-loop system (4). Then, the equilib-
rium configurations are all and only the ones satisfying the
following conditions:

pR1 = ˆ̄pR1−K−1
A1 (∆mge3) := peq

R1 (9)

RL :=Req
L s.t. S(e1)R

eq
L
>
[(

b1mL−
b̂1m̂LL

L̂

)
ge3+

+LtLR̄Le1

]
= 0 (10)

f1 = mLge3−
m̂Lb̂1g

L̂
e3 + tLR̄Le1 := f eq

1 (11)

f2 =
b̂1m̂Lg

L̂
e3− tLR̄Le1 =

ˆ̄f2 := f eq
2 (12)

pL = peq
R1−R

eq
L

Lb1−
(
‖f eq

1 ‖
k1

+ l01

)
f eq

1
‖f eq

1 ‖
:= peq

L , (13)

where ˆ̄pR1 indicates the reference position of the leader robot
computed as in (7), namely starting from p̄L,R̄L, but using
the uncertain parameters.

Proof. ˆ̄πA is defined according to (6), where (8) becomes

ˆ̄f(q̄L, tL) =

[
ˆ̄f1
ˆ̄f2

]
=

[
(L̂−b̂1)m̂Lg

L̂
b̂1m̂Lg

L̂

][
I3
I3

]
e3 + tL

[
I3
−I3

]
R̄Le1.

(14)

The control (3) is

uRi =M
−1
Ai

(
−BAiṗRi−KAipRi)−fi + ˆ̄πAi

)
.

Consider the equilibrium condition

0= m(q,0, ˆ̄πA). (15)

Equation (12) is obtained by substituting the last three lines
of (14) into (15) and solving the equilibrium condition for
the follower robot. Then, (12) can be substituted into the load
translational equilibrium (lines 7, 8, and 9 of (15)) to retrieve
(11). (9) results from the first three lines of (15) using (11).
Finally, (10) can be obtained using (11) and (12) in the last
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(a) Q(0, q̄L) when ξ 6= 0. The po-
sition of the leader robot (in red) is
the same in the two configurations.

(b) Q(0, q̄L) when ξ = 0. The position of the leader
robot (in red) is the same in all infinite equilibrium
configurations, some of which are represented, and one
of which is highlighted. Any other configuration with B1
at the center of a sphere of radius L, B2 on its surface,
and the cables vertical is in Q(0, q̄L) when ξ = 0.

(c) Q(tL, q̄L) with tL 6= 0. The posi-
tion of the leader robot (in red) is the
same in the two configurations. On
top, the load is under tension; below,
it is under compression.

Fig. 3: Representation of the different equilibrium configurations of the system depending on tL and ξ .

(a) tL > 0, ξ > 0. (b) tL > 0, ξ < 0. (c) tL < 0, ξ > 0. (d) tL < 0, ξ < 0.

Fig. 4: Load attitude in the asymptotically stable equilibrium points X +(tL, q̄L) when tL 6= 0. In dashed green, the desired configuration, and
in grey the system with the actual attitude at the equilibrium. The leader robot is red. In X +(tL, q̄L), the attitude at the equilibrium is always
such that Req

L e1 is aligned with tLR̄Le1. However, for tL < 0, this means the system is ‘flipped’ compared to the desired configuration.

three lines of (15). Equation (13) is obtained applying the
analogous of (42).

Definition 3. Given a desired load configuration q̄L =
(p̄L,R̄L), internal force tL ∈ R, and forcing input πA =
ˆ̄πA(q̄L, tL), we define the set of equilibrium configurations as
Q(tL, q̄L) = {q s.t. conditions of Theorem 2 are satisfied}

From Theorem 2, we can distinguish between two scenarios:

Scenario 1: If tL = 0, condition (10) implies that the attitude
of the load is such that Req

L e1 is aligned to e3, and conditions
(11) and (12) imply that both cables are vertical. In other
words, the load at the equilibrium is, irrespective of the
parametric uncertainties, aligned with the vertical direction;
even an infinitesimal parametric uncertainty would lead the
load to this undesired configuration in which the vertical load
is aligned with the two vertical cables. Such a configuration is
clearly not realizable. Note that the position error of the system
at the equilibrium still depends on the parametric uncertainties
(see condition (9)). One can express the alignment between
Req

L e1 and e3 as (Req
L e1)

>e3 = ±1. By convention, let us
indicate with Q1(0, q̄L) the system equilibrium configuration
in which (Req

L e1)
>e3 = +1 holds, namely the one in which

the leader robot is above and the follower robot below, and
with Q2(0, q̄L) the other equilibrium configuration. Fig 3a
illustrates the aforementioned equilibrium configurations. Note
also that there is an additional possibility. With simple ma-

nipulation, remembering that b̂1 = b1 + ∆b, b̂2 = b2 + ∆b2,
L̂ = L + ∆L, and defining ξ as follows, the term in (10)
becomes:

ξ :=

(
b1mL−

b̂1m̂LL
L̂

)
=

∆mb1 +
∆b2

L̂
m̂Lb1−

∆b1

L̂
m̂Lb2. (16)

If ξ = 0, (10) is verified for every value of RL, and hence the
equilibrium configurations Q(0, q̄L) are infinite and such that
the attitude of the load at equilibrium is arbitrary. This happens
in the special case in which the parameters of the system are
exactly known (this situation is the one we analyzed in [33]
and which we can now see as a special case with ξ = 0).
Indeed, ξ = 0 is verified also if the cable parameters are the
sole uncertain ones, as it will be also more deeply discussed
in the following. See 3b for a schematic representation of the
mentioned equilibrium configurations.

Scenario 2: If tL 6= 0, condition (10) holds when the vectors
Req

L e1 and (
ξ ge3 +LtLR̄Le1

)
(17)

are aligned. Similar to before, this condition holds in two
possible cases: when the vectors are aligned and point in the
same direction, or when they are aligned but point in opposite
directions. Let us indicate with Req

L
+ the attitude of the load

for which condition (10) holds and the two vectors Req
L e1 and
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(17) point in the same direction. We indicate the corresponding
load equilibrium configuration as Q+(tL, q̄L). In the other case,
when the two aforementioned vectors point in opposite direc-
tions, at the equilibrium one has that Req

L
−
=Req

L
+
RzL(π);

we indicate the corresponding equilibrium configuration as
Q−(tL, q̄L). Depending on the sign of tL in ˆ̄πA, the forces
in the cables place the load under tension in one equilibrium
configuration and under compression in the other. Figure 3c
represents these equilibrium configurations.
Remark 2. Under the hypothesis that θ̄ 6= π/2+kπ , with k ∈ N
and tL 6= 0, as shown by (10), at the equilibrium

ψ = ψ̄ + kπ (18)

tanθ = tan θ̄ +
−ξ g

LtL cos θ̄
. (19)

In other words, the uncertainties have no effect on the yaw
angle at equilibrium. ψ may differ from ψ̄ by π because, as
already discussed, both Q+(tL, q̄L) and Q−(tL, q̄L) are equi-
librium configurations. Moreover, (19) tells us that not only is
the attitude error proportional to the amount of uncertainty but
also that, as tL decreases, the load at the equilibrium becomes
increasingly vertical. Eventually, for tL = 0 and uncertain
parameters (ξ 6= 0), (10) leads to e1×R>L e3 = 0. Namely, as
previously observed, the load at the equilibrium is aligned with
the vertical direction and the two cables are vertical despite the
value of ξ 6= 0. In other words, if tL = 0 the load attitude error
is unaffected by the parametric uncertainties: the load will
reach the same, clearly undesired, configuration regardless of
the smallest ξ 6= 0.

In the remainder of this section, we briefly analyze the
effects of each uncertain parameter on the final equilibrium.

A. Uncertainty on the load mass mL

In this subsection, we only discuss uncertainty in the load’s
mass, while the other parameters are assumed to be perfectly
known. Equations (9)-(12) become:

peq
R1 = ˆ̄pR1−K−1

A1 ∆mge3 (20)

b1S(e1)R
eq
L
>g∆me3 + tLLS(e1)R

eq
L
>
R̄Le1 = 0 (21)

f eq
1 = mLge3−

b1m̂Lg
L

e3 + tLR̄Le1 =
ˆ̄f1 +∆mge3 (22)

f eq
2 =

b1m̂Lg
L

e3− tLR̄Le1 =
ˆ̄f2. (23)

The position of the load CoM at the equilibrium is different
from p̄L and can be computed from (13) using (20)-(22).

It is worth noting that the leader robot can detect a mismatch
between the known commanded ˆ̄f1 and the actual force f eq

1
measured at steady state. Such a discrepancy solely depends
on ∆m, according to (22). Thus, the leader robot can compute
∆m and, by knowing the nominal value m̂L, retrieve the actual
value of the load mass mL, which can be used to adjust its
own reference force and position. However, note that in a
communication-less setup it is impossible for both robots to
know the correct parameter value based simply on their own
state. In fact, according to (23), the follower robot has no
mismatch between the equilibrium and the force reference
value.

B. Uncertainty on the load length, L, or CoM position, b1

Uncertainties on one of these two parameters have similar
effects. In one case, b̂1 6= b1, namely the load CoM is aligned
to the cables attachment points on the load at an uncertain
position but L is exactly known; in the other case, b1 is exactly
known but L is not. In both cases, at the equilibrium, the
following conditions hold:

peq
R 1 = ˆ̄pR1 (24)

S(e1)R
eq
L
>
(LtLR̄Le1 + ymLge3) = 0 (25)

f eq
1 = ˆ̄f1 (26)

f eq
2 = ˆ̄f2, (27)

where y = ∆b in one case, and y = b1L∆` in the other.
ˆ̄pR1,

ˆ̄f1, and ˆ̄f2 are computed from (7) and (8), where the
corresponding uncertain parameter is used in place of the real
one.

In this case, the leader robot position and both cable forces
at the equilibrium coincide with the respective reference values
available to the robots (see (24)-(27)). Consequently, it is
not possible for any of the robots to estimate the uncertain
parameter at the equilibrium based on the local information
they possess.

C. Uncertainty on the cable length l0i or stiffness ki

Consider an uncertainty on the parameters of the i−th cable
such that the rest length is l0i 6= l̂0i and the stiffness is ki 6= k̂i.
At the equilibrium, f eq

i = f̄i,

Req
L = R̄L. (28)

peq
R1 = ˆ̄pR1 = p̄L + R̄L

Lb1 +

(
‖f̄1‖

k̂1
+ l̂01

)
f̄1

‖f̄1‖
, (29)

and the value of pL at the equilibrium is

peq
L = ˆ̄pR1− R̄L

Lb1−
(
‖f̄1‖

k1
+ l01

)
f̄1

‖f̄1‖
(30)

We highlight that knowledge about the cable properties
is required only when computing the reference position of
the leader robot, according to (7). What is more, only the
information about k1 and l01 is required. We conclude that
knowledge of l02 and k2, is not necessary to stabilize the
load at a desired pose. Moreover, l01 and k1 have no effect on
the load attitude at equilibrium but they do influence the load
position. This is evident by simply substituting (29) into (30)
with l01 6= l̂01 and k1 6= k̂1. Note that, since the robots’ forces
and the leader robot’s position at the equilibrium coincide with
the reference values available to the robots themselves, they
are unaware of the load pose error induced by this uncertainty.

IV. STABILITY ANALYSIS

In this section, we shall analyze the stability of the equi-
librium configurations discovered in Sec III. First, being
x= (q,v) the state of the system, we define the following
equilibrium states (subspaces of the state space):
• X(0, q̄L) = {x : q ∈Q(0, q̄L), v = 0},
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• X1(0, q̄L) = {x : q ∈Q1(0, q̄L), v = 0},
• X2(0, q̄L) = {x : q ∈Q2(0, q̄L), v = 0},
• X +(tL, q̄L) = {x : q ∈Q+(tL, q̄L), v = 0},
• X −(tL, q̄L) = {x : q ∈Q−(tL, q̄L), v = 0}.

Theorem 3. Let us consider a desired load configuration q̄L.
For the system (4), let the constant forcing input be ˆ̄πA. Then,
• X1(0, q̄L) is asymptotically stable if ξ > 0 and unstable

if ξ < 0;
• X2(0, q̄L) is asymptotically stable if ξ < 0 and unstable

if ξ > 0.
• X(0, q̄L) is a set of marginally stable equilibrium points

if ξ = 0.
• X +(tL, q̄L) is asymptotically stable
• X −(tL, q̄L) is unstable.

Proof. Consider the following Lyapunov candidate function:

V (x) =
1
2
(v>RMAvR +e

>
RKAeR +v

>
L MLvL+

+k1(‖l1‖− l01)
2 + k2(‖l2‖− l02)

2)− l>1 f
eq
1 +

− l>2 f
eq
2 +V0 +VR(x), (31)

where the robot position error is eR = pR−peq
R , V0 is constant,

and VR(x) is an additional term explained in the follow-
ing. Function (31) is composed of standard positive definite
quadratic terms equal to zero in the equilibrium points and
by two terms of the form 1

2 ki(‖li‖− l0i)
2)− li>f eq

i , call them
Vi(x): these are linked to the elastic energy of the cables and
have a minimum at the equilibrium as well. A detailed proof of
the former point can be found in [33]. The proof first shows
that Vi(x) is radially unbounded, i.e., lim‖x‖→∞ Vi(x) = ∞.
Then, based on this result and Theorem 1.15 of [47], the
term has a global minimum. Finally, it has been shown that
the global minimum of Vi(x) corresponds to the considered
equilibrium [33].

We define the value of Vi(x) at the equilibrium (its mini-
mum value) as −V0, and we cancel it in (31) so that its value
at the equilibrium is zero.

Let us start considering X1(0, q̄L) and ξ > 0. In this case,
we set VR(x) = ξ g(1− e>3 RLe1). With this choice, (31) is
zero in X1(0, q̄L) because also the term 1−e>3 RLe1 is zero
in X1(0, q̄L) by definition (load aligned with the vertical with
RLe1 and e3 pointing in the same direction) and positive
elsewhere (the scalar product e>3 RLe1 ≤ 1 because e3 and
RLe1 have both unit norm).

Studying the sign of the time derivative of (31), us-
ing (4), (2), and (8), we obtain V̇ (x) =−vR

>BAvR, which
is clearly negative semidefinite. In particular, let us define
E = {x : V̇ (x) = 0}. In this case, we have E = {x : vR =
0, ωL = 0}.

Since V̇ (x) is only negative semidefinite, we rely on
LaSalle’s invariance principle to complete the proof: one can
easily verify from (4) that the largest invariant set in E is
X1(0, q̄L).

Analogous reasoning can be used when ξ < 0. The com-
putation of V̇ does not change, and it is, thus, negative
semidefinite. However, X1(0, q̄L) is a set of accumulation for
the points where V (x) < 0 if ξ < 0. To see this, consider

v = 0 and all quantities at the equilibrium apart from RL,
which is such that e>3 RLe1 = 1− ε , with ε > 0 arbitrarily
small, meaning that RL is arbitrarily close to Req

L . Under
these conditions, V (x) = gξ ε < 0. All conditions of Chetaev’s
theorem (the formulation of both this and La Salle’s in-
variance principle can be found, e.g., in [48]) are satisfied.
Hence, we can conclude that X +(tL, q̄L) is unstable. To
show that X2(0, q̄L) is asymptotically stable if ξ < 0, we
set VR(x) = −ξ g(1+ e>3 RLe1), which is zero in X2(0, q̄L)
(when e>3 RLe1 = −1 by definition), and positive elsewhere.
The same Lyapunov candidate function is used to show that
X2(0, q̄L) is unstable if ξ > 0. The reasoning is exactly dual
to the previous case, hence it is here omitted for the sake of
space.

Consider now ξ = 0. We set VR(x) = 0, so that (31) is zero
in X(0, q̄L) and positive elsewhere. Moreover, V̇ is negative
semidefinite as before. One can easily show that the largest
invariant set is X(0, q̄L). We can thus say that the system
state converges to a state x ∈X(0, q̄L), which is, however,
composed of a continuum of equilibrium points. Hence they
are only marginally stable.

Finally, we study the stability of the equi-
librium points when tL 6= 0. In this case, we
set VR(x) =−(ξ ge3 + tLLR̄Le1)

>RLe1 +V ′0, with
V ′0 = (ξ ge3 + tLLR̄Le1)

>Req
L e1. Clearly, VR(x) and hence

V (x) are zero at the equilibrium. Moreover, VR(x) is positive
elsewhere by definition of X +(tL, q̄L), (ξ ge3 + tLLR̄Le1
and RLe1 are aligned and point in the same direction when
RL = Req

L , so that VR(x) has its minimum in X +(tL, q̄L)).
Moreover, V̇ (x) = −vR

>BAvR, and the application of
LaSalle’s invariance principle leads to the conclusion
that X +(tL, q̄L) is an asymptotically stable equilibrium
point, similarly to before. To show the instability of
X −(tL, q̄L), we use the same choice for VR(x). However,
since ξ ge3 + tLLR̄Le1 and RLe1 are anti-parallel in
X −(tL, q̄L), VR(x) is still zero at the equilibrium but negative
when RL is arbitrarily close to Req

L . X −(tL, q̄L) is a point of
accumulation for the points in which V̇ (x) is negative, while
V̇ (x) remains negative semi-definite. For Chetaev’s theorem,
we conclude that X −(tL, q̄L) is unstable.

It is important to highlight that, as shown in Figure 4, for
tL > 0, X +(tL, q̄L) corresponds to a configuration of the
system in which Req

L (irrespective of the sign of ξ ) is the
closest condition to R̄L, namely to the desired attitude, with a
displacement due to the parametric uncertainty. Instead, for
tL < 0, is X −(tL, q̄L) the equilibrium point in which the
configuration of the load is the closest to the desired one.
We can say that these configurations are the most desirable
equilibrium configuration of the load in the presence of para-
metric uncertainties. As stated in Theorem 3, tL > 0 stabilizes
the most desirable equilibrium configuration of the load, which
is, instead, unstable if tL < 0.

V. THE ROLE OF THE INTERNAL FORCES ON THE LOAD
ERROR CAUSED BY PARAMETRIC UNCERTAINTIES

In this section, we provide a formal analysis of the role that
the internal force plays in determining the load pose at the
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equilibrium in the presence of parametric uncertainties. We
shall consider the simultaneous presence of all the uncertain-
ties listed in Sec III. We start considering the load attitude.

A. Load attitude error

Theorem 4. The load attitude error at the equilibrium eRL ,
is inversely proportional to the intensity of a positive internal
force tL. Furthermore, defining

eRL = ‖RLe1× R̄Le1‖2, (32)

the error sensitivity w.r.t. ∆m, ∆b, ∆ki , ∆l0i , ∆`, defined as
∂eRL

∂∆m
,

∂eRL

∂∆b
,

∂eRL

∂∆ki

,
∂eRL

∂∆l0i

,
∂eRL

∂∆`
, respectively, is given by:

∂eRL

∂∆m
=
−2b̂1 ˆ̀g2α cosθ 2

t2
LL2 (33)

∂eRL

∂∆b
=
−2m̂L ˆ̀g2α cosθ 2

t2
LL2 (34)

∂eRL

∂∆ki
=

∂eRL

∂∆l0i
= 0 (35)

∂eRL

∂∆`
=
−2b̂1m̂Lg2α cosθ 2

t2
LL2 (36)

where

α := (b1−∆b)(mL−∆m)(`−∆`)−mLb1.

Proof. With a positive internal force, at the equilibrium, (18)
with k = 0 holds. Thus, the quantity |θ eq − θ̄ | is a viable
indicator of the attitude error. According to (19) and for
monotonicity of the tan() function, the difference between
θ̄ and θ eq varies with the quantity ξ g/(LtL cos θ̄), which is
inversely proportional to tL. Hence, also the error is. Rewrite
now (10) in FW as:

Req
L e1×

[(
b1mL−

b̂1m̂LL
L̂

)
ge3 +LtLR̄Le1

]
= 0. (37)

Define also:

b̂1m̂LL−b1mLL̂
tLLL̂

(Req
L e1×ge3) := x. (38)

Thus, from (37), we have that Req
L e1× R̄Le1 = x and, from

(32), that eRL = x
>x. Regarding the sensitivity, we show the

proof for (33) only, because the other cases follow the exactly
same analysis. We can write the sensitivity as:

∂eRL

∂∆m
= 2x>

∂x

∂∆m
=

= 2[
1

tLL
RLe1× (α)ge3]

>[
1

tLL
RLe1× (∆b−b1)ge3] (39)

Eventually, (39) can be rewritten as (33) by remembering that,
given three vectors a,b, and c

(a×b)>(a×c) = |a|2(b>c)− (a>b)(a>c).

Note that we are considering tL 6= 0 by assumption.

Remark 3. The definition in (32) is a suitable metric for the
attitude error. if we consider the equilibrium point X +(tL, q̄L),

namely the one in which the displacement between Req
L e1

and R̄Le1 is the smallest, and hence our desired equilibrium
point. Firstly, RLe1 is enough to describe the entire attitude
of the beam-like load. Secondly, eRL is zero when Req

L = R̄L
and increases with the displacement between the two vectors
Req

L e1 and R̄Le1, at least locally (for displacements smaller
than ±π/2).

Moreover, Theorem 4 shows that increasing the intensity of
the internal force tL not only makes the attitude error smaller
in presence of parametric uncertainties, but it also makes the
error more robust to variations of such uncertainties.

This last aspect may be of particular practical interest:
as a matter of fact, parametric uncertainty variations take
place every time the actual physical parameters of the system
change. A possible real-world scenario is the transportation of
objects that are slightly different from each other, e.g., in mass
and length. One may want to transport the objects without
changing every time the controller parameters for the sake
of time, thus dealing with varying parametric uncertainties.
Especially interesting, as also highlighted in [49], is the
variation affecting the CoM position, which may change online
when transporting moving masses, i.e. containers of liquids, or
boxes with smaller objects free to move inside. The previous
analysis suggests that in all these cases having a larger value
of tL is of uttermost benefit, resulting in an error less sensitive
to the aforementioned parametric variations.

B. Load position error

Differently from what happens to the load attitude error,
the load position error at the equilibrium does not necessarily
decrease when tL increases. While to claim a positive statement
a comprehensive proof is needed, as we did in Sec V-A,
to deny a positive statement, as we do in this section, a
counterexample is enough. First, it is easy to see that, when
only l01 is uncertain, the load position error at the equilibrium,
epL := peq

L − p̄L is

epL = ∆l
b2mge3 + tLR̄Le1

‖b2mge3 + tLR̄Le1‖
. (40)

Eq. (40) suggests that epL is equal to a unit vector multiplied
by ∆l01 , thus, its module is independent of the value of tL.
Moreover, in the next section, we provide two numerical exam-
ples showing that, depending on the specific combination and
values of uncertainties, epL may even have a non-monotonic
evolution for increasing values of tL, with an initial increase
or decay.

We show, however, that the load position error at the
equilibrium can be corrected, ideally to zero, without altering
the leader-follower architecture nor requiring direct communi-
cation between the robots.

We recall that, due to parametric uncertainties, the reference
position given to the leader robot is

ˆ̄pR1 = p̄L + R̄L
L
b̂1 +

(
‖ ˆ̄f1‖

k̂1
+ l̂01

)
ˆ̄f1

‖ ˆ̄f1‖
. (41)
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Fig. 5: Sagging cable model in the simulated scenario.

By using kinematics, (9), and (41), the load position at the
equilibrium is

peq
L = peq

R1−
(
‖f eq

1 ‖
k1

+ l01

)
f eq

1
‖f eq

1 ‖
−Req

L b1

= p̄L + R̄L
L
b̂1 +

(
‖ ˆ̄f1‖

k̂1
+ l̂01

)
ˆ̄f1

‖ ˆ̄f1‖
−K−1

A ∆mge3+

−
(
‖f eq

1 ‖
k1

+ l01

)
f eq

1
‖f eq

1 ‖
−Req

L b1. (42)

From (42), we have an expression for epL. Now, if the leader
robot knows the load position, it can recognize that, at steady
state, p̃L 6= 0 holds, and it can adjust its position reference to
2 ˆ̄pR1 accordingly, with

2 ˆ̄pR1 = ˆ̄pR1−epL. (43)

In this way, there will be a new equilibrium in which the leader
robot position is

peq
R1 =

2 ˆ̄pR1−K−1
A ∆mge3 (44)

and thus (42) becomes

peq
L = p̄L (45)

It is important to highlight that the leader robot position
only influences the load position and not the attitude at the
equilibrium, which depends only upon the reference forces
computed based on R̄L. Indeed, by evaluating (4) at the
equilibrium, the last three rows are

S(Lb1)R
eq
L
>
f eq

1 +S(Lb2)R
eq
L
>
f eq

2 = 0,

which becomes, substituting f eq
i , eq. (10). Hence, the leader

robot can correct the load position error, while the internal
force independently acts decreasing the attitude error. Because
the load’s position can be steered relying solely on the leader
robot, unlike the load’s attitude which is determined by the
cooperative actions of both robots, the control approach can
maintain its distributed nature. However, to correct the load
position error, the leader robot must have access to the load
position. This implies that the leader robot would require
additional sensors, such as cameras to accomplish this task.

VI. NUMERICAL VALIDATION

Extensive numerical simulations have been carried out using
a URDF description of the system and ODE physics engine
in Gazebo. We avoided validating the theoretical results on
the same equations used to derive them. The main differences

between the control model used to derive a fully satisfactory
theoretical analysis and the complex simulation model used
to study the applicability of the theoretical results in the real
world are in the following.
• Under-actuated quadrotors have been deliberately pre-

ferred for the validation since they represent the worst-
case in terms of the validity of some of the assumptions
made in the theoretical analyses. Validation using fully-
actuated aerial robots would have seemed, instead, limit-
ing.

• The cables are subject to sagging, which is obtained by
using a series of several links interconnected by passive
universal joints, as can be seen in Figure 5.

• In the validation, there is no guarantee of perfect tra-
jectory tracking as assumed in the theory but a standard
position controller [50] is implemented for each robot.

• The wrench observer proposed in [51] is used to estimate
the force applied by the cable on the robot. The observer
introduces noisy and delayed measurements when com-
pared to ideal force measurement.

The control software has been implemented in Matlab-
Simulink using the Generator of Modules GenoM4. The in-
terface between Matlab and Gazebo is also managed by a
Gazebo-genom3 plugin5. All phases of a physical experiment,
starting with takeoff, are replicated in the simulated environ-
ment using a state machine, ensuring that the results are as
realistic as possible. After the takeoff, the two robots lift the
load, and the admittance controller is activated right after.

The robot models are two quadrotors weighing 1.03 kg and
having a maximum thrust for each propeller of 6 N. They are
equipped with two light cables of length 1 m and attached to
a bar. The bar is a one-meter-long link with a mass of 0.5 kg.

1) Case of tL > 0: Figure 6 contains the average load
attitude error at a steady state in a total of 40 simulations.
The average is computed in a 2-second time window. In all
those simulations, p̄L = [1 1 1]> m, the load desired yaw
is ψ̄ = π

8 radians, and the desired pitch θ̄ = − π

12 radians.
In each of the three plots in Figure 6, for four different
values of the internal force, tL = {0.5, 0.75, 1, 1.25}N, four
different simulation results are displayed for each relative error
equal to 0%,5%,10%,15% on a specific uncertain parameter
considered separately from the others. Specifically, Figure 6a,
considers the uncertainty on mL, Figure 6b on L, and Figure 6c
on b1. Even in the absence of uncertainties, small errors of less
than 2.5 degrees in the bar’s attitude control can be found.
This can be due to minor tracking errors or possible biases
in the wrench observer, which estimations are unbiased as
soon as the robot takes off. These considerations ignore the
external forces applied by the loose cables at the startup phase.
From all the three figures one can appreciate the beneficial
effect of larger values of tL on the attitude error: for the same
value of the uncertainty, the attitude error decreases if the
tL increases. Moreover, the plots show that for every value
of tL, increasing the uncertainty on one parameter increases
the attitude error, as expected, but, especially, the increase

4https://git.openrobots.org/projects/genom3
5https://git.openrobots.org/projects/mrsim-gazebo
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Fig. 6: Each point in the plots is a value of the average attitude error at steady state in a simulation with tL as indicated in the legend, and
parametric uncertainty as indicated in the x-axis of the corresponding plot. A total of 40 simulation results are known in these plots.

(a) l̂01 = 1.15 · l01. As expected, peq
L 6= p̄L, but ψeq = ψ̄ and θ eq = θ̄ . (b) l̂02 = 1.15 · l02. As expected, qL = q̄L at the equilibrium.

Fig. 7: Simulations for cable parameter uncertainties and tL = 1N. Dotted lines of the same color indicate the corresponding desired quantities.

is smaller for high values of tL (this can be seen by the
slope of the lines in the plots). These results confirm the
theoretical findings collected in Theorem 4. Figure 7a and 7b
provide validation of the theoretical results on the effect of the
uncertainties affecting the cable parameters. The leader robot
position reference is not given as a step, but the robot follows a
5-th order polynomial trajectory to reach the desired position.
An error of 15% is considered to affect the length of the leader
and follower robot’s cable in Figure 7a and 7b, respectively.
In both cases, tL = 1N. Note that the displayed time starts after
the admittance controller activation. The reader can appreciate
how uncertainties on the leader robot’s cable model only cause
peq

L 6= p̄L, while Req
L = R̄L, and how the follower robot’s cable

parameters are not needed to control the load pose, as expected
from (30) and (28).

2) Case of tL < 0: Figure 7a and 7b provide validation
of the theoretical results on the effect of the uncertainties
affecting the cable parameters. The leader robot position
reference is not given as a step, but the robot follows a 5-
th order polynomial trajectory to reach the desired position.
An error of 15% is considered to affect the length of the leader
and follower robot’s cable in Figure 7a and 7b, respectively.

In both cases, tL = 1N. Note that the displayed time starts after
the admittance controller activation. The reader can appreciate
how uncertainties on the leader robot’s cable model only cause
peq

L 6= p̄L, while Req
L = R̄L, and how the follower robot’s cable

parameters are not needed to control the load pose, as expected
from (30) and (28).

3) Case of tL < 0: Here we show the behavior of the system
with tL < 0. The unstable nature of the desired configuration
with no parametric uncertainties was shown in [33]. The sim-
ulations of the realistic system, in accordance with Theorem
3, show that X −(tL, q̄L) is unstable when the parametric
uncertainties are considered. We report the results of two
simulations with p̄R1 = [0 0 1]> m, ψ̄ = π

8 radians, and θ̄ = 0
radians (desired horizontal bar). We simulate an uncertainty of
5% both on mL and L such that (i) ξ > 0 (we chose m̂L < mL
and L̂ > L) and (ii) ξ < 0 (thanks to m̂L > mL and L̂ < L).
In both cases, we obtained that, in accordance to Theorem
3, the system converges to X +(tL, q̄L). Since tL < 0, that
means, as reported in Figure 9, that we have ψeq = ψ̄ − π ,
while θ eq varies according to the sign of ξ , as expected (see
Figure 4). The cable forces were observed to be as desired,
except for the vertical component of f̄1, as expected due to
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(a) ξ > 0: m̂L = 0.95mL, L̂ = 1.05L. (b) ξ < 0: m̂L = 1.05mL, L̂ = 0.95L

Fig. 8: Simulations for cable parameter uncertainties and tL = −1N. Dotted lines of the same color indicate the corresponding desired
quantities.

Fig. 9: Frames from two simulated scenarios for tL < 0. Top: ξ < 0; bottom: ξ > 0. The leader has a red arm and the follower a blue arm.
However, to facilitate the distinction among them, a red letter ‘L’ indicated the leader and a blue ‘F’ the follower.

∆m 6= 0 according to (22). Figure 9 shows the behavior of
the system in the described cases through screenshots of the
Gazebo environment, and Figure 8 shows the evolution of the
main quantities during the simulated tasks.

4) Case of tL = 0: When it comes to the case in which
ξ 6= 0 and tL = 0, clearly, the sole equilibrium configurations
are not really attainable: all elements of the system are
supposed to be aligned vertically, one on top of the others
(see Figure 3a). When simulating such condition in Gazebo,
we found that numerical issues arise as the system approaches
the expected configuration in which the link that models the
load and those that model the cables are vertically aligned.
Despite the practical irrelevance of the considered case, with
the objective of demonstrating the validity of the theoretical
results, simulations have been carried out also for this case,
using the Matlab-Simulink simulator used in [33].

In that simulator, the cables are modeled as mass-less
extensible elements and the force is directly retrieved by the
model of the cable without resorting to a wrench observer.

(a) ξ > 0 (b) ξ < 0

Fig. 10: Superposition of different instants of simulations with ξ 6= 0
and tL = 0. The solid image is the final equilibrium. The grey cylinder
is the load, and the red cross is the leader robot. The red cylinder is
the desired (identical to the initial) pose of the load.

Nevertheless, underactuated quadrotors are still considered,
as well as the same trajectory controller. The results of two
simulations can be found in Figure 10. Even though the load
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Fig. 11: ‖epL‖ for different values of tL in two cases in which
different values of the uncertainties are considered on two parameters,
m and l01. epL does not always decrease when tL increases.

Fig. 12: Simulation results for tL = 1 N and a 5% error on each
parameter. Around Time = 41 s, signed by a red vertical line, the
leader robot reads the load position, and corrects its own reference
position in order to zero the load position error. Dotted lines of the
same color indicate the corresponding desired quantities.

has been initialized in the desired configuration, with position
p̄L = [0 0 1]> and the same desired yaw and pitch as before, it
moves to the vertical equilibrium, with the leader on top when
ξ > 0, and the follower on top when ξ < 0, as explained by
the stability analysis in Sec. IV.

5) Position Error: First, we provide in Figure 11 two
examples of the different behavior of epL when tL increases
and different values of the uncertainties are present. This
fully supports the finding that the load position error at the
equilibrium does not necessarily decrease when tL is increased.
Anyway, as we have seen from the theory, it is possible to

correct the error of the load position by acting solely on the
leader robot reference position. This, in turn, does not affect
the regulation of the load attitude. In Figure 12, we report the
results of a Gazebo simulation in which the initial and desired
load pose are as in Sec. VI-1, tL = 1 N, and an error equal
to 5% of the nominal value is considered on each uncertain
parameter. After 41 s, the leader robot corrects its reference
position based on the position of the load according to (43).
The results show that, consequently, the load is steered to the
desired position when the new equilibrium is reached. On
the other hand, as expected from the theory (see Eq. (10)

Fig. 13: Picture from the experiment showing: one of the motion cap-
ture system cameras 1); two quadrotors 2); two cables 3) connecting
the robots to the carbon fiber load 4). The markers on the bar track
the pose of the object for validation purposes.

and (11)), due to the inaccurate knowledge of the system
parameters, the value of the pitch angle and the leader robot’s
cable force at the equilibrium do not match the desired values.
Also, as predicted, one can observe in Figure 12 that their
values are not affected by the change in the leader robot
position.

VII. EXPERIMENTAL VALIDATION

A. Experimental Setup

1) Hardware: The system is made of a 2-meter-long carbon
fiber bar carried by two UAVs by means of two cables that
connect the robots at the bar’s end. Each cable is 1 m long,
the bar weighs 0.300 kg and each UAV weighs 1.03 kg. The
cable anchoring points are installed on the robots’ underside
at a distance d= [0 0 −d]> from their CoM, where d =0.15
cm. Such a geometrical configuration changes the process by
which the leader reference position ˆ̄pR1 is generated as it is
explained in the Appendix. In addition, the aerial vehicles have
an onboard PC, four ESCs (Electronic Speed Controllers) that
control the propeller speed in closed-loop [52], and a flight
controller [52].

2) Software: The control architecture runs in part onboard
and in part on a desktop PC. A state-of-the-art UKF-based
state estimation, which fuses Motion Capture measurements at
120 Hz with the IMU measurements at 1 kHz, and a geometric
control are carried out as part of the onboard task at 1 kHz.
The admittance filter and wrench observer are implemented in
Matlab/Simulink and run on the desktop PC. Wi-fi is used for
command and data transfer between the desktop PC and the
onboard computers at 100 Hz.

A picture taken from the experiments and highlighting the
main setup components is in Fig 13.

3) Experimental Results: Two main sets of experiments
were carried out: one in which the controllers use as accurate
as possible values of the system parameters; one in which the
controllers use values that differ by 10% from the accurate
corresponding value. We refer to the former case as ‘without
uncertainty’, and to the latter as ‘with uncertainty’.

For each case, we performed 3 tests in which the same
manipulation task is carried out for 3 values of tL, equal to 0 N,
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Fig. 14: Evolution of the pitch (top) and yaw (bottom) angle errors
during three experiments with no parameter uncertainties for different
values of tL. As expected, the yaw angle converges to the desired
value while for the pitch to do the same, tL > 0 is needed. On the
left is the boxplot of the average attitude error over the last 20 seconds
of the experiments.
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Fig. 15: Evolution of the pitch (top) and yaw (bottom) angle errors
during three experiments with 10% uncertainty on each parameter
for different values of tL. As expected, the yaw angle converges to
the desired value while the pitch angle increases for tL = 0 as the
load becomes more and more vertical. For tL > 0, the pitch becomes
closer and closer to the desired value. On the left is the boxplot of
the average attitude error over the last 20 seconds of the experiments.

1.5 N, and 3 N. The task execution starts with initial steps in
which the load, from position pL(0) = [0 0 0]>m and zero
yaw and pitch angles, is lifted by the robots through simple
upwards motions; hence, the proposed controller is activated
and the robots try to bring the load to p̄L = [0.5 0 1.5]>m
with ψ̄ = 11.5 deg and θ̄ =−6.9 deg.

The case with no uncertainties is depicted in Figure 14 for
all three experiments. The evolution of the attitude error of the
load is displayed, in the form of quantities θ− θ̄ and ψ−ψ̄ . As
expected from (18), the yaw angle at the equilibrium coincides
with the desired value. Instead, the pitch angle converges to an
arbitrary value when tL = 0, in this case with an error around
18 deg, when tL = 0. When a positive internal force is applied,
the attitude error is reduced up to about 2.5 deg.

Figure 15 shows the three tests in the case with uncer-
tainties. Again, in accordance with (18), there is no error
on the load yaw angle at the equilibrium. The equilibrium
configuration could not be reached with tL = 0. This is also
the case in general since so would imply that all bodies are
vertically aligned. However, the reader can clearly appreciate
the increasing pitch angle evolution, in line with (10). As
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Fig. 16: Experimental results: tL = 3 N and 10% error on each
parameter. At Time=100 s, signed by a vertical red stripe, the leader
robot corrects its reference position to zero the load position error.

soon as tL > 0, the pitch angle at the equilibrium approaches
the desired value, as expected by (19). Box plots of the
equilibrium error between 130 s and 150 s of the task execution
are displayed in Figure 14 and 15 for both cases, i.e. with and
without uncertainties, respectively.

The evolution of all the most relevant quantities can be
appreciated in Figure 16 for another task execution with
uncertainties and tL = 3 N. Furthermore, in that experiment, the
leader robot corrects its own reference position at Time=100 s
according to (43) and, as a consequence, the load equilibrium
position is also adjusted. This validates the load position
correction method involving solely the leader robot.

VIII. CONCLUSIONS

This work concerns the decentralized cooperative manipu-
lation of a cable-suspended load by two aerial robots in the
absence of direct communication. The robots are controlled
with a leader-follower scheme achieved through an admittance
controller on each robot. The controllers make use of system
parameters that are subject to uncertainty. The equilibrium
points and their stability were formally studied. The theory
demonstrates how an internal force that stretches the load
longitudinally, generated by non-vertically operated cables, is
beneficial in terms of stability of the load pose control as
well as robustness to the uncertainties. The theoretical results
were validated through realistic numerical simulations and
experiments.

In the future, an extension to non-beam loads with uncertain
parameters will be formally addressed. In this case, N > 2
robots will be considered as two robots would not be able to
control the full pose of the cable-suspended object: rotations
around the line connecting the two cables attaching points on
the object would not be controlled [53]. Experimental tests
outdoors could be valuable to assess the robustness of the
method in windy conditions and when relying on outdoor
state-estimation techniques. Investigating how the approach
could benefit from limited communication between the robots,
e.g., low-frequency communication, is an interesting future
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direction. Exploring the possibility of communication-less
trajectory tracking and of adaptive laws is left as future work.

APPENDIX

Underneath the robots, at a distance d from the CoM
(d = [0 0 0.15]>cm), the cable anchoring points are attached.
A reference position taking into account such a displacement
can be provided to the leader robot at the equilibrium accord-
ing to

ˆ̄pr
R1 = ˆ̄pR1−Rr

R1d (46)

where Rr
R1 is the leader robot rotational matrix at the equi-

librium. This matrix is computed from the leader robot’s
equilibrium condition under the assumption that the thrust is
aligned with the external forces

Rr
R1e3 =

mRge3 +
ˆ̄f1

||mRge3 +
ˆ̄f1||

:=

A1
A2
A3

 .
Hence, assuming the yaw is controlled to zero,
Rr

R1 = RY (θ
r
R1)RX (φ

r
R1) with θ r

R1 = atan(A1/A3) and
φ r

R1 = asin(−A2).
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