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With the objective of developing computational methods for stability analysis of switched systems, we consider the problem of finding the minimal lower bounds on average dwell-time that guarantee global asymptotic stability of the origin. Analytical results in the literature quantifying such lower bounds assume existence of multiple Lyapunov functions that satisfy some inequalities. For our purposes, we formulate an optimization problem that searches for the optimal value of the parameters in those inequalities and includes the computation of the associated Lyapunov functions. In its generality, the problem is nonconvex and difficult to solve numerically, so we fix some parameters which results in a linear program (LP). For linear vector fields described by Hurwitz matrices, we prove that such programs are feasible and the resulting solution provides a lower bound on the average dwell-time for exponential stability. Through some experiments, we compare our results with the bounds obtained from other methods in the literature and we report some improvements in the results obtained using our method.

Introduction

Switched systems comprise a family of dynamical subsystems orchestrated by a switching signal that activates one of these subsystems at a given time. This abstract framework has been useful in modeling a class of hybrid systems with Email addresses: shafstein@hi.is (Sigurdur Hafstein), aneel.tanwani@cnrs.fr (Aneel Tanwani) Preprint submitted to European Journal of Control continuous and discrete dynamics. Another common source of switched systems is uncertainty quantification in continuous-time systems and the associated differential inclusions. Stability analysis of switched systems, therefore, has gathered a lot of attention in the literature. The references [START_REF] Liberzon | Switching in systems and control[END_REF][START_REF] Shorten | Stability criteria for switched and hybrid systems[END_REF] provide a comprehensive overview of the different approaches on this topic.

When analyzing stability under arbitrary switching, existence of a common Lyapunov function is a necessary and sufficient condition for the asymptotic stability of an equilibrium of the switched system [START_REF] Dayawansa | A converse Lyapunov theorem for a class of dynamical systems which undergo switching[END_REF]. Thus, over the years, a lot of attention in the literature has been given to computing a common Lyapunov function for the switched system under different hypotheses. For some results in this direction, the reader may refer to [START_REF] Ahmadi | Joint spectral radius and path-complete graph Lyapunov functions[END_REF] for discrete-time systems, and [START_REF] Della Rossa | Continuous-time switched systems with switching frequency constraints: Path-complete stability criteria[END_REF] for continuous-time systems. Particularly relevant to this paper is the technique based on the construction of continuous and piecewise affine (CPA) Lyapunov functions, which is reviewed in [START_REF] Giesl | Review of computational methods for Lyapunov functions[END_REF]. The papers [START_REF] Baier | Linear programming based Lyapunov function computation for differential inclusions[END_REF][START_REF] Hafstein | Lecture Notes in Electrical Engineering, chapter Sliding Modes and Lyapunov Functions for Differential Inclusions by Linear Programming[END_REF] present the adaptation of computing CPA Lyapunov functions in case of arbitrarily switching systems. However, such methods have not yet been used in the context of constrained, or dwell-time based, switched systems.

For certain applications, existence of common Lyapunov function is a stringent requirement, and may not hold for the given system data. For that reason, when the individual subsystems are asymptotically stable and one can not compute a common Lyapunov function, it is natural to ask how we can guarantee stability for a certain class of switching signals (which is smaller than the set of switching signals with arbitrary switching). The works [START_REF] Morse | Supervisory control of families of linear set-point controllers -Part I. exact matching[END_REF] and [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF] studied the stability of switched systems by putting a bound on how fast the switches can occur. Depending on the system data, lower bounds were derived on the (average) dwell-time which ensures global asymptotic stability if the length of interval between two consecutive switches (on average) is greater than the derived lower bound. A tutorial like exposition of these concepts also appears in [START_REF] Liberzon | Switching in systems and control[END_REF]Chapter 3]. Several works have followed up to extend this idea in several directions. Some generalizations have been addressed in the recent papers [START_REF] Liu | ISS and integral-ISS of switched systems with nonlinear supply functions[END_REF][START_REF] Della Rossa | Instability of dwell-time constrained switched nonlinear systems[END_REF] with nonlinearities in the system data.

Computational methods with multiple Lyapunov functions for getting best possible lower bounds on the dwell-time have not received much attention in the literature. The references [START_REF] Briat | Convex conditions for robust stabilization of uncertain switched systems with guaranteed minimum and mode-dependent dwell-time[END_REF][START_REF] Geromel | Stability and stabilization of continuoustime switched linear systems[END_REF][START_REF] Liu | Average dwell-time minimization of switched systems via sequential convex programming[END_REF][START_REF] Mitra | Verifying average dwell time by solving optimization problems[END_REF] provide some algorithms for calculating lower bounds on the dwell-time in the linear case. Among these, the papers [START_REF] Liu | Average dwell-time minimization of switched systems via sequential convex programming[END_REF][START_REF] Mitra | Verifying average dwell time by solving optimization problems[END_REF] build on dwell-time bounds obtained from multiple Lyapunov functions, which is also the case for this article. The authors of [START_REF] Mitra | Verifying average dwell time by solving optimization problems[END_REF] developed optimizationbased methods for the automatic verification of dwell-time properties. On the other hand, [START_REF] Liu | Average dwell-time minimization of switched systems via sequential convex programming[END_REF] proposes some relaxations in the form of sequential convex programs to compute lower bounds on the average dwell-time. With similar motivation, this article studies computational methods for computing best possible lower bounds on the (average) dwell-time using linear programming (LP) methods. In fact, our approach uses techniques based on the construction of CPA Lyapunov functions, under the constraints that are normally imposed for dwell-time based stability conditions. For a given family of dynamical subsystems with asymptotically stable origin, the question of interest is to find the smallest lower bound on the dwell-time, which ensures asymptotic stability of the switched system under the so-called compatibility constraints. Such questions can be formulated as an optimization problem and in its full generality, it is a nonconvex problem, even when dealing with linear subsystems and quadratic Lyapunov functions for individual subsystems.

In this paper, we provide a new technique for solving the optimization problem that corresponds to the computation of a minimum average dwell-time that ensures stability. The intermediate step in getting this bound is to first compute the Lyapunov functions for individual subsystems satisfying certain inequalities.

In our work, we search for these Lyapunov functions from the family of continuous piecewise affine functions, in contrast to the quadratic ones. This is done by discretizing the state space into simplices and solving for the values of the Lyapunov functions at the vertices of the simplices, using some inequality constraints.

The resulting optimization problem actually turns out to be a linear program. The solution to this linear program provides us with a Lyapunov function for each subsystem and also a dwell-time bound.

The remainder of the paper is organized as follows: we recall some basic results on (average) dwell-time stability in Section 2 and describe the problem being studied in this paper. Section 3 provides the LP formulation of the proposed problem along with some results about the feasibility of these programs. We provide some simulations and comparisons with other methods in Section 4, followed by concluding remarks in Section 5.

Problem Setup

We consider time-dependent switched dynamical systems described as

ẋ = f σ (x) (1) 
where, for some given index set P ⊂ N, the function σ : [0, ∞) → P is piecewise constant and right-continuous, called the switching signal. The discontinuities of σ, called the switching times, are assumed to be locally finite. The vector fields f i : R n → R n , for each i ∈ P, are assumed to be locally Lipschitz and with f i (0) = 0. We say that a switching signal σ has an average dwell-time τ a > 0, if there exists N 0 > 0, such that

N σ (t, s) ≤ N 0 + t -s τ a ,
where N σ (t, s) denotes the number of switches over the interval (s, t). The set of all switching signals with average dwell-time τ a is denoted by Σ τa .

For the stability of the origin for such systems, let us recall the following result, which follows from [START_REF] Hespanha | Stability of switched systems with average dwell-time[END_REF], [START_REF] Liberzon | Switching in systems and control[END_REF]Chapter 3], and [18, Theorem 1]:

Theorem 1. Suppose that there exist C 1 Lyapunov functions V p : R n → R ≥0 , i ∈ P, satisfying the following:

(L1) There exist α, α ∈ K ∞ such that α(∥x∥) ≤ V i (x) ≤ α(∥x∥), ∀x ∈ R n , i ∈ P. (2) 
(L2) There exists a Lipschitz function ρ ∈ K, such that, for every i ∈ P,

∇V i (x) • f i (x) ≤ -ρ(V i (x)) ∀x ∈ R n , (3) 
(L3) There exists χ ∈ K ∞ such that, for every i, j ∈ P,

V j (x) ≤ χ(V i (x)) ∀x ∈ R n , i ̸ = j. (4) 
Then the origin is globally asymptotically stable for the switched system (1), uniformly over the set Σ τa , for τ a satisfying

τ a > sup s>0 χ(s) s 1 ρ(r) dr. (5) 
The lower bound on the average dwell-time given in [START_REF] Dashkovskiy | Input-to-state stability of nonlinear impulsive systems[END_REF], with nonlinear functions, has also appeared in the context of impulsive systems in [START_REF] Samoilenko | Impulsive Differential Equations[END_REF], [START_REF] Dashkovskiy | Input-to-state stability of nonlinear impulsive systems[END_REF]. In what follows, we will restrict ourselves to linear subsystems where the functions α and ρ can be taken as linear. Writing (5) for such cases allows us to better understand the degrees of freedom at our disposal for minimizing the lower bounds on τ a .

Corollaries and special cases

Let us present two corollaries to this result depending on the class of functions chosen for V i and the vector fields f i , i ∈ P.

Corollary 1. Assume that for each i ∈ P, there exist symmetric, positive definite matrices P i ≻ 0, such that

A ⊤ i P i + P i A i + αP i ⪯ 0, for every i ∈ P, (6a) P j ⪯ µP i , for every j ̸ = i (6b)
for some α > 0 and µ ≥ 1. Then the switched system (1)

with f i (x) = A i x, i ∈ P,
has a globally exponentially stable equilibrium at the origin, uniformly over the set Σ τa , where τ a satisfies

τ a > ln(µ) α . (7) 
Thus, for linear dynamics and quadratic Lyapunov functions, we can get a lower bound on the average dwell-time by solving matrix inequalities ( 6). If we take, α > 0, µ ≥ 1, and P i ≻ 0 as the unknowns in ( 6), then these inequalities are not linear with respect to the unknowns, and it is difficult to compute a solution.

The article [START_REF] Liu | Average dwell-time minimization of switched systems via sequential convex programming[END_REF] addresses the problem of minimizing ln(µ) α subject to inequalities (6) by proposing convex relaxations.

For the algorithms proposed in this paper, we first need a corollary to Theorem 1 with continuous Lyapunov functions, and norm-like bounds on the growth and Dini-derivative of such functions. For a continuous function V : R n → R, we define the Dini-derivative along the solutions of the system ẋ = f i (x) as

D + V (x, f i (x)) := lim sup h→0+ V (ϕ i (h, x)) -V (x) h
where t → ϕ i (t, x) is an absolutely continuous function that satisfies ϕ i (0, x) =

x and φi (t, x) = f i (ϕ i (t, x)) almost surely for t ≥ 0. We use this notion to state the following corollary to Theorem 1, obtained by taking α, α, ρ to be homogenous functions, and χ being linear.

Corollary 2. Assume that for each i ∈ P, there exist continuous functions V i : R n → R, such that

a∥x∥ d ≤ V i (x) ≤ a∥x∥ d , for every i ∈ P, (8a) 
D + V i (x, f i (x)) ≤ -α∥x∥ d , for every i ∈ P, (8b) V i (x) ≤ µV j (x), for every j ̸ = i. ( 8c 
)
for some d > 0, a ≥ a > 0, α > 0 and µ ≥ 1; Then the switched system ẋ = f σ (x) has a globally exponentially stable equilibrium at the origin, uniformly over the set Σ τa , with τ a satisfying,

τ a > a ln(µ) α . (9) 
In contrast to Theorem 1, the proof of Corollary 2 using Dini derivative requires some care but essentially follows similar concepts. In this paper, we will build on the statement of Corollary 2 and, in particular, address the following problem:

Problem statement. With d = 1 and for fixed values of a > 0, a > 0, and µ ≥ 1, find piecewise linear functions V i , for each i ∈ P, that satisfy (8) while maximizing α.

The reason for fixing the constants a > 0, a > 0, and µ ≥ 1 is that the foregoing problem then transforms into a linear program. We will provide the formulation of this linear program and discuss its feasibility in the next section.

For the sake of clarity in this conference paper, we present our ideas for the linear vector fields but similar concepts can be extended to nonlinear systems.

Quadratic functions and matrix inequalities

Before discussing the LP problem and CPA Lyapunov functions, let us first look at the inequalities (8) for the case d = 2 more carefully. In this case, we let V i (x) = x ⊤ P i x, with symmetric and positive definite P i ∈ R n×n . In particular, (8) takes the following form, where I is the identity matrix:

     aI ⪯ P i ⪯ aI, i ∈ P, A ⊤ i P i + P i A i ⪯ -αI, i ∈ P, P i ⪯ µP j , i, j ∈ P. (10) 
In [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF], if we fix a, a > 0 and µ ≥ 1, then the inequalities result in LMIs with unknowns P i , i ∈ P, which can be solved to maximize α. Practically one can select a small, e.g. a = 10 -5 as we do in our examples, and then a large enough a > 0 will ensure that τ a = a ln(µ)/α can be made minimal for the given µ ≥ 1 by maximizing α. Indeed, assume the conditions [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF] are fulfilled for some positive constants a = a * , a = a * , α = α * and V i (x) = x ⊤ P * i x, P * i ∈ R n×n symmetric, i ∈ P. Then we have the lower bound τ * a = a * ln(µ)/α * on the average dwelltime. Now fix new constants a, a > 0 such that a/a ≥ a * /a * and set α = (a/a * )α * and P i = (a/a * )P * i . Then, for V i (x) := x ⊤ P i x = (a/a * )x ⊤ P * i x, we have V i (x) ≤ µV j (x), and

a∥x∥ 2 ≤ a * a a * ∥x∥ 2 ≤ V i (x) = (a/a * )x ⊤ P * i x ≤ a∥x∥ 2
for i, j ∈ P. That is, the constraints (10) are fulfilled with these values of a, a, α, P i and further, for the lower bound on the average dwell-time we have

τ a = a ln(µ) α = a ln(µ) aα * a * = a * ln(µ) α * = τ * a .
In other words, for a fixed µ ≥ 1, if there is a solution to [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF] for some choice of a * , a * , α * which yields the bound τ * a for the average dwell-time, then by choosing a/a large enough, one can always find another solution to [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF] which gives at least as good a bound on average dwell-time as τ * . Thus, given µ ≥ 1, maximizing α > 0 under the constraints (10) for a fixed a, a > 0 delivers as good lower bounds on the average dwell-time τ a as minimizing τ a = a ln(µ)/α, where both a and α are variables, given that a/a is large enough.

Note that in the setting of the LMI problem [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF] we are searching for quadratic Lyapunov functions for the individual subsystems ẋ = A i x, i ∈ P, which can be conservative. In the next section we consider a similar approach for modeling the conditions (8) using piecewise linear Lyapunov functions and an LP formulation to compute them. Due to the foregoing observation, when solving (8) using an LP formulation, we will fix a and a with a/a large enough and maximize α.

Continuous Piecewise Affine Lyapunov Functions and Linear Programming Formulation

Our LP approach to compute piecewise linear Lyapunov functions fulfilling the conditions ( 8) is based on the so-called CPA method to compute Lyapunov functions, see e.g. [START_REF] Marinósson | Lyapunov function construction for ordinary differential equations with linear programming[END_REF][START_REF] Baier | Linear programming based Lyapunov function computation for differential inclusions[END_REF][START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF][START_REF] Hafstein | Lecture Notes in Electrical Engineering, chapter Sliding Modes and Lyapunov Functions for Differential Inclusions by Linear Programming[END_REF]. Its description is somewhat more involved than the LMI approach, because it is based on partitioning a neighborhood of the origin into simplices and the underlying idea behind constructing this collection of simplices, called triangulation, is described in the next subsection.

The Triangulation T F

K

Roughly speaking, a triangulation is the subdivision of a subset of R n into simplices. A suitable concrete triangulation for our aim of parameterizing Lyapunov functions for the individual subsystems is the triangular-fan of the triangulation in [START_REF] Giesl | Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions[END_REF], where its efficient implementation is also discussed. In its definition, we use the functions R J : R n → R n , defined for every J ⊂ {1, 2, . . . , n} by

R J (x) := n i=1 (-1) 1 J (i) x i e i ,
where e i is the standard ith unit vector in R n , and 1 J (i) = 1 if i ∈ J and 0 otherwise. Thus, R J (x) is the vector x, except for a minus has been put in front of the coordinate x i whenever i ∈ J .

We first define the triangulation T std and use it to construct the intermediate triangulation T K , which in turn is used to define our desired triangulation T F K .

The standard triangulation T std consists of the simplices

S zJ ρ := co x zJ ρ 0 , x zJ ρ 1 , . . . , x zJ ρ n ,
where co denotes the convex hull, and

x zJ ρ j := R J z + j i=1 e ρ(i) , (11) 
for all z ∈ N n 0 = {0, 1, . . .} n , all J ⊂ {1, 2, . . . , n}, all ρ ∈ S n , and j = 0, 1, . . . , n. Here, S n denotes the set of all permutations of {1, 2, . . . , n}.

Now fix a K ∈ N + = {1, 2, . . .} and define the hypercube

H K := [-K, K] n .
Consider the simplices S zJ ρ ⊂ H K in T std , that intersect the boundary of H K .

We are only interested in those intersections that are (n -1)-simplices, i.e. we take every simplex with vertices x j := R J z + j i=1 e ρ(i) , j ∈ {0, 1, . . . , n}, where exactly one vertex x j * satisfies ∥x j * ∥ ∞ < K and the other n of the n + 1 vertices satisfy ∥x j ∥ ∞ = K, i.e. for j ∈ {0, 1, . . . , n} \ {j * }. Then we replace the vertex x j * by 0; it is not difficult to see that j * is necessarily equal to 0. The collection of such vertices triangulates H K and this new triangulation of H K is our desired triangulation T K .

It has been shown [START_REF] Albertsson | Simplicial complex with approximate rotational symmetry: A general class of simplicial complexes[END_REF] that it is often advantageous in the CPA method to map the vertices of the triangulation by the mapping F : R n → R n , F(0) = 0 and

F(x) := ∥x∥ ∥x∥ ∞ x, if x ̸ = 0. ( 12 
)
(a) The triangulation T F 5 in two dimensions (b) The triangulation T F 5 in three dimension; note that the origin is a vertex of all the tetrahedra in T F 5 .

Figure 1: Our proposed triangulation in R 2 and R 3 .

Note that F maps the hypercubes {x ∈ R n : ∥x∥ ∞ = r} to the spheres {x ∈

R n : ∥x∥ = r}.
Finally, we define the triangulation T F K that will be used in the LP problem to parameterize CPA Lyapunov functions. Let T F K be the triangulation consisting of the simplices

S ν := co{0, F(x ν 1 ), F(x ν 2 ), . . . , F(x ν n )}, where co 0, x zJ ρ 1 , x zJ ρ 2 , . . . , x zJ ρ n ∈ T K .
The subset of R n subdivided into simplices by the triangulation T F K is denoted by

D T F K := Sν ∈T F K S ν .
Figure 1 depicts two exemplary triangulations of the type T F K for two and three dimension with K = 5. The implementation of the triangulation is discussed in [START_REF] Hafstein | Implementation of simplicial complexes for CPA functions in C++11 using the Armadillo linear algebra library[END_REF][START_REF] Giesl | Implementation of a simplicial fan triangulation for the CPA method to compute Lyapunov functions[END_REF].

LP Problem

We are now ready to state our LP problem to parameterize piecewise linear Lyapunov functions for the switched system fulfilling the conditions in [START_REF] Giesl | Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions[END_REF]. For formulating this LP, and showing that its feasibility provides us the lower bound on average dwell-time, we focus our attention on the switched linear systems:

ẋ = A σ x (13) 
with σ : [0, ∞) → P being the switching signal, and A i ∈ R n×n , for each i ∈ P.

We use three constants a, a > 0 and µ ≥ 1 in the LP problem. We want the ratio a/a to be large, as discussed in the last section, and then we want to try out different µ ≥ 1 to obtain as good a lower bound on the average dwell-time as possible.

The variables of the LP problem are α ∈ R and V x,i ∈ R for every vertex x of a simplex in T F K and every i ∈ P.

The objective of the LP problem is to maximize α.

The constraints of the LP problem are:

(C1) The first set of constraints is that, for every i ∈ P, we set V 0,i = 0, and for every vertex x of a simplex in T F K and for every i ∈ P:

a∥x∥ ≤ V x,i ≤ a∥x∥ (14) 
(C2) The second set of constraints is more involved. For every simplex

S ν := co{0, x ν 1 , x ν 2 . . . , x ν n } ∈ T F K , we define the matrix X ν = (x ν 1 x ν 2 • • • x ν n ),
i.e. x ν k is the kth column of X ν . Further, we define for every i ∈ P, the

vector of variables v ν,i = V x ν 1 ,i V x ν 2 ,i • • • V x ν n ,i ⊤ .
The constraints are: for every simplex S ν ∈ T F K , for all j = 1, . . . , n and all i ∈ P:

v ⊤ ν,i X -1 ν A i x ν j ≤ -α∥x ν j ∥. (15) 
Note that these constraints are automatically fulfilled for j = 0, i.e. x ν j = 0.

(C3) The third set of constraints is: for every vertex x of a simplex in T F K and for every i, j ∈ P,

V x,j ≤ µV x,i . (16) 

Solution to LP delivers lower bounds on dwell-time

In the previous subsection, we formulated an LP which basically specified the constraints in (8) at the vertices of the simplices contained in the triangulation. Here we prove that the feasibility of such a program provides us with piecewise linear Lyapunov functions for the individual subsystems over the entire state space that additionally fulfill (8c), thereby providing a lower bound on the average dwell-time.

Toward this end, assume that the LP problem in Section 3.2 has a solution with α > 0. We then define the piecewise linear function V i : D T F K → R, for every i ∈ P, in the following way:

• For every x ∈ D T F K there exists a simplex S ν = co{0, x ν 1 , x ν 2 . . . , x ν n } ∈ T F K such that x ∈ S ν and there exist a unique λ ∈ [0, 1] n , n j=1 λ j ≤ 1, such that x = n j=1 λ j x ν j . We define

V i (x) = n j=1 λ j V x ν j ,i .
It is not difficult to see that the functions V i , i ∈ P, are continuous functions that are linear on each simplex S ν ∈ T F K , in particular each V i has the constant gradient ∇V ν,i := v ⊤ ν,i X -1 ν (row vector) on the interior of S ν , see e.g. [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF]Rem. 9]. Hence, for any x ∈ S ν ∈ T F K , x = n j=1 λ j x ν j , we have for any i ∈ P by (C1) and (C2) that

∇V ν,i • A i x = v ⊤ ν,i X -1 ν A i n j=1 λ j x ν j = n j=1 λ j v ⊤ ν X -1 ν A i x ν j ≤ -α n j=1 λ j ∥x ν j ∥ ≤ - α a n j=1 λ j V i (x ν j ) = - α a V i ( n j=1 λ j x ν j ) = - α a V (x). (17) 
Now, for any x in the interior of D T F K , we have that, for any i ∈ P, there exists a simplex S ν ∈ T F K and an h > 0, such that

x + [0, h]A i x ⊂ S ν ,
where ν can depend on both x and i. Because V i is linear on S ν we have lim sup

h→0+ V i (x + hA i x) -V i (x) h = ∇V ν,i • A i x ≤ - α a V i (x)
and since this holds true for all i ∈ P, we have

D + V i (x, A i x) ≤ -α a V i (x). Since V i (x) = n j=1 λ j V x ν j ,i ≥ a n j=1 λ j ∥x ν j ∥ ≥ a∥x∥
by the constraints (C1), and for all i, k ∈ P,

V i (x) = n j=0 λ j V x ν j ,i ≤ n j=0 λ j µV x ν j ,k = µV k (x),
it is clear that the V i fulfill the constraints [START_REF] Giesl | Implementation of a fan-like triangulation for the CPA method to compute Lyapunov functions[END_REF] in the interior of D T F K . Just define a ′ := max ∥x∥=1 max i=1,2,...,N V i (x) and we have

a∥x∥ ≤ V i (x) ≤ a ′ ∥x∥, D + V i (x, A i x) ≤ - α a V i (x)
for all x in the interior of D T F K . Note that we proved [START_REF] Liu | Average dwell-time minimization of switched systems via sequential convex programming[END_REF] directly from the constraints and did not go through constraints ( 8) with a = a ′ , which would lead to a worse estimate on τ a .

By extending V i to R n in the obvious way, i.e. for every x ∈ R n there exists a S ν and unique numbers λ j ≥ 0 such that x = n j=1 λ j x ν j (a cone defined by the vertices of S ν ) and we set V i (x) = n j=1 λ j V x ν j ,i , we see that the V i fulfill the constraints (8) on R n , for each i ∈ P.

Simulations

We will now test our LP algorithm for several examples from the literature.

The class of systems for these simulations is [START_REF] Hafstein | Lecture Notes in Electrical Engineering, chapter Sliding Modes and Lyapunov Functions for Differential Inclusions by Linear Programming[END_REF]. The set P and the matrices {A i } i∈P will be specified differently for the examples considered here. In the examples, we always fix a = 10 -5 and a = 10. We used YALMIP / sdpt3 and Gurobi to solve the LMI and LP problems, respectively.

Example 1: Dwell-time stable but not under arbitrary switching

Consider the switched system [START_REF] Hafstein | Lecture Notes in Electrical Engineering, chapter Sliding Modes and Lyapunov Functions for Differential Inclusions by Linear Programming[END_REF] with

A 1 = -0.1 -1 2 -0.1 , A 2 = -0.1 -2 1 -0.1
This example is taken from [16, p. 26]. It is stable for a certain minimum value for the average dwell-time, but it is not stable under arbitrary switching. Solving (10) using the LMI approach, the best τ a obtained is 5.1929 with µ = 2. Using the LP approach, the best τ a obtained is 4.5283 with µ = 1. 

A 1 = -1 -1 1 -1 , A 2 = -1 -10 0.1 -1
This example is taken from [START_REF] Dayawansa | A converse Lyapunov theorem for a class of dynamical systems which undergo switching[END_REF]. It is stable under arbitrary switching but the matrices A 1 and A 2 do not share a common quadratic Lyapunov function. This example helps us see the limitation of using LMIs because searching for quadratic certificates in this case is not the best choice.

Solving [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF] using LMIs, the minimum value for τ a is τ a = 17.0394 with µ = 3.1. Whereas, with our LP approach, K = 20 gives a solution with µ = 1. Hence, the origin is stable under arbitrary switching (τ a = 0), and we get a common piecewise linear Lyapunov function although no quadratic Lyapunov function exists. This example was also considered in [START_REF] Liu | Average dwell-time minimization of switched systems via sequential convex programming[END_REF] with a graph that determines the switching sequence, and in this particular, we have the star topology. With K = 6, we get a solution with µ = 1, i.e. the origin is exponentially stable under arbitrary switching (which is then arbitrary without the graph too).

With the LMI approach in (10), the minimum value for the average dwell-time is τ a = 4.6870 with µ = 2.7. 

Conclusions

We considered a linear programming (LP) based computational algorithm for computing lower bounds on average dwell-times that ensure asymptotic stability of switched systems. The algorithm is essentially based on gridding the state space into simplices and computing values for the corresponding Lyapunov functions at the vertices of these simplices. By choosing appropriate values of the parameters in the inequalities defining the linear program, the solution provides us lower bounds on the average dwell-time necessary to assure stability. From the simulations, we see in several case studies, that LP based bounds are better than the ones based on linear matrix inequalities (LMIs). This is not really surprising since LMIs restrict the Lyapunov functions to be quadratic, whereas the proposed LPs can potentially approximate a broader class of Lyapunov function templates.

Computing dwell-time via inequalities in (8) introduces some conservatism because we optimize over a single parameter α while keeping µ fixed. The same conservatism is observed in going from ( 6) to [START_REF] Giesl | Revised CPA method to compute Lyapunov functions for nonlinear systems[END_REF]. As a topic of ongoing investigation, we are working out algorithm to optimize α and µ simultaneously directly using an LP version of [START_REF] Dayawansa | A converse Lyapunov theorem for a class of dynamical systems which undergo switching[END_REF]. Other than understanding the complexity of the proposed algorithm, we also aim to study the extensions of the proposed algorithm in different directions, which includes the study of generalized lower bounds on average dwell-time [START_REF] Kundu | Generalized switching signals for input-to-state stability of switched systems[END_REF][START_REF] Liu | ISS and integral-ISS of switched systems with nonlinear supply functions[END_REF].
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 4 and using K = 500 in the triangulation. Using triangulations with fewer triangles delivers a higher lower bound τ a for the average dwell time; K = 50 gives τ a = 5.16493 with µ = 1.45, K = 100 gives τ a = 4.79315 with µ = 1.4, and K = 200 gives τ a = 4.62407 with µ = 1.4. In all cases they are better than the bounds from the LMI approach.

  (a) LMIs with quadratics (b) LP with K = 50 (c) LP with K = 100 (d) LP with K = 500
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 2 Figure 2: Plots for µ versus τ a in Example 1.
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 3 Figure 3: LMI based plot for µ vs τ a in Example 2.
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 2 Example 2: Stable under arbitrary switching but no common quadratic Lyapunov function Take P = {1, 2}, with the matrices
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 351 Example 3: Exponentially stable system under arbitrary switching withWe consider the switched system[START_REF] Hafstein | Lecture Notes in Electrical Engineering, chapter Sliding Modes and Lyapunov Functions for Differential Inclusions by Linear Programming[END_REF] with P = {1, 2, 3, 4, 5}, where A
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 4 Figure 4: LMI based plot for µ vs τ a in Example 3.