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Abstract

With the objective of developing computational methods for stability analysis of
switched systems, we consider the problem of finding the minimal lower bounds
on average dwell-time that guarantee global asymptotic stability of the origin. An-
alytical results in the literature quantifying such lower bounds assume existence
of multiple Lyapunov functions that satisfy some inequalities. For our purposes,
we formulate an optimization problem that searches for the optimal value of the
parameters in those inequalities and includes the computation of the associated
Lyapunov functions. In its generality, the problem is nonconvex and difficult to
solve numerically, so we fix some parameters which results in a linear program
(LP). For linear vector fields described by Hurwitz matrices, we prove that such
programs are feasible and the resulting solution provides a lower bound on the av-
erage dwell-time for exponential stability. Through some experiments, we com-
pare our results with the bounds obtained from other methods in the literature and
we report some improvements in the results obtained using our method.

Keywords: Switched systems, continuous piecewise-affine Lyapunov functions,
average dwell-time, linear programs

1. Introduction1

Switched systems comprise a family of dynamical subsystems orchestrated by2

a switching signal that activates one of these subsystems at a given time. This3

abstract framework has been useful in modeling a class of hybrid systems with4
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continuous and discrete dynamics. Another common source of switched systems5

is uncertainty quantification in continuous-time systems and the associated differ-6

ential inclusions. Stability analysis of switched systems, therefore, has gathered a7

lot of attention in the literature. The references [16, 25] provide a comprehensive8

overview of the different approaches on this topic.9

When analyzing stability under arbitrary switching, existence of a common10

Lyapunov function is a necessary and sufficient condition for the asymptotic sta-11

bility of an equilibrium of the switched system [6]. Thus, over the years, a lot12

of attention in the literature has been given to computing a common Lyapunov13

function for the switched system under different hypotheses. For some results in14

this direction, the reader may refer to [1] for discrete-time systems, and [22] for15

continuous-time systems. Particularly relevant to this paper is the technique based16

on the construction of continuous and piecewise affine (CPA) Lyapunov functions,17

which is reviewed in [11]. The papers [3, 13] present the adaptation of computing18

CPA Lyapunov functions in case of arbitrarily switching systems. However, such19

methods have not yet been used in the context of constrained, or dwell-time based,20

switched systems.21

For certain applications, existence of common Lyapunov function is a strin-22

gent requirement, and may not hold for the given system data. For that reason,23

when the individual subsystems are asymptotically stable and one can not com-24

pute a common Lyapunov function, it is natural to ask how we can guarantee25

stability for a certain class of switching signals (which is smaller than the set of26

switching signals with arbitrary switching). The works [21] and [14] studied the27

stability of switched systems by putting a bound on how fast the switches can28

occur. Depending on the system data, lower bounds were derived on the (aver-29

age) dwell-time which ensures global asymptotic stability if the length of interval30

between two consecutive switches (on average) is greater than the derived lower31

bound. A tutorial like exposition of these concepts also appears in [16, Chap-32

ter 3]. Several works have followed up to extend this idea in several directions.33

Some generalizations have been addressed in the recent papers [18, 23] with non-34

linearities in the system data.35

Computational methods with multiple Lyapunov functions for getting best36

possible lower bounds on the dwell-time have not received much attention in the37

literature. The references [4, 7, 17, 20] provide some algorithms for calculat-38

ing lower bounds on the dwell-time in the linear case. Among these, the papers39

[17, 20] build on dwell-time bounds obtained from multiple Lyapunov functions,40

which is also the case for this article. The authors of [20] developed optimization-41

based methods for the automatic verification of dwell-time properties. On the42
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other hand, [17] proposes some relaxations in the form of sequential convex pro-43

grams to compute lower bounds on the average dwell-time. With similar motiva-44

tion, this article studies computational methods for computing best possible lower45

bounds on the (average) dwell-time using linear programming (LP) methods. In46

fact, our approach uses techniques based on the construction of CPA Lyapunov47

functions, under the constraints that are normally imposed for dwell-time based48

stability conditions. For a given family of dynamical subsystems with asymptoti-49

cally stable origin, the question of interest is to find the smallest lower bound on50

the dwell-time, which ensures asymptotic stability of the switched system under51

the so-called compatibility constraints. Such questions can be formulated as an52

optimization problem and in its full generality, it is a nonconvex problem, even53

when dealing with linear subsystems and quadratic Lyapunov functions for indi-54

vidual subsystems.55

In this paper, we provide a new technique for solving the optimization prob-56

lem that corresponds to the computation of a minimum average dwell-time that57

ensures stability. The intermediate step in getting this bound is to first compute58

the Lyapunov functions for individual subsystems satisfying certain inequalities.59

In our work, we search for these Lyapunov functions from the family of continu-60

ous piecewise affine functions, in contrast to the quadratic ones. This is done by61

discretizing the state space into simplices and solving for the values of the Lya-62

punov functions at the vertices of the simplices, using some inequality constraints.63

The resulting optimization problem actually turns out to be a linear program. The64

solution to this linear program provides us with a Lyapunov function for each65

subsystem and also a dwell-time bound.66

The remainder of the paper is organized as follows: we recall some basic re-67

sults on (average) dwell-time stability in Section 2 and describe the problem being68

studied in this paper. Section 3 provides the LP formulation of the proposed prob-69

lem along with some results about the feasibility of these programs. We provide70

some simulations and comparisons with other methods in Section 4, followed by71

concluding remarks in Section 5.72

2. Problem Setup73

We consider time-dependent switched dynamical systems described as74

ẋ = fσ(x) (1)

where, for some given index set P ⊂ N, the function σ : [0,∞) → P is piecewise75

constant and right-continuous, called the switching signal. The discontinuities of76
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σ, called the switching times, are assumed to be locally finite. The vector fields77

fi : Rn → Rn, for each i ∈ P , are assumed to be locally Lipschitz and with78

fi(0) = 0. We say that a switching signal σ has an average dwell-time τa > 0, if79

there exists N0 > 0, such that80

Nσ(t, s) ≤ N0 +
t− s

τa
,

where Nσ(t, s) denotes the number of switches over the interval (s, t). The set of81

all switching signals with average dwell-time τa is denoted by Στa .82

For the stability of the origin for such systems, let us recall the following83

result, which follows from [14], [16, Chapter 3], and [18, Theorem 1]:84

Theorem 1. Suppose that there exist C1 Lyapunov functions Vp : Rn → R≥0,85

i ∈ P , satisfying the following:86

(L1) There exist α, α ∈ K∞ such that87

α(∥x∥) ≤ Vi(x) ≤ α(∥x∥), ∀x ∈ Rn, i ∈ P . (2)

(L2) There exists a Lipschitz function ρ ∈ K, such that, for every i ∈ P ,88

∇Vi(x) • fi(x) ≤ −ρ(Vi(x)) ∀x ∈ Rn, (3)

(L3) There exists χ ∈ K∞ such that, for every i, j ∈ P ,89

Vj(x) ≤ χ(Vi(x)) ∀x ∈ Rn, i ̸= j. (4)

Then the origin is globally asymptotically stable for the switched system (1), uni-90

formly over the set Στa , for τa satisfying91

τa > sup
s>0

∫ χ(s)

s

1

ρ(r)
dr. (5)

The lower bound on the average dwell-time given in (5), with nonlinear func-92

tions, has also appeared in the context of impulsive systems in [24], [5]. In what93

follows, we will restrict ourselves to linear subsystems where the functions α and94

ρ can be taken as linear. Writing (5) for such cases allows us to better understand95

the degrees of freedom at our disposal for minimizing the lower bounds on τa.96
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2.1. Corollaries and special cases97

Let us present two corollaries to this result depending on the class of functions98

chosen for Vi and the vector fields fi, i ∈ P .99

Corollary 1. Assume that for each i ∈ P , there exist symmetric, positive definite
matrices Pi ≻ 0, such that

A⊤
i Pi + PiAi + αPi ⪯ 0, for every i ∈ P , (6a)

Pj ⪯ µPi, for every j ̸= i (6b)

for some α > 0 and µ ≥ 1. Then the switched system (1) with fi(x) = Aix, i ∈ P ,100

has a globally exponentially stable equilibrium at the origin, uniformly over the101

set Στa , where τa satisfies102

τa >
ln(µ)

α
. (7)

Thus, for linear dynamics and quadratic Lyapunov functions, we can get a103

lower bound on the average dwell-time by solving matrix inequalities (6). If we104

take, α > 0, µ ≥ 1, and Pi ≻ 0 as the unknowns in (6), then these inequalities are105

not linear with respect to the unknowns, and it is difficult to compute a solution.106

The article [17] addresses the problem of minimizing ln(µ)
α

subject to inequalities107

(6) by proposing convex relaxations.108

For the algorithms proposed in this paper, we first need a corollary to Theo-109

rem 1 with continuous Lyapunov functions, and norm-like bounds on the growth110

and Dini-derivative of such functions. For a continuous function V : Rn → R, we111

define the Dini-derivative along the solutions of the system ẋ = fi(x) as112

D+V (x, fi(x)) := lim sup
h→0+

V (ϕi(h,x))− V (x)

h

where t 7→ ϕi(t,x) is an absolutely continuous function that satisfies ϕi(0,x) =113

x and ϕ̇i(t,x) = fi(ϕi(t,x)) almost surely for t ≥ 0. We use this notion to state114

the following corollary to Theorem 1, obtained by taking α, α, ρ to be homoge-115

nous functions, and χ being linear.116

Corollary 2. Assume that for each i ∈ P , there exist continuous functions Vi :
Rn → R, such that

a∥x∥d ≤ Vi(x) ≤ a∥x∥d, for every i ∈ P , (8a)

D+Vi(x, fi(x)) ≤ −α∥x∥d, for every i ∈ P , (8b)
Vi(x) ≤ µVj(x), for every j ̸= i. (8c)
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for some d > 0, a ≥ a > 0, α > 0 and µ ≥ 1; Then the switched system117

ẋ = fσ(x) has a globally exponentially stable equilibrium at the origin, uniformly118

over the set Στa , with τa satisfying,119

τa >
a ln(µ)

α
. (9)

In contrast to Theorem 1, the proof of Corollary 2 using Dini derivative requires120

some care but essentially follows similar concepts. In this paper, we will build on121

the statement of Corollary 2 and, in particular, address the following problem:122

Problem statement. With d = 1 and for fixed values of a > 0, a > 0, and123

µ ≥ 1, find piecewise linear functions Vi, for each i ∈ P , that satisfy (8) while124

maximizing α.125

The reason for fixing the constants a > 0, a > 0, and µ ≥ 1 is that the126

foregoing problem then transforms into a linear program. We will provide the127

formulation of this linear program and discuss its feasibility in the next section.128

For the sake of clarity in this conference paper, we present our ideas for the linear129

vector fields but similar concepts can be extended to nonlinear systems.130

2.2. Quadratic functions and matrix inequalities131

Before discussing the LP problem and CPA Lyapunov functions, let us first132

look at the inequalities (8) for the case d = 2 more carefully. In this case, we let133

Vi(x) = x⊤Pix, with symmetric and positive definite Pi ∈ Rn×n. In particular,134

(8) takes the following form, where I is the identity matrix:135 
aI ⪯ Pi ⪯ aI, i ∈ P ,

A⊤
i Pi + PiAi ⪯ −αI, i ∈ P ,

Pi ⪯ µPj, i, j ∈ P .

(10)

In (10), if we fix a, a > 0 and µ ≥ 1, then the inequalities result in LMIs with
unknowns Pi, i ∈ P , which can be solved to maximize α. Practically one can
select a small, e.g. a = 10−5 as we do in our examples, and then a large enough
a > 0 will ensure that τa = a ln(µ)/α can be made minimal for the given µ ≥ 1 by
maximizing α. Indeed, assume the conditions (10) are fulfilled for some positive
constants a = a∗, a = a∗, α = α∗ and Vi(x) = x⊤P ∗

i x, P ∗
i ∈ Rn×n symmetric,

i ∈ P . Then we have the lower bound τ ∗a = a∗ ln(µ)/α∗ on the average dwell-
time. Now fix new constants a, a > 0 such that a/a ≥ a∗/a∗ and set α =
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(a/a∗)α∗ and Pi = (a/a∗)P ∗
i . Then, for Vi(x) := x⊤Pix = (a/a∗)x⊤P ∗

i x, we
have Vi(x) ≤ µVj(x), and

a∥x∥2 ≤ a∗
a

a∗
∥x∥2 ≤ Vi(x) = (a/a∗)x⊤P ∗

i x ≤ a∥x∥2

for i, j ∈ P . That is, the constraints (10) are fulfilled with these values of
a, a, α, Pi and further, for the lower bound on the average dwell-time we have

τa =
a ln(µ)

α
=

a ln(µ)
aα∗

a∗
=

a∗ ln(µ)

α∗ = τ ∗a .

In other words, for a fixed µ ≥ 1, if there is a solution to (10) for some choice of136

a∗, a∗, α∗ which yields the bound τ ∗a for the average dwell-time, then by choosing137

a/a large enough, one can always find another solution to (10) which gives at least138

as good a bound on average dwell-time as τ ∗. Thus, given µ ≥ 1, maximizing139

α > 0 under the constraints (10) for a fixed a, a > 0 delivers as good lower bounds140

on the average dwell-time τa as minimizing τa = a ln(µ)/α, where both a and α141

are variables, given that a/a is large enough.142

Note that in the setting of the LMI problem (10) we are searching for quadratic143

Lyapunov functions for the individual subsystems ẋ = Aix, i ∈ P , which can be144

conservative. In the next section we consider a similar approach for modeling the145

conditions (8) using piecewise linear Lyapunov functions and an LP formulation146

to compute them. Due to the foregoing observation, when solving (8) using an LP147

formulation, we will fix a and a with a/a large enough and maximize α.148

3. Continuous Piecewise Affine Lyapunov Functions and Linear Program-149

ming Formulation150

Our LP approach to compute piecewise linear Lyapunov functions fulfilling151

the conditions (8) is based on the so-called CPA method to compute Lyapunov152

functions, see e.g. [19, 3, 10, 13]. Its description is somewhat more involved153

than the LMI approach, because it is based on partitioning a neighborhood of the154

origin into simplices and the underlying idea behind constructing this collection155

of simplices, called triangulation, is described in the next subsection.156

3.1. The Triangulation T F
K157

Roughly speaking, a triangulation is the subdivision of a subset of Rn into sim-
plices. A suitable concrete triangulation for our aim of parameterizing Lyapunov
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functions for the individual subsystems is the triangular-fan of the triangulation in
[8], where its efficient implementation is also discussed. In its definition, we use
the functions RJ : Rn → Rn, defined for every J ⊂ {1, 2, . . . , n} by

RJ (x) :=
n∑

i=1

(−1)1J (i)xiei,

where ei is the standard ith unit vector in Rn, and 1J (i) = 1 if i ∈ J and 0158

otherwise. Thus, RJ (x) is the vector x, except for a minus has been put in front159

of the coordinate xi whenever i ∈ J .160

We first define the triangulation T std and use it to construct the intermediate161

triangulation TK , which in turn is used to define our desired triangulation T F
K .162

The standard triangulation T std consists of the simplices

SzJ ρ := co
{
xzJ ρ
0 ,xzJ ρ

1 , . . . ,xzJ ρ
n

}
,

where co denotes the convex hull, and163

xzJ ρ
j := RJ

(
z+

j∑
i=1

eρ(i)

)
, (11)

for all z ∈ Nn
0 = {0, 1, . . .}n, all J ⊂ {1, 2, . . . , n}, all ρ ∈ Sn, and j =164

0, 1, . . . , n. Here, Sn denotes the set of all permutations of {1, 2, . . . , n}.165

Now fix a K ∈ N+ = {1, 2, . . .} and define the hypercube HK := [−K,K]n.166

Consider the simplices SzJ ρ ⊂ HK in T std, that intersect the boundary of HK .167

We are only interested in those intersections that are (n − 1)-simplices, i.e. we168

take every simplex with vertices xj := RJ
(
z+

∑j
i=1 eρ(i)

)
, j ∈ {0, 1, . . . , n},169

where exactly one vertex xj∗ satisfies ∥xj∗∥∞ < K and the other n of the n + 1170

vertices satisfy ∥xj∥∞ = K, i.e. for j ∈ {0, 1, . . . , n} \ {j∗}. Then we replace171

the vertex xj∗ by 0; it is not difficult to see that j∗ is necessarily equal to 0. The172

collection of such vertices triangulates HK and this new triangulation of HK is173

our desired triangulation TK .174

It has been shown [2] that it is often advantageous in the CPA method to map175

the vertices of the triangulation by the mapping F : Rn → Rn, F(0) = 0 and176

F(x) :=
∥x∥
∥x∥∞

x, if x ̸= 0. (12)

8



(a) The triangulation T F
5 in two dimensions (b) The triangulation T F

5 in three dimension; note that
the origin is a vertex of all the tetrahedra in T F

5 .

Figure 1: Our proposed triangulation in R2 and R3.

Note that F maps the hypercubes {x ∈ Rn : ∥x∥∞ = r} to the spheres {x ∈177

Rn : ∥x∥ = r}.178

Finally, we define the triangulation T F
K that will be used in the LP problem to

parameterize CPA Lyapunov functions. Let T F
K be the triangulation consisting of

the simplices
Sν := co{0,F(xν

1),F(x
ν
2), . . . ,F(x

ν
n)},

where
co
{
0,xzJ ρ

1 ,xzJ ρ
2 , . . . ,xzJ ρ

n

}
∈ TK .

The subset of Rn subdivided into simplices by the triangulation T F
K is denoted by

DT F
K
:=

⋃
Sν∈T F

K

Sν .

Figure 1 depicts two exemplary triangulations of the type T F
K for two and three179

dimension with K = 5. The implementation of the triangulation is discussed in180

[12, 9].181

3.2. LP Problem182

We are now ready to state our LP problem to parameterize piecewise linear183

Lyapunov functions for the switched system fulfilling the conditions in (8). For184

formulating this LP, and showing that its feasibility provides us the lower bound185

on average dwell-time, we focus our attention on the switched linear systems:186

ẋ = Aσx (13)
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with σ : [0,∞) → P being the switching signal, and Ai ∈ Rn×n, for each i ∈ P .187

We use three constants a, a > 0 and µ ≥ 1 in the LP problem. We want the188

ratio a/a to be large, as discussed in the last section, and then we want to try out189

different µ ≥ 1 to obtain as good a lower bound on the average dwell-time as190

possible.191

The variables of the LP problem are α ∈ R and Vx,i ∈ R for every vertex x of192

a simplex in T F
K and every i ∈ P .193

The objective of the LP problem is to maximize α.194

The constraints of the LP problem are:195

(C1) The first set of constraints is that, for every i ∈ P , we set V0,i = 0, and for196

every vertex x of a simplex in T F
K and for every i ∈ P:197

a∥x∥ ≤ Vx,i ≤ a∥x∥ (14)

(C2) The second set of constraints is more involved. For every simplex Sν :=198

co{0,xν
1,x

ν
2 . . . ,x

ν
n} ∈ T F

K , we define the matrix Xν = (xν
1 x

ν
2 · · ·xν

n),199

i.e. xν
k is the kth column of Xν . Further, we define for every i ∈ P , the200

vector of variables vν,i =
(
Vxν

1 ,i
Vxν

2 ,i
· · · Vxν

n,i

)⊤.201

The constraints are: for every simplex Sν ∈ T F
K , for all j = 1, . . . , n and202

all i ∈ P:203

v⊤
ν,iX

−1
ν Aix

ν
j ≤ −α∥xν

j∥. (15)

Note that these constraints are automatically fulfilled for j = 0, i.e. xν
j = 0.204

(C3) The third set of constraints is: for every vertex x of a simplex in T F
K and for205

every i, j ∈ P ,206

Vx,j ≤ µVx,i. (16)

3.3. Solution to LP delivers lower bounds on dwell-time207

In the previous subsection, we formulated an LP which basically specified208

the constraints in (8) at the vertices of the simplices contained in the triangula-209

tion. Here we prove that the feasibility of such a program provides us with piece-210

wise linear Lyapunov functions for the individual subsystems over the entire state211

space that additionally fulfill (8c), thereby providing a lower bound on the average212

dwell-time.213

Toward this end, assume that the LP problem in Section 3.2 has a solution214

with α > 0. We then define the piecewise linear function Vi : DT F
K
→ R, for every215

i ∈ P , in the following way:216
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• For every x ∈ DT F
K

there exists a simplex Sν = co{0,xν
1,x

ν
2 . . . ,x

ν
n} ∈ T F

K217

such that x ∈ Sν and there exist a unique λ ∈ [0, 1]n,
∑n

j=1 λj ≤ 1, such218

that x =
∑n

j=1 λjx
ν
j . We define219

Vi(x) =
n∑

j=1

λjVxν
j ,i
.

It is not difficult to see that the functions Vi, i ∈ P , are continuous functions that
are linear on each simplex Sν ∈ T F

K , in particular each Vi has the constant gra-
dient ∇Vν,i := v⊤

ν,iX
−1
ν (row vector) on the interior of Sν , see e.g. [10, Rem. 9].

Hence, for any x ∈ Sν ∈ T F
K , x =

∑n
j=1 λjx

ν
j , we have for any i ∈ P by (C1)

and (C2) that

∇Vν,i • Aix = v⊤
ν,iX

−1
ν Ai

n∑
j=1

λjx
ν
j =

n∑
j=1

λjv
⊤
ν X

−1
ν Aix

ν
j

≤ −α
n∑

j=1

λj∥xν
j∥ ≤ −α

a

n∑
j=1

λjVi(x
ν
j )

= −α

a
Vi(

n∑
j=1

λjx
ν
j ) = −α

a
V (x). (17)

Now, for any x in the interior of DT F
K

, we have that, for any i ∈ P , there exists a
simplex Sν ∈ T F

K and an h > 0, such that

x+ [0, h]Aix ⊂ Sν ,

where ν can depend on both x and i. Because Vi is linear on Sν we have

lim sup
h→0+

Vi(x+ hAix)− Vi(x)

h
= ∇Vν,i • Aix ≤ −α

a
Vi(x)

and since this holds true for all i ∈ P , we have D+Vi(x, Aix) ≤ −α
a
Vi(x). Since

Vi(x) =
n∑

j=1

λjVxν
j ,i

≥ a
n∑

j=1

λj∥xν
j∥ ≥ a∥x∥

by the constraints (C1), and for all i, k ∈ P ,

Vi(x) =
n∑

j=0

λjVxν
j ,i

≤
n∑

j=0

λjµVxν
j ,k

= µVk(x),
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it is clear that the Vi fulfill the constraints (8) in the interior of DT F
K

. Just define

a′ := max
∥x∥=1

max
i=1,2,...,N

Vi(x)

and we have

a∥x∥ ≤ Vi(x) ≤ a′∥x∥,

D+Vi(x, Aix) ≤ −α

a
Vi(x)

for all x in the interior of DT F
K

. Note that we proved (17) directly from the con-220

straints and did not go through constraints (8) with a = a′, which would lead to a221

worse estimate on τa.222

By extending Vi to Rn in the obvious way, i.e. for every x ∈ Rn there exists223

a Sν and unique numbers λj ≥ 0 such that x =
∑n

j=1 λjx
ν
j (a cone defined by224

the vertices of Sν) and we set Vi(x) =
∑n

j=1 λjVxν
j ,i

, we see that the Vi fulfill the225

constraints (8) on Rn, for each i ∈ P .226

4. Simulations227

We will now test our LP algorithm for several examples from the literature.228

The class of systems for these simulations is (13). The set P and the matrices229

{Ai}i∈P will be specified differently for the examples considered here. In the230

examples, we always fix a = 10−5 and a = 10. We used YALMIP / sdpt3 and231

Gurobi to solve the LMI and LP problems, respectively.232

4.1. Example 1: Dwell-time stable but not under arbitrary switching233

Consider the switched system (13) with

A1 =

(
−0.1 −1
2 −0.1

)
, A2 =

(
−0.1 −2
1 −0.1

)
This example is taken from [16, p. 26]. It is stable for a certain minimum value234

for the average dwell-time, but it is not stable under arbitrary switching. Solving235

(10) using the LMI approach, the best τa obtained is 5.1929 with µ = 2. Using the236

LP approach, the best τa obtained is 4.5283 with µ = 1.4 and using K = 500 in237

the triangulation. Using triangulations with fewer triangles delivers a higher lower238

bound τa for the average dwell time; K = 50 gives τa = 5.16493 with µ = 1.45,239

K = 100 gives τa = 4.79315 with µ = 1.4, and K = 200 gives τa = 4.62407240

with µ = 1.4. In all cases they are better than the bounds from the LMI approach.241

242
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(a) LMIs with quadratics (b) LP with K = 50 (c) LP with K = 100 (d) LP with K = 500

Figure 2: Plots for µ versus τa in Example 1.

Figure 3: LMI based plot for µ vs τa in Example 2.

4.2. Example 2: Stable under arbitrary switching but no common quadratic Lya-243

punov function244

Take P = {1, 2}, with the matrices

A1 =

(
−1 −1
1 −1

)
, A2 =

(
−1 −10
0.1 −1

)
This example is taken from [6]. It is stable under arbitrary switching but the245

matrices A1 and A2 do not share a common quadratic Lyapunov function. This246

example helps us see the limitation of using LMIs because searching for quadratic247

certificates in this case is not the best choice.248

Solving (10) using LMIs, the minimum value for τa is τa = 17.0394 with249

µ = 3.1. Whereas, with our LP approach, K = 20 gives a solution with µ =250

1. Hence, the origin is stable under arbitrary switching (τa = 0), and we get251

a common piecewise linear Lyapunov function although no quadratic Lyapunov252

function exists.253
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4.3. Example 3: Exponentially stable system under arbitrary switching with 5254

modes255

We consider the switched system (13) with P = {1, 2, 3, 4, 5}, where

A1 =
( −5 1 2

0 −5 1
0 1 −2

)
, A2 =

( −1 3 1
0 −2 0
0 1 −1

)
,

A3 =
(

0 0 3
−2 −1 −3
−1 0 −2

)
, A4 =

( −4 0 −3
2 −2 4
1 0 −1

)
,

A5 =
( −1 0 0

−1 −1 −1
−3 0 −4

)
This example was also considered in [17] with a graph that determines the switch-256

ing sequence, and in this particular, we have the star topology. With K = 6, we257

get a solution with µ = 1, i.e. the origin is exponentially stable under arbitrary258

switching (which is then arbitrary without the graph too).259

With the LMI approach in (10), the minimum value for the average dwell-time260

is τa = 4.6870 with µ = 2.7.261

262

Figure 4: LMI based plot for µ vs τa in Example 3.

5. Conclusions263

We considered a linear programming (LP) based computational algorithm for264

computing lower bounds on average dwell-times that ensure asymptotic stabil-265

ity of switched systems. The algorithm is essentially based on gridding the state266

space into simplices and computing values for the corresponding Lyapunov func-267

tions at the vertices of these simplices. By choosing appropriate values of the268

parameters in the inequalities defining the linear program, the solution provides269

14



us lower bounds on the average dwell-time necessary to assure stability. From the270

simulations, we see in several case studies, that LP based bounds are better than271

the ones based on linear matrix inequalities (LMIs). This is not really surprising272

since LMIs restrict the Lyapunov functions to be quadratic, whereas the proposed273

LPs can potentially approximate a broader class of Lyapunov function templates.274

Computing dwell-time via inequalities in (8) introduces some conservatism be-275

cause we optimize over a single parameter α while keeping µ fixed. The same276

conservatism is observed in going from (6) to (10). As a topic of ongoing investi-277

gation, we are working out algorithm to optimize α and µ simultaneously directly278

using an LP version of (6). Other than understanding the complexity of the pro-279

posed algorithm, we also aim to study the extensions of the proposed algorithm280

in different directions, which includes the study of generalized lower bounds on281

average dwell-time [15, 18].282
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