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Approximation of Nonlinear Filters for Continuous-Time Markov Chains
under Randomly-Sampled Observations

Olga Yufereva Aneel Tanwani

Abstract— For a continuous-time Markov chain with finite
state space and an observation process with additive Gaussian
noise, we consider the problem of designing optimal filters when
the measurements of the observation process are available at
randomly sampled time instants. We first define the optimal
filter in this setting, and derive a recursive expression for it
in the form of a continuous-discrete filter. Our main result
is oriented at comparing the performance of the proposed
filter with the continuous-time counterpart, that is, the classical
Wonham filter obtained from continuous observation process.
In particular, we show that by taking the sampling process to
be a Poisson counter, and increasing the mean sampling rate,
the expected value of the posterior conditional distribution of
continuous-discrete filter converges to the posterior distribution
of a purely continuous Wonham filter.

Index Terms— Wonham filters; hidden Markov model; ran-
domly sampled observations; Bayes’ rule.

I. INTRODUCTION

Filtering is a problem of fundamental interest in the study
of dynamical systems. The basic underlying problem is to
compute a posteriori distribution of the state process condi-
tioned upon the measured observations. Early developments
in this area provide solutions by expressing conditional
density in a recursive manner, either in the form of a differ-
ential or difference equation. These solutions are particularly
difficult to analyze and implement in the nonlinear setting.
For this reason, nonlinear filtering continues to attract broad
interest with the objective of developing more insights about
analyzing the filters, or improve the design for computational
feasibility. One may refer to [1], [2], [3], [4] for comprehens-
ive overviews on this topic. In this article, our aim is to study
an analysis related problem for a class of nonlinear filters
which is motivated by implementation of filtering algorithms
in the presence of a passive communication channel.

For the purpose of analytical tractability, we will consider
the filtering problem for systems with finitely many states.
In particular, we consider the evolution of states described
by a continuous-time Markov chain with an observation
process which is a nonlinear function of the state process
with additive Gaussian noise. We refer the reader to [5] for
a standard exposition on Markov chains and related stability
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notions. The classical solution to the filter design problem for
such systems is given by Wonham in [6], which is in the form
of continuous-time stochastic differential equations evolving
over a simplex. Over the past twenty-five years, we see a
certain interest in better understanding some system-theoretic
properties of these filters. Earlier papers in this direction
studied stability with respect to initial conditions [7], [8],
[9] under different assumptions on the underlying Markov
chain, and tools such as Lyapunov exponents were developed
to characterize the convergence rates for the decay in error
due to mismatched initial conditions. The PhD dissertation
[3] revisits some of these results and in addition, provides
results on robustness with respect to unknown parameters in
the models [3, Chapter 3]. Such connections between system-
theoretic tools and nonlinear filtering continue to develop
in more recent works [10], [11], where the authors develop
a dual of the filtering problem in the form of a backward
stochastic differential equation and reformulate the stability
of nonlinear filter in terms of stabilizability properties of
the dual system. The stability analysis of nonlinear filters
continues to attract attention of different communities [12],
[13], and in more recent work [14], the stability of filters
is treated in the presence of communication channels, with
connections to observability and information rates.

On a conceptual level, Wonham filter provides the optimal
solution to the filtering problem and the aforementioned
works analyze how the solution deviates from the optimal
solution if the initial condition, or some system parameters,
are changed. In our work, we also consider the deviation
of a finite-state filter from the optimal solution. However,
the source of this deviation is considerably different, that is,
we stipulate that the continuous-time observation process is
not available for measurement but instead the realizations
of this observation process are available at some randomly
drawn time instants. In other words, the information used to
compute the conditional distribution is different in our setup.
We are primarily interested in the question of defining an
optimal filter for the continuous-time Markov chain subject
to this discrete information structure. Such problems are
primarily motivated by the implementation of continuous-
time systems over digital communication channels, which are
conveniently modeled using the framework of stochastic hy-
brid systems [15]. We also see instances of such information
constraints on measurements in optimal control problems
for continuous-time stochastic systems [16]. In our previous
related work [17], we considered nonlinear filtering with
continuous state-space for stochastic differential equation



subject to Poisson sampling. However, due to the complexity
of the underlying dynamics, we only studied suboptimal
solutions and analyzed boundedness of the error covariance.

In this article, we restrict our attention to a system with
finite state space which makes the optimal filter a finite-
dimensional differential equation. When the measurements
are time-sampled, our optimal estimator takes the form of a
stochastic hybrid system, where the flow of the conditional
density is described by the continuous transition kernel of the
Markov chain, and at the times when an output measurement
is available, we reset the conditional density according to a
Bayes’ rule. We are then interested in analyzing how this
hybrid filter is different from the continuous-time filter. In
particular, we assign Poisson distribution to the randomly
drawn time instants and look at the expectation of the
conditional probability with respect to the distribution of
the sampling process. In particular, we show that by letting
sampling rate of the underlying process tend to infinity, the
expected value of the conditional probability converges to
the continuous-time conditional probability (obtained from
the continuous observation process).

II. PROBLEM STATEMENT

A. State process

The dynamical systems considered in this paper are
described by a finite-state continuous-time Markov chain
(xt)t⩾0, on a probability space (Ω,F ,P). The notation S :=
{a1, . . . , ad} is used to denote the state space and the matrix
Λ := {λij} ∈ Rd×d, i, j ∈ {1, . . . , d}, denotes the transition
intensities. The transition rates are such that, λij ⩾ 0, j ̸=
i and

∑
j∈{1,...,d} λij = 0, for each i ∈ {1, . . . , d}. The later

condition is true only if λii ⩽ 0, for each i ∈ {1, . . . , d}. For
t ⩾ 0, let us denote the probability distribution of xt by p(t),
so that, pj(t) = P (x(t) = aj). Similarly, the distribution
conditioned upon initial condition is denoted by pij(t) =
P (x(t) = aj | x0 = ai), and we let P (t) := [pij(t)] ∈ Rd×d

denote the matrix of transition probabilities. For each t ⩾ 0,
the matrix P (t) is obtained from the transition matrix Λ by
solving the following Chapman-Kolmogorov equation:

Ṗ (t) = P (t)Λ, P (0) = Id×d.

For a given initial distribution of x0, given by pj(0), the
distribution pj(t), for each t ⩾ 0, is

p(t) = P⊤(t) p(0) = p(0) +

∫ t

0

(
Λ⊤p(τ)

)
dτ, (1)

or, in the differential form, it can be written as ṗ(t) =
Λ⊤p(t), subject to the initial condition p(0).

B. Continuous-time optimal Wonham filter

Using the model from [6], an output process zt is assumed
to be generated by state process xt and the observation noise

ηt, which is assumed to be a Wiener process independent
of xt. It is described by the equation

zt =

∫ t

0

h(xs)ds+ ηt (2)

where h : S → R is a measurable function on S. For
simplicity, we take our observation process to be one-
dimensional. The noise covariance is assumed to be constant
and denoted by R, that is, E[dη⊤dη] = R dt. We denote by
σ{z[0,t]} the filtration generated by (zs)s⩽t. We recall that
if ϕ is some square integrable function of the signal process
xt, then the ‘best estimate’ (in mean square sense) of ϕ(xt)
given the observations up to time t is

E
[
ϕ(xt) | σ{z[0,t]}

]
.

To compute this conditional expectation, we are therefore
interested in the corresponding conditional probability

ρjt := P(xt = aj |σ{z[0,t]}), j ∈ {1, . . . , d}. (3)

The classical Wonham filter provides a recursive expression
for ρt := [ρ1t , . . . , ρ

d
t ]

⊤ in the form of following stochastic
differential equation [3, Corollary 1.2.1]:

dρt = Λ⊤ρtdt+(H−h)ρt(dzt−hdt), ρ0 = p(0) (4)

where h =
∑d

i=1 h(ai)ρ
i
t, and H denotes a diagonal matrix,

H := diag {h(a1), · · · , h(ad)}. Due to the presence of dzt
on the right-hand side of (4), ρt is a vector-valued random
variable, for each t ⩾ 0. It is noted that the computation
of ρt requires continuous measurements of the process dzt.

C. Randomly-sampled observation process

In this article, we study the filtering problem for
continuous-time Markov chains under the premise that the
measurements of the observation process are not available
continuously. The motivation to work with randomly time-
sampled measurements comes from several applications,
such as, communication over networks which allow informa-
tion packets to be sent at some discrete randomly distributed
time instants. Thus, we consider a monotone nondecreasing
sequence (τn)n∈N taking values in R⩾0 which denote the
time instants at which the measurements are available for
estimation. We introduce the process Nt defined as

Nt := sup
{
n ∈ N

∣∣ τn ⩽ t
}

for t ∈ R, (5)

and are particularly interested in the case where (Nt)t⩾0 is
a Poisson stochastic process independent of the noise and
the state processes. The discretized and noisy observation
process is thus defined as

ẑt = ẑτNt
= zτNt

, t ⩾ 0. (6)

Associated to this process, we consider the filtration gener-
ated by (ẑs)s⩽t, which is σ{ẑ[0,t]} = σ{ẑτ1 , . . . , ẑτNt

}.



D. Problem statement

Our primary objective is to study the filtering problem
subject to the random sampling of the observation process.
Toward this end, we first consider the conditional probabil-
ities

ρ̂jt := P(xt = aj |σ{ẑ[0,t]}), j ∈ {1, . . . , d}, (7)

and develop an expression for the vector ρ̂t := [ρ̂1t , . . . , ρ̂
d
t ]

⊤,
for each t ⩾ 0, using {ẑτk | k ⩽ Nt}. These developments
are carried out in Section III.

Next, we are interested in comparing ρ̂t with ρt. It is
noted that ρ̂t, as defined in (7) is random not only due to
the observation noise ẑt, but it also depends on the random
time instants (τk)k∈N. If we average out the randomness due
to sampling times and take the mean sampling rate of the
Poisson counter Nt to be large enough, then it is natural to
compare the resulting random variable with ρt. To formally
state this intuition, we look at the expectation of ρ̂t with
respect to the sampling times, and show in Section IV that,
for each t ⩾ 0, the resulting random variable converges to ρt
in the mean as the sampling rate gets large.

III. OPTIMAL FILTER FOR A SAMPLE PATH OF Nt

In this section, we develop expressions that allow us
to compute the conditional probability ρ̂jt , for each j ∈
{1, . . . , d} and each t ⩾ 0, for a single realization of the
random time instants {τk}k∈N. By developing a recursive
expression, it is possible to compute ρ̂jt simply by updating
the last stored value as a function of the newly received
information.

To present the recursive filter, we consider the innovation
sequence ∆zNt

obtained from taking the difference of two
consecutive measurements:

∆zNt
= ẑτNt

− ẑτNt−1
= ξNt

+ ητNt
− ητNt−1

,

where we used the notation

ξk :=

∫ τk

τk−1

h(xs) ds, k ∈ N.

With probability one, a Poisson process Nt yields finite
number of random variables ∆zi and ξi over a finite interval
[0, t]. Notice that

p (∆z1, . . . ,∆zNt
| x0, xt)

= E
[
p (∆z1, . . . ,∆zNt , ξ1, . . . , ξNt)

∣∣ x0, xt

]
= E

[
Nt∏
k=1

1√
2πR∆τk

exp

[
− (∆zk − ξk)

2

2R∆τk

] ∣∣∣ x0, xt

]

=

Nt∏
k=1

1√
2πR∆τk

E

[
exp

[
−

Nt∑
k=1

(∆zk − ξk)
2

2R∆τk

] ∣∣∣ x0, xt

]
since ∆zi − ξi are independent for each i and are Gaussian
with mean 0 and variance R∆τi. Let

Ψn = Ψn(∆z, ξ,∆τ) := exp

(
−

n∑
k=1

(∆zk − ξk)
2

2R∆τk

)
. (8)

To get the expression for ρ̂jt at t = τNt
for Nt ∈ N, we

observe that

ρ̂jt = P(x(t) = aj | ẑτk , k = 0, . . . , Nt)

= P(x(t) = aj |∆zk, k = 1, . . . , Nt)

=

d∑
i=1

pi(0)pij(t)E [ΨNt | x0 = ai, xt = aj ]

∑d
l=1

d∑
i=1

pi(0)pil(t)E [ΨNt
| x0 = ai, xt = al]

as the term
Nt∏
k=1

1√
2πR∆τk

cancels out from the numerator and

the denominator. Then the numerator is the unnormalized
conditional density. Let us denote it as follows.

Definition 1. Let z̄[0,t] be a pure jump process realization
with jumps only at {τk}nt

k=1. For each t ⩾ 0, and for each
j ∈ {1, . . . , d}, define the function U j(t, z̄[0,t]) as follows

U j(t, z̄[0,t]) :=

d∑
i=1

pi(0)pij(t)E

[
Ψnt

∣∣∣∣∣x0 = ai, xt = aj

]
,

where Ψnt
is from (8) and xt is the state process.

Remark III.1. One can consider U j
t as a function of a pure

jump process z̄t since {τk} is also defined by z̄t. The Markov
chain x affects the value of U j

t only by its transitional
probabilities, not by realizations.

We define the evolution of U j
t with differential equations

over the intervals ]τNt , τNt+1[, and via jumps at τNt , for all
t ⩾ 0. Firstly, if t ∈]τNt

, τNt+1[, we obtain

U j
t =

∑d
i=1 pi(0)pij(t)E

[
ΨNt

∣∣∣∣∣x0 = ai, xt = aj

]
=
∑d

ℓ=1

∑d
i=1 pi(0)piℓ(τNt)pℓj(t− τNt)

E

[
ΨNt

∣∣∣∣∣x0 = ai, xτNt
= aℓ, xt = aj

]
=
∑d

ℓ=1 pℓj(t− τNt
)
∑d

i=1 pi(0)piℓ(τNt
)

E

[
ΨNt

∣∣∣∣∣x0 = ai, xτNt
= aℓ

]
=
∑d

ℓ=1 pℓj(t− τNt
)U ℓ

τNt
.

It yields U̇ = UΛ for t ∈]τNt
, τNt+1[. Secondly, for t =

τNt
with n = Nt > 1, the strong Markov property and

independence of the different ηk give

E [ΨNt | x0 = ai, xτn = aj ]

=
d∑

l=1

E
[
Ψn | x0 = ai, xτn = aj , xτn−1

= al
]

P(xτn−1
= al | x0 = ai, xτn = aj)

=
d∑

l=1

E
[
exp

(
− (∆zn−ξn)

2

2R∆τn

) ∣∣ xτn = aj , xτn−1
= al

]
E
[
Ψn−1 | x0 = ai, xτn−1 = al

]
P(xτn−1

= al | x0 = ai, xτn = aj)

By Bayes rule and Markov property

pij(t)P(xτn−1 = al | x0 = ai, xτn = aj)



= P(xτn−1
= al | x0 = ai)P

(
xτn = al

∣∣∣∣∣ x0 = ai,

xτn = aj

)
= pli(τn−1)pjl(∆τn)

and then U j
τn equals

d∑
l=1

d∑
i=1

pi(0)pij(t)E

[
exp

(
− (∆zn − ξn)

2

2R∆τn

) ∣∣∣ xτn = aj ,

xτn−1
= al

]
E

[
Ψn−1

∣∣∣ x0 = ai,

xτn−1 = al

]
P

(
xτn−1

= al

∣∣∣ x0 = ai,

xτn = aj

)
=

d∑
l=1

d∑
i=1

pi(0)pli(τn−1)pjl(∆τn)

E

[
exp

(
− (∆zn − ξn)

2

2R∆τn

) ∣∣ xτn = aj , xτn−1
= al

]
E
[
Ψn−1

∣∣∣ x0 = ai, xτn−1
= al

]
=

d∑
l=1

pjl(∆τn)U
l
n−1

E

[
exp

(
− (∆zn − ξn)

2

2R∆τn

) ∣∣∣ xτn = aj , xτn−1
= al

]
.

Thus we state the recursive rule for U as follows.

Proposition III.2. For a Markov chain (xt)t⩾0, a fixed
sample path of Nt associated with jump times τNt

, the
observations ẑt defined in (6), the conditional density ρ̂t =
(ρ̂1t , . . . , ρ̂

d
t )

⊤ is

ρ̂jt =
U j
t∑d

i=1 U
i
t

,

where the vector Ut = (U1
t , . . . , U

d
t ) satisfies

U̇t = UtΛ t ∈]τNt
, τNt+1[

Uτn = Kn lim
s↗τn

Us ∀τn = τNt

(9)

where lj-th component of the matrix Kn is the following

E

exp
−

(
∆zn −

∫ τn
τn−1

h(xs)ds
)2

2R∆τn

 ∣∣∣∣∣ xτn = aj ,

xτn−1 = al

 .

IV. CONVERGENCE IN MEAN

We now turn to the question of comparing the filter
obtained from randomly sampled observations with the con-
tinuous Wonham filter. For this purpose, we assume that the
state process is an ergodic Markov chain. In what follows,
we use the notation Ez to denote expectation with respect
to noise in z-process, and Eλ to denote expectation with
respect to the distribution of the Poisson sampling process
with intensity λ > 0. We also recall that σ(·) is used to
denote the filtration generated by its argument. Our main
result is formulated as follows:

Theorem IV.1. Let (xt)t⩾0 be an ergodic Markov chain with
non-zero initial distribution. For each t > 0, it holds that

lim
λ→∞

EλEz
∣∣∣E [xt | σ

{
ẑ[0,t]

}]
− E

[
xt | σ

{
z[0,t]

}] ∣∣∣ = 0.

We will carry out the proof of this result in the remainder
of this section. An outline of the main steps of the proof is
drawn in Figure 1.

A. Intermediate results

We start with the definition of operators θ and H that are
used excessively in the sequel.

Definition 2. For n ∈ N, t > 0, let θtn and Ht
n be the

following mappings:

θtn(s) := max
{

mt
n ∈ [0, s] | m = 0, . . . , n

}
,

(Ht
nv)s := Ht

n(v)(s) = v (θtn(s)) .

Using these definitions, we can now state the intermediate
results which are necessary for the proof of Theorem IV.1.

Lemma IV.2. Let (xt)t⩾0 be an ergodic Markov chain
with non-zero initial distribution. For each t > 0, there is
convergence in Ez-mean:

lim
n→∞

Ez
∣∣∣E [xt | σ

{
(Ht

nz)[0,t]
}]

− E
[
xt | σ

{
z[0,t]

}] ∣∣∣ = 0.

The proof of Lemma IV.2 is a direct consequence of
the arguments appearing in [6, Appendix 2] and is not
carried out here. The vector U (t, (Ht

nẑ)t) below consists
of the corresponding entries U j (t, (Ht

nẑ)t) as considered in
Definition 1.

Proposition IV.3. Let xt be an ergodic Markov chain with
non-zero initial distribution. For each t > 0, n ∈ N, there is
convergence in EλEz-mean:

lim
λ→∞

EλEz

∣∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t))∥1

− E
[
xt | σ

{
Ht

nz[0,t]
}] ∣∣∣∣∣ = 0.

The proof of Proposition IV.3 appears in Section IV-C. The
final statement, that we need for the proof of Theorem IV.1
is the following:

Lemma IV.4. Let (xt)t⩾0 be an ergodic Markov chain with
non-zero initial distribution. For each t > 0 and each λ > 0
there is convergence in EλEz−mean:

lim
n→∞

EλEz

∣∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

− E
[
xt | σ

{
ẑ[0,t]

}] ∣∣∣∣∣ = 0.

E
[
xt | σ

{
(Ht

nz)[0,t]
}]

E
[
xt | σ

{
z[0,t]

}]

E
[
xt | σ

{
ẑ[0,t]

}]U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

in EλEz

λ→∞P. IV.3

L. IV.4
in EλEz

n→∞,∀λ>0

in Ez

n→∞

L.IV.2

in EλEz

λ→∞Th.IV.1

Fig. 1: Schematic of convergences



B. Proof of Theorem IV.1

The proof is essentially based on the schematic shown in
Figure 1.

Proof. By Proposition IV.3, for any ε1 there is large
enough λ1 = λ(ε1) such that for any λ ⩾ λ1,

EλEz

∣∣∣∣∣ U(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

− E
[
xt | σ

{
(Ht

nz)[0,t]
}] ∣∣∣∣∣ ⩽ ε1.

By Lemmas IV.2 and IV.4, for any ε2, we can find n2 =
n(ε2), such that for every n ⩾ n2, the following two
inequalities hold:

EλEz
∣∣E [xt | σ

{
(Ht

nz)[0,t]
}]

− E
[
xt | σ

{
z[0,t]

}] ∣∣ ⩽ ε2,

EλEz
∣∣∣ U(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1
− E

[
xt | σ

{
ẑ[0,t]

}] ∣∣∣ ⩽ ε2.

In the first of these two inequalities, the expectation Eλ does
not change anything as inner parts are independent of Nt.

So for a given ε > 0, taking ε1 = ε2 = ε/3 and
the corresponding λ1 and n2, we immediately obtain that
there exists λ(ε) such that for any λ ⩾ λ(ε) the required
convergence property holds:

EλEz
∣∣∣E [xt | σ{ẑ[0,t]}

]
− E[xt |σ{z[0,t]}]

∣∣∣ ⩽ ε.

C. Proof of Proposition IV.3

Proof. Recall that Uj(t,(Ht
nz)t)

∥U(t,(Ht
nz)t)∥1

is the j-th component of
the conditional expectation E[xt | σ{(Ht

nz)[0,t]}] as showed
in Section III. Then it is sufficient to prove that for any ε > 0
there is sufficiently large λ > 0 such that

EλEz

∣∣∣∣ U j (t, (Ht
nẑ)t)

∥U (t, (Ht
nẑ)t) ∥1

− U j (t, (Ht
nz)t)

∥U (t, (Ht
nz)t) ∥1

∣∣∣∣ ⩽ ε. (10)

In what follows, we use the notation τk for jump times of
a Poisson process and mt

n for jump times of the ‘uniform’
process θtn. Moreover, we recall that a Poisson process Nt

is associated with {τk} as defined in (5).

In order to make Ht
nẑ somehow similar to Ht

nz, we need
the probability that at least one Poisson arrival time τk ∈
{τk}Nt

k=0 occurs between mt
n −δ and mt

n for all m = 1, . . . , n
and an arbitrary δ ∈ (0, t

n ). Since τk ⩽ mt
n if k ⩽ Nmt

n
, this

condition can be formulated as

max
m=1,...,n

min
k=0,...,Nmt

n

(
mt

n
− τk

)
⩽ δ. (11)

The opposite event is

max
m=1,...,n

min
k=0,...,Nmt

n

(
mt

n
− τk

)
> δ (12)

and its probability is the sum
∑n

m=1(1−e−λδ)m−1e−λδ , that
is (1−e−λδ)n. Using this, we can decompose the expectation

Eλ

[
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

]
into the sum

(1− e−λδ)nEλ

[
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

∣∣∣ eq. (12)
]
+

+
(
1− (1− e−λδ)n

)
Eλ

[
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

∣∣∣ eq. (11)
]
.

Let us take λ = 1/
√
δ and define δ later. Notice that

Uj(t,(Ht
nẑ)t)

∥U(t,(Ht
nẑ)t)∥1

⩽ 1 and (1−e−λδ)n → 0 as λ → ∞. Then it

remains to prove that EλEz

(
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

∣∣∣ eq. (11)
)

→

Ez

(
Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1

)
.

Let us consider an arbitrary realization Nt satisfying (11).
For an arbitrary fixed zt, we obtain the process ẑt. Then
both processes Ht

nẑ and Ht
nz are pure jump and all jumps

occur at times mt
n for m = 1, . . . , n only. Hence both

processes U j(·, Ht
nẑ) and U j(·, Ht

nz) differ in their exponent
terms only. For U j (t, (Ht

nz)t) we have jump times only at{
mt
n

}
and the exponent term straightforwardly contains the

following sum

−
n∑

m=1

(
zmt

n
− z (m−1)t

n
−
∫ mt

n

(m−1)t
n

h(x̄s)ds

)2

(13)

For U j (·, Ht
nẑ), employing the condition (11), we obtain

that for each m = 1, . . . , n, there is a certain δm ∈ (0, δ)

such that H
(
ẑmt

n

)
= ẑmt

n
= zmt

n −δm . So the exponent term
of U j (t, (Ht

nẑ)t) contains a similar sum

−
n∑

m=1

(
zmt

n −δm − z (m−1)t
n −δm−1

−
∫ mt

n

(m−1)t
n

h(x̄s)ds

)2

(14)
Thus a realization of Poisson process Nt defines only the
sequence of δm, which are uniformly bounded by δ. It
immediately yields the convergence of each component:
EλEz

{
|U j(t,Ht

n(z))− U j(t,Ht
n(ẑ))|

}
→ 0 as δ → 0, i.e.

λ → ∞. To get the convergence of normalized values, notice
that both fractions are less than one and the denominators
are bounded away from zero in the following sense. Denote
ω = mini pi(0); by ergodicity for all t there is a pair
(i, j) such that pi(0)pi,j(t) ⩾ ω/d, and ∥U (t,Ht

n(ẑ)) ∥1 ⩾

U j (t,Ht
n(ẑ)) ⩾ ω/d E

[
exp

eq. (14)
2Rt/n

∣∣∣ x0 = ai, xt = aj

]
.

Definition (2) of the process z implies the following chain
of estimations:(

M∫
−M

exp
{
− 1

2 (
x

R(t/n+δ)2
)
}

√
2πR(t/n+δ)

dx

)n

⩽ P[maxm |ηmt
n −δm − η (m−1)t

n −δm−1
| ⩽ M ]

⩽ P[|eq. (14)| ⩽ n(M + 2maxl al)
2(t/n+ δ)2]

⩽ P [∥U (t, (Ht
nẑ)t) ∥1 ⩾ κM ] → 1 as M → ∞

where κM = ω/d exp
{

n(M+2maxl al)
2(t/n+δ)2

2Rt/n

}
and tends

to 0 as M → ∞. For ∥U (t, (Ht
nẑ)t) ∥1 we have the same

estimation, but with zeros instead of δm and δ. These in-
equalities defines a suitable δ = δ(ε) so that (10) holds.



D. Proof of Lemma IV.4

Proof. In Section III, we showed that Uj(t,ẑt)
∥U(t,ẑt)∥1

is the j-
th component of E

[
xt | σ

{
ẑ[0,t]

}]
. Then it is sufficient to

prove that for any ε, there exists D = D(ε) > 0 such that
for any n > t/D

EλEz

∣∣∣∣ U j (t, (Ht
nẑ)t)

∥U (t, (Ht
nẑ)t) ∥1

− U j (t, ẑt)

∥U j (t, ẑt) ∥1

∣∣∣∣ ⩽ ε. (15)

If t/D =: MD ∈ N, we can consider MD disjoint intervals(
tM
MD

, t(M+1)
MD

]
of length D (for M = 1, . . . ,MD). Now we

are interested in the case where at most one jump of Nt

occurs at each interval
(

tM
MD

, t(M+1)
MD

]
, i.e.

max
M=1,...,MD

N tM
MD

−N t(M−1)
MD

⩽ 1. (16)

The probability of the event (16) is e−λt(1 + λD)
t
D , and

so it tends to 1 as D → 0. Therefore, for any D > 0, we
decompose and estimate the expectations of (15) as

2
(
1− e−λt(1 + λD)

t
D

)
+ e−λt(1 + λD)

t
D

∑
i

pi(0)pij(t)

×EλEz

[∣∣∣∣ U j (t, (Ht
nẑ)t)

∥U (t, (Ht
nẑ)t) ∥1

− U j (t, ẑt)

∥U j (t, ẑt) ∥1

∣∣∣∣
∣∣∣∣∣eq. (16)

]
,

and the first addend is less than ε/4 for every D ∈]0, D∗[
for a certain D∗. In the same way, we can separate two
cases: if total number of jumps of ẑ on [0, t] is more than
K = K(λ, ε) or if it is less or equal. The expectations of
(15) conditioned on the first case are less than ε/4 if K

is such that e−λt
∑∞

i=K
(λt)i

i! < ε/8. Indeed, it means that

ε/4 is greater than the value
∣∣∣∣ Uj(t,(Ht

nẑ)t)
∥U(t,(Ht

nẑ)t)∥1
− Uj(t,ẑt)

∥Uj(t,ẑt)∥1

∣∣∣∣
times the probability that ẑ has more than K jumps. Finally,
let us get rid of the case of Poisson processes that contain
relatively small inter-arrival times, i.e. let us find L > 0
such that ε/4 bounds from below the expectations of (15)
conditioned on Poisson process with inter-arrival time less
than L. For a Poisson process, the probability of containing
all inter-arrival times greater than L is not less than e−λLK

(since K is the maximum number of jumps), i.e. it suffices
to take L = L(λ, ε) such that 1− e−λLK ⩽ ε/8.

Let us denote by A the event that correspond to the
inequality (16), the condition that the number of jumps of ẑ
is not more than K and the condition that the inter-arrival
times are greater than L. Consider a realization of Nt from
A. Denote by τk the corresponding jump times of Ht

nẑ. Then
jumps of ẑ occur at τk−δk. So that Ht

nẑ(
tM
MD

) = ẑ( tM
MD

) for
M = 1, . . . ,MD and so the exponent term in U j(t,Ht

nẑ)

becomes exp
∑

k

−(ẑ(τk)−ẑ(τk−1)−
∫ τk
τk−1

h(x̄s)ds)
2

2R(τk−τk−1)
while the

exponent term in U j(t,Ht
nẑ) contains same values at times

τk − δk. Thus it is easy to see that we have conver-

gence EλEz

[∣∣U j (t, (Ht
nẑ)t)− U j (t, ẑt)

∣∣ ∣∣∣∣∣ A
]

→ 0 for

all components j. To get (15) it remains to estimate the

denominators. Denote ω = mini pi(0); by ergodicity we
get that there is a pair (i, j) such that pi(0)pi,j(t) ⩾
ω/d, and so ∥U(t,Ht

n(ẑ))∥1 ⩾ U j (t,Ht
n(ẑ)) ⩾

ω/d E

[
exp

∑
k

−(ẑ(τk)−ẑ(τk−1)−
∫ τk
τk−1

h(x̄s)ds)
2

2R(τk−τk−1)

∣∣∣ x0=ai,
xt=aj

]
.

Here the sum contains not more than K elements,
τk − τk−1 > L − D, xs are from a finite set S,
and the only remaining randomness in η is bounded

as

(
M∫

−M

exp{− 1
2 (

x
Rt2

)}√
2πRt

dx

)K

⩽ (P[|ηt − η0| ⩽ M ])
K ⩽

P[maxk |ητk − ητk−1
| ⩽ M ]. Thus, we have

P[∥U(t,Ht
n(ẑ))∥1 ⩾ κ] → 0, as κ → 0.

The same holds for ∥U(t, ẑ)∥1. This allows us to choose a
suitable D ∈]0, D∗[ and conclude the proof.
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[14] C. McDonald and S. Yüksel, “Stability of non-linear filters, observab-
ility and relative entropy,” in Proc. of 56th Annual Allerton Conference
on Communication, Control, and Computing, 2018, pp. 110–114.

[15] J. P. Hespanha, “Modeling and analysis of networked control systems
using stochastic hybrid systems,” Annual Reviews in Control, vol. 38,
no. 2, pp. 155 – 170, 2014.

[16] M. Adès, P. E. Caines, and R. P. Malhamé, “Stochastic optimal
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