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Co-designing versatile quadruped robots
for dynamic and energy-efficient motions

G. Fadini1,★, S. Kumar2, R. Kumar2, T. Flayols1, A. Del Prete3, J. Carpentier4, P. Souères1

Abstract—This paper presents a bi-level optimization frame-
work to concurrently optimize a quadruped hardware and
control policies for achieving dynamic cyclic behaviors. The long-
term vision to drive the design of dynamic and efficient robots
by means of computational techniques is applied to improve
the development of a new quadruped prototype. The scale of
the robot and its actuators are optimized for energy efficiency
considering a complete model of the motor, that includes friction,
torque, and bandwidth limitations. This model is used to optimize
the power consumption during bounding and backflip tasks and
is validated by tracking the output trajectories on the first
prototype iteration. The co-design results show an improvement
of up to 87% for a single task optimization. It appears that, for
jumping forward, robots with longer thighs perform better, while
for backflips, longer shanks are better suited. To understand
the trade-off between these different choices, a Pareto set is
constructed to guide the design of the next prototype.

Index Terms—Methods and Tools for Robot System Design,
Optimization and Optimal Control, Simulation and Animation,
Mechanism Design

I. INTRODUCTION

QUADRUPED robots are becoming of widespread use for
practical applications and are starting to be commercially

available for automated task [1]. These platforms show their
promise in security, patrolling, monitoring and inspection (e.g.
in secluded sites such as off-shore platforms [2]). Quadrupeds
are ideal for these uses, thanks to their increased locomotion
capability. However, system designers have to face numerous
challenges when creating a new robotic platform. Given the
complexity of legged robots, it is not trivial to predict how to
select the best platform to perform a given set of tasks. This
is even exacerbated by the fact that design and control are
usually considered separately, while in reality, they are deeply
interconnected. Splitting them into subsequent phases leads
to an inefficient process in which the design is modified and
tested multiple times before reaching an adequate performance
and can lead to sub-optimal results. To exploit the system
properties at best, the optimization of the robot hardware
for the task is hence needed. This concurrent-optimization
approach takes the name of co-design.
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Fig. 1. Quadruped prototype bounding tests at DFKI-RIC 1.

TABLE I
COMPARISON OF SOME STATE-OF-THE-ART QUADRUPEDS IN TERMS OF

THEIR DIMENSIONS AND DYNAMIC CAPABILITIES

Quadruped Spot [3] ANYmal [4] MIT Mini
Cheetah [8]

Unitree
A1 [9]

Length (m) 1.1 0.8 0.48 0.5
Width (m) 0.5 0.6 0.27 0.3
Height (m) 0.61 0.7 0.3 0.4
Weight (kg) 32.7 30 9.0 12.7

Battery (Wh) 605 650 NA 90.72
Max speed (m/s) 1.6 1.0 2.45 3.3
Standard Stairs† Yes Yes No∗ No∗

Backflip No No Yes Yes
∗ No public demonstration of this skill to the authors’ best knowledge.
† Standard stairs with step height = 0.19 m, depth = 0.26 m.

Numerous highly dynamic quadrupedal designs, including
both commercial and research platforms, have been developed
in the last decade. The most notable ones include Spot [3] by
Boston Dynamics, ANYmal [4] from ETH Zurich, the Cheetah
series [5]–[7] from MIT. Especially after the seminal work
on the open-source MIT mini-Cheetah robot [8], which has
demonstrated back flips, and other highly athletic behaviors,
various other smaller-sized quadrupedal platforms became
popular. Table I compares some selected quadrupeds’ physical
dimensions and dynamic capabilities, including maximum
speed for walking/running, ability to climb standard stairs
and perform a backflip. It can be observed that the smaller-
sized quadrupeds are capable of more athletic behaviors (e.g.,
running with higher speed, the ability to perform a backflip).
On the other hand, quadrupeds with larger body lengths can
climb standard stairs, which is very useful in deploying them
in real-world environments developed for human accessibility.
A natural question arises: how can we design quadruped robots
that can optimally perform a range of dynamic movements?

Several contributions already dealt with the problem of
robot co-design. In [10], the motion of a biped was opti-
mized together with its kinematic parameters to produce stable
running by using local trajectory optimization coupled with a

1Companion video at https://peertube.laas.fr/w/iUscYk7iigi4v3sgk97XxV
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genetic optimization for the hardware parameters. In [11], [12],
passive walkers actuators were optimized for cyclic motions.
Design kinematic parameters were chosen in order to produce
smooth motion for mechanical avatars in [13], while in [14]
the leg design of the StarlETH was selected to optimize peak
speed. In [15] several simple legged robots were designed in
a single NLP problem where the hardware was optimized at
the same level of the motion. The method allowed to include
hard constraints on task fulfillment. Other work focused on
the optimality of motion and design, for instance in [16], [17]
monopeds were designed to minimize different cost functions,
targeting energy efficiency. In [18], robot designs were opti-
mized to follow user-defined trajectories changing just the link
scaling of the legs. The method exploits the implicit function
theorem to obtain a manifold of feasible solutions in the design
space. More recently, in [19], a framework to optimize legged
robot design in order to track trajectories planned with the
single rigid body dynamic assumption was introduced. The
advantage of this framework is the possibility to change freely
the metrics to generate different designs. However, this is at
the loss of the optimality of pre-selected trajectories generated
by a simplified motion planner that can not fully exploit
the system dynamics. In [20] a co-optimization algorithm
is also presented for the quadruped Solo. Differentiation of
the motion planner is exploited in order to obtain faster
convergence and impose arbitrary constraints on the design
variables. In [21], an ADMM method is used to optimize the
robot design with the main goal to increase control robustness
with respect to different scenarios. The results feature the
optimization of a planar quadruped bounding gait for the
mini Cheetah robot [22]. Co-design has been historically first
used to optimize the motion together with the controller, for
instance, with the discovery of the optimal trajectory with
the associated gains in [23], [24]. Some preliminary results
in integrating the trajectory stabilization at the design level
for simple underactuated systems can be found in [25]. In
[26], [27] two successive works where conducted to develop a
generic framework to cover legged robots co-design combining
trajectory optimization and genetic algorithms. Several model-
based paradigms for legged systems hardware selection, featur-
ing several design criteria, have been proposed in [28]–[31].
Additional experimental work validating hardware selection
choices was performed in [32]. Among these contributions,
only a few works really achieved developing a general frame-
work for co-design and drawing the link with real hardware
implementation and testing. This is the objective of the current
work.

Contributions: In this paper, we present an extension of
the co-design framework introduced in [26], [27] in order
to make it more complete and versatile, and we apply it to
improve the design of a new quadruped robot developed at
the Underactuated Robotics Lab of DFKI RIC in Bremen. The
key contributions are as follows:
• Development of a more robust optimal control problem

resolution and parallelization of the framework to improve
both accuracy and computation times required by the higher
complexity of the platform and tasks to optimize.

• Complete modeling of actuator bandwidth handled as mo-
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Fig. 2. Overview of the approach. Stack of the parallelized bi-level
optimization scheme with arbitrary hard constraints on the primal optimization
variables.

tion constraints.
• Consideration of optimal cyclic movement patterns (e.g.

bounding and back-flip). In particular, to the best authors’
knowledge, multiple dynamic and periodic movements have
never been analyzed with co-design.

• Real hardware validation of energy and friction models of
the actuator used in trajectory optimization.

The paper is organized as follows. The rationale and the-
oretical aspects of the framework are outlined in Section
II. In Section III we focus on the optimal control problem
formulation. Here the actuator model is presented together
with its impact on the constraints (bandwidth limitation) and
cost function (electrical power consumption). In Section IV-A
the current quadruped development at DFKI is described. The
actuator model is then proven to provide good estimates on the
current hardware implementation through experimental valida-
tion. Later, a co-design study on the platform is performed,
and the results are collected in Section V. In particular, in
Section V-B and V-C the designs are preliminary optimized
for a single task (respectively, bounding and backflips). Then,
to select an improved design of the platform, a refinement that
considers both tasks is shown in Section V-D.

II. METHODOLOGY

A. Co-design framework structure and characteristics

Fig. 2 depicts our parallelized co-design algorithm. Our
method relies on a bi-level scheme. In the outer-loop a
genetic algorithm optimizes the design parameters considering
their optimal cost value L obtained in the inner loop (a
trajectory optimization). The outer loop generates a population
of random designs and for each design a task-driven Optimal
Control Problem (OCP) is solved. After all the individuals
of the population are evaluated, the outer loop proceeds with
the evolution of the population, generating a new random
population propagating the information of the designs that
provided the best cost.
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a) Outer loop (genetic algorithm): To optimize over the
hardware parameter space, we use a gradient-free, population-
based stochastic optimization CMA-ES [33]. This makes the
method less impacted by the presence of local minima. This is
not generally true in the case of gradient-based co-design ap-
proaches [18], which depend on an initial guess. The discrete
motor selection is optimized together with the other design
variables by CMA-ES, which by default works on a continuous
space. All the design-related quantities are continuous, and so
a remapping strategy is employed to pass from the continuous
variables associated with the motor selection to their discrete
counterpart before solving the problem. CMA-ES optimizes
over a set of continuous variables exploring all the motor
combinations, and internally, before computing the associated
OCP the projection to the integer is performed. Thanks to this
remapping, all of the motor characteristics are found with the
catalog value without the need for an explicit parametrization
as used in [16], [17], [26], [27]. This mechanism is necessary
when the motor technologies are rather different from each
other or when a parametrization is not viable. Finally, the
genetic approach in the outer loop is massively parallelizable.
Thanks to this property, the overall computation time is
reduced, as the whole optimization framework was adapted for
parallelization on a High-Performance Cluster (HPC), using
SLURM in Fig. 2.

b) Inner loop (OCP solver): Guarantees on task ful-
fillment are enforced by hard constraints, which are now
supported by using the state-of-the-art interior point solver
IpOPT [34] for solving the OCP. In our previous work [26],
[27], strict equality and inequality constraints could not be ex-
actly enforced, but only approximated by penalties in the cost
function. This was rather limiting because it required hand-
tuning the weights and parameters associated to the penalties.
Such time-consuming and error-prone process was a main
source of brittleness, which we have overcome in this work by
relying on Casadi [35] and Pinocchio [36], [37]. Now more
versatile, yet complex, optimal control problem formulations
can be solved with robust general-purpose optimizers. IpOPT
comes with a robust optimization routine that allows a better
globalization compared to other state-of-the-art gradient-based
solutions. However this comes at the expense of:

• increased computation time compared to iLQR or DDP [38],
as the specific sparsity pattern of the OCP is not exploited.
Depending on its complexity, each OCP problem’s compu-
tation time varies between ≈ 10 s and 10 min. Moreover, the
addition of inequality and equality constraints drastically
increases the complexity. The time-sparsity pattern in the
Hessian matrix is partially recovered by the linear solver
MA57 [39], which we selected because of its efficiency and
robustness.

• warmstart capability; because of the barrier initialization,
interior point methods are more difficult to warm start. This
usually limits the re-using of previously computed solutions
to solve a new problem instance [40], [41].

Table II compares our method with other state-of-the-art co-
design strategies. The work that is more similar to ours in
terms of optimized platform and trajectories is [21]. The main

TABLE II
COMPARISON BETWEEN VARIOUS STATE-OF-THE ART CO-DESIGN

APPROACHES.

Contribution [19] [18] [15] [10] [14] [21] [20] [26] [27] Ours
Whole-body★ ✓ ✓ ✓ (✓) ✓ ✓ ✓
Bandwidth ✓
Hard constraints ✓ ✓ ✓ ✓
Cyclicity ✓ ✓ ✓
Scaling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Energy optimization ✓ ✓ ✓ ✓ ✓ ✓
Global exploration ✓ ✓ ✓ ✓
Mixed-integer ✓
Robustness ✓ ✓
Controller ✓ ✓ ✓
Hardware validation ✓ ✓ ✓

★ Exact dynamics instead of kinematic/reduced models.

advantages of our approach are the bi-level structure of the
optimization which allows discrete variables to be optimized,
and the capability to handle actuator bandwidth limitations.
Finally the use of CMA-ES for the outer-loop enables to
explore globally the combination of hardware parameters,
while in general gradient-based methods are more impacted by
initialization. These features provide an advantage with respect
to state-of-the-art methods for practical design problems.

III. TRAJECTORY OPTIMIZATION PROBLEM

A. Trajectory optimization formulation

Numerical trajectory optimization is a powerful and ver-
satile tool for robotics. Optimizing a tailored cost function
allows to generate a control trajectory for the robot so that
it performs specific behaviors [42]–[45]. The main advantage
of this approach is the intuitiveness of setting the cost and
constraints, which are strictly related to high-level goals that
must be fulfilled.

a) Variables: For the trajectory optimization problem on
a discretized horizon with nodes [0..𝑁], we use direct collo-
cation with an augmented set of variables: Z = [X,U,A,F,𝚪]
where:
• X is the decision vector collecting the evaluations of states

of the robot x, each state includes the configuration and
velocity of all its degrees of freedom. where qb is the
underactuated base position and qa is the vector of actuated
joint positions.

x = [𝑥, 𝑧, 𝜃, 𝑞1..𝑛𝑢︸        ︷︷        ︸
q=[qb ,qa ]∈R𝑛𝑞

¤𝑥, ¤𝑧, ¤𝜃, ¤𝑞1..𝑛𝑢︸        ︷︷        ︸
v=[ ¤qb ,va ]∈R𝑛𝑣

] ∈ R(𝑛𝑥=𝑛𝑞+𝑛𝑣 ) (1)

• U contains the actuated joint torques u ∈ R𝑛𝑢 .
• A is the vector of the joint accelerations a = ¤v ∈ R𝑛𝑣 .
Just for the contact phase nodes 𝐶 = [𝑁𝑐,0..𝑁𝑐,𝑇 ] ⊆ [0..𝑁],
the foot position p𝑐, 𝑓 for the feet 𝑓 in contact is fixed. For
any foot 𝑓 in contact, we define additionally:
• F: contact force vector, which stacks the contact forces

f =
⋃

𝐶

⋃
𝑝 (f𝑐,𝑝 ∈ R𝑛𝑐 ), where 𝑛𝑐 is the contact point

dimension, which depends on the contact model. For in-
stance, in planar models 𝑛𝑐 = 2, while for three dimensional
and contact wrench models it equals 𝑛𝑐 = 3 and 𝑛𝑐 = 6,
respectively.
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• 𝚪: slack variable vector, which collects the contact slack
variables 𝜸 =

⋃
𝐶

⋃
𝑝 (𝜸𝑝 ∈ R𝑛𝑐 ), following the formulation

in [45], to impose constraints on the feet position and
velocity. These variables are introduced only in the contact
phases to avoid contact drift.

b) Model choice: The considered augmented set of vari-
ables, at torque and acceleration level, is motivated by the
intention of imposing physically driven constraints on the
trajectory considering the physical limitations of the actuator.
This is not directly possible in the case of simplified models
such as Linear Inverted Pendulum [46], [47], Spring-Loaded
Inverted Pendulum [48] or centroidal model [49], [50], which
do not include the joint torques. Finally, highly-dynamic
behaviours are difficult to discover as they are often far from
the simplified model assumptions.

c) Contact phases: This study is limited to the case of
trajectories with pre-specified phases and timing (the sequence
of contacts is fixed a-priori). We follow a holistic approach
inspired by [51] (and later [10], [52]) where the motion of a
biped is synthesized by imposing periodic constraints on the
trajectory. As in [53], the joint trajectories of a planar biped
are optimized to obtain cyclic behaviors imposing contact
constraints and joint limits. The main advantage of our method
is the automatic discovery of the footholds, as the contact
location is left free. It is nonetheless possible to further refine
the phase timing with black-box techniques as in [26] or with
methods that optimize the length of each contact phase in the
optimal control problem directly [10].

B. Optimal Control Problem Constraints

With the formulation outlined in Section III-A, constraints
can be imposed directly on the primal variables both in the
form of equality and inequality constraints. This is an aspect
of the utmost importance for co-design, as the feasibility of the
motion needs to be guaranteed from the optimization stage.

Robot dynamics

The robot state x evolves under the influence of the joint
torques and contact forces as described by the constrained rigid
body dynamics [54]:[

M J⊤𝑐
J𝑐 0

] [
a
−f

]
=

[
u−b
−¤J𝑐v

]
, (2)

where M is the joint-space inertia matrix, b is the vector
containing the state-dependent nonlinear effects of gravity,
centrifugal and Coriolis forces, and J𝑐 is the contact Jacobian
stacking the Jacobians of all the contact points. Based on this
dynamics, the robot configuration q and its velocity v, evolve
under the control action u of the motors. (2) can be solved
using the Forward Dynamics (FD) [54], leading to a constraint
on a. Joint accelerations must then be integrated numerically to
obtain joint velocities and positions. To this aim, we introduce
an integration function 𝚽, which we used to formulate the
following constraints

x+ =𝚽(x,a,u,𝜸,Δ𝑡), (3)

To improve numerical conditioning, the contact point veloc-
ity is corrected with a slack variable 𝜸 as proposed in [45].
This allows to impose redundant constraints on the contact
location and its velocity, avoiding drift. This modification is
propagated in the integrator law (3), as shown in Eq. (13)
of [45]. In the cost function, these slack variables are penalized
for converging to physically accurate solution. Our integrator
hence depends also on 𝛾 because, instead of the state velocity
v, the value ṽ is used in the integration step, where ṽ can be
interpreted as the velocity projected in the kernel space of the
contact velocity J𝑐v:

ṽ = v+J⊤𝑐 𝜸 (4)

Contact constraints

The rigid contact model leads to several constraints de-
scribed in the following.

a) Forces: The non-sliding and unilaterality conditions
impose the following constraints on any contact force (for flat
ground) f𝑐 = [ 𝑓𝑐,𝑥 , 𝑓𝑐,𝑦 , 𝑓𝑐,𝑧]⊤, given the friction coefficient 𝜇:{

𝜇2 𝑓 2
𝑐,𝑧 ≥ 𝑓 2

𝑐,𝑥 + 𝑓 2
𝑐,𝑦

𝑓𝑐,𝑧 ≥ 0
(5)

b) Non-sliding contact points: During any contact phase
of horizon 𝐶 = [𝑁𝑐,0..𝑁𝑐,𝑇 ] ⊆ [0..𝑁], the position p𝑐, 𝑓 of any
foot 𝑓 in contact is constant for the whole phase. In particular,
we set it equal to the value at the beginning of the phase:

p𝑐, 𝑓 (q𝑖) = p𝑐, 𝑓 (q𝑁𝑐,0 ), ∀𝑖 ∈ 𝐶,𝑖 ≠ 𝑁𝑐,0 (6)

c) Non-penetration: The 𝑧 coordinate of the contact
point must be at ground level (flat ground assumption):

p𝑐, 𝑓 (q𝑁𝑐,0 ) |𝑧 = 0 (7)

Because of (6), this condition can be imposed just on the
initial contact node 𝑁𝑐,0.

d) Contact velocity: The velocity of the feet in contact
must be zero:

v𝑐, 𝑓 (q𝑖) = 0, ∀𝑖 ∈ 𝐶 (8)

Key-frames collision avoidance with the ground

To produce a feasible motion, constraints on the vertical
position of some key-frames (e.g. shoulder and knee joints,
indicated with the subscript 𝑘 𝑓 ) need to be imposed in order
to not penetrate the ground. This is enforced along the whole
optimization horizon through inequalities of the type:

p𝑘 𝑓 (q𝑖) |𝑧 ≥ 0, ∀𝑖 ∈ [0..𝑁] (9)

Cyclicity

Cyclic motion patterns are the target of the optimization.
This choice allows to keep the optimization horizon per cycle
short enough without sacrificing numerical precision. Once
the motion primitive is obtained, a locomotion pattern that is
representative of the robot main operation can be achieved
by replicating the cycle multiple times. The periodicity of
the solution is introduced in the OCP with non-Markovian
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constraints between the optimization variables at the initial
and final nodes of the problem. Depending on the problem
requirements, these constraints can involve the full set of
decision variables z or just a subset of it.

g(z0,z𝑁 ) = 0 (10)

For instance, some offsets or inequalities can be introduced
just on specific parts of the state to enforce a given behavior
(e.g., in a forward jump, we want that the base position
translates at least of a given amount, but all the other variables
match the values at the beginning of the trajectory).

h(z0,z𝑁 ) ≤ 0 (11)

As these constraints enforce a dependency between the initial
and final nodes. A major drawback is that the requirements to
define a Markov chain are not respected anymore. This renders
using faster iterative algorithms as DDP [38] not viable.

Actuator model and limits

All the main actuator limits are taken into account:
• Position: joint position bounds are considered (e.g., the knee

joint angle is delimited by the presence of stoppers).
• Velocity: each actuator speed limit is considered by imposing

bounds on the joint angular velocity. For highly dynamic
trajectories, this aspect is essential as these thresholds may
easily be reached.

• Torque: Generally, torque limits are modeled as fixed bounds
on u. This is a necessary but not sufficient condition because
the actuator cannot instantly provide any torque value: the
intrinsic limitation due to the bandwidth of the actuation
needs to be addressed. Approaches to treating it were
proposed in [55], [56] working in the frequency domain
respectively on the cost function and to obtain feedback
gains that can be applied to the real system. Our approach
is to impose physically-driven bounds on the torque values
themselves. The rationale is that, considering the joint trans-
mission, the elastic elements (particularly the transmission
belt) can store energy through small deformations. This acts
as a low-pass filter from the motor to the connected joint,
which can be approximated by a first-order filter whose cut-
off frequency depends on the actuator technology (for DC
motors, it can be estimated 𝑓𝑐 ≈ 20𝐻𝑧). In time domain, the
filter presents a straightforward implementation. For each
node 𝑘 ∈ [1..𝑁] it results in the following constraints:

u𝑘 ≤ (1−𝛼)u𝑘−1 +𝛼u
u𝑘 ≥ (1−𝛼)u𝑘−1 +𝛼u
u ≤ u0 ≤ u

, (12)

where 𝛼 ∈ [0,1] depends on 𝑓𝑐 and the discretization step
Δ𝑡 as follows:

𝛼 =
2𝜋Δ𝑡 𝑓𝑐

2𝜋Δ𝑡 𝑓𝑐 +1
. (13)

u,u are respectively the minimum and maximum torque
that can be achieved by the actuator. By construction, (12)
respects peak limits, as u ≤ u𝑘 ≤ u ∀𝑘 ∈ [1..𝑁].

C. Power cost function

For what concerns the cost function that is minimized, in
the Lagrange term, the total electrical energy consumption is
included as the time integral

∫ 𝑇

0 𝑃𝑒𝑙 (𝑡)𝑑𝑡 of electrical power
𝑃𝑒𝑙 , as in [26], [27]. 𝑃𝑒𝑙 is computed with the non-ideal
dissipations of the actuators.

a) Joint friction: The power dissipation due to friction is
computed from the identified values of static friction 𝝉𝜇 and
viscous friction 𝑏.

𝑃 𝑓 = v⊤𝑎 (𝜏𝜇sign(v𝑎) + 𝑏v𝑎)︸                  ︷︷                  ︸
𝝉 𝑓

, (14)

where v𝑎 is the velocity of the actuated joints. We denote as

𝝉 = u+𝝉 𝑓 (15)

the total joint torque including the friction component 𝝉 𝑓 .
b) Joule effect: The Joule power losses are included on

the motor side with the values of the motor constant 𝐾 coming
from its specifications:

𝑃𝑡 = 𝝉⊤K𝝉, (16)

where K is a diagonal matrix containing, for each joint, the
reciprocal of the motor constant divided by its squared gear
ratio.

c) Mechanical energy invariance: For any periodic tra-
jectory Ω, the electrical energy equals the integral of the losses
(𝑃𝑒𝑙 = 𝑃 𝑓 + 𝑃𝑡 ). Therefore, it is not necessary to minimize
explicitly the mechanical power 𝑃𝑚 = u⊤ (𝛾)v𝑎 (𝛾) because its
circuitation is a conserved quantity and equals the difference
in mechanical energy between the final and initial state (which
is state dependent and hence zero by definition of periodicity):∮

Ω

u⊤ (𝛾)v𝑎 (𝛾)𝑑𝛾 = (E𝑚𝑒𝑐 = E𝑘𝑖𝑛 +E𝑝𝑜𝑡 ) |x𝑇x0 ≜ 0 as x0 = x𝑇
(17)

This result can also be extended for semi-periodic trajectories.
In particular, we consider the case in which joint velocities are
the same and only the 𝑥 position of the robot base changes.
Any translation of the base along 𝑥 is tolerated as it results in
no net change in potential energy because:

• the base lands at the same 𝑧 position it started from
• the actuated joint position trajectories are cyclic

This is a sufficient condition: the final height of each link
CoM is equal to the initial one, so no difference in potential
energy is induced, and kinetic energy is conserved as there is
no difference in state velocity (and the joint space inertia is
invariant to base translations).

IV. REAL HARDWARE RESULTS

In this section, we present the current quadruped develop-
ment at DFKI, and we validate the actuator and the power
consumption models introduced in Section III-C.
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A. The new quadruped prototype at DFKI

The DFKI Robotics Innovation Center recently developed
a new robot quadruped (see Fig. 1). The validation and
optimization results are based on its preliminary design, which
is presented in this section. The robot consists of a central body
on which four legs of identical design are mounted. Each leg
has 3 degress of freedom (DoF), which are actuated by off-the-
shelf quasi-direct drive actuators based on open-sourced MIT
mini Cheetah actuators. The hip joint has one pitch, and one
roll DoF and the knee joint can be rotated around a pitch axis.
The physical dimensions for the initial design are similar to
the mjbots-quad [57]. To keep the leg’s inertia low, the knee
joint’s motor was shifted to the pitch axis of the hip joint
and coupled to the knee joint via a toothed belt transmission
with a ratio of 1/2. An adjustment of the belt tension can
be utilized by a linearly displaceable tensioning pulley. All
structural elements of the robot were designed in such a
way that they can be manufactured by waterjet cutting. This
results in a cost-effective, quickly adaptable robot design. The
components of the body consist of carbon Fiber-Reinforced
Plastic (in short FRP) plates with a thickness of 1 mm.
This allows easier manufacturability and assembly, without
sacrificing rigidity and lightness. The connections between the
hip drives were made from 3 mm thick carbon fiber plates
connected by aluminum parts. Likewise, the leg structures are
made of carbon fiber plates connected by spacer bolts in the
case of the upper leg and by a custom-designed plastic spacer
in the case of the lower leg. Even the gearbox pulleys for
coupling the knee joint were made by waterjet cutting. The
low-cost in-house production by waterjet cutting enables quick
replacement of parts and simple adaptation of the kinematics
to changed application scenarios or improvements derived by
co-design experiments. For example, the leg segments’ length
or the belt drive’s transmission ratio can be adapted very
easily. The CAD models were generated in a correspondingly
adaptive manner. Lastly, the 3D-printed feet of the robot are
exchangeable. This allows different material hardnesses to be
tested for different substrates. The material TPU in the Shore
hardnesses from 75A to 85D has been used for 3D printing
of different feet. In addition, the flexibility of the feet can be
adjusted by varying the density of the infill.

B. Actuator model and power consumption validation

The trajectory optimization formulation introduced in Sec-
tion III is used to produce an energy-optimal bounding motion
(for more details on the task, see Section V-B). By tracking
the optimal reference trajectory with the prototype, the gap
between the model and reality is assessed, and the models
are validated. Fig. 3 shows that the actuator model with the
identified parameters, closely predicts the total joint torque 𝝉
(including joint friction 𝝉 𝑓 ) as in (15). A jumping trajectory
cycle lasts 0.8 s, so it is repeated multiple times, with a
phase in which the system resets to the initial position. To
stabilize the trajectory, a PD joint-position controller is used,
with additional feedforward torques from the OCP. The value
of the joint torques predicted by the model closely follows the
measures, with the main difference in the flying phase [0.3s-
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Fig. 3. The actuator model allows a close match between the ideal trajectories
with friction compensation and the ideal torque applied to the system from
measurement data.
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Fig. 4. The electrical power estimation closely follows the values measured
on the system.

0.5s], which can be attributed to the unmodelled controller
dynamics. In Fig. 4, the power prediction from joint data
measurements (torque and velocity) is shown together with the
measured data. The estimation of the total electrical power is
given by 𝑃𝑒𝑙 = 𝑃𝑚𝑒𝑐ℎ +𝑃𝑡 +𝑃 𝑓 , with the notation introduced
in Section III-C. To compute the values, 𝜏 is inferred by our
joint friction model. Fig. 4 shows that the prediction, which
solely uses joint measurements (velocities and commanded
torques), follows the measurements of the electrical power
provided by the power source, which is measured as the
time average product of voltage 𝑉 and current 𝑖, 𝑃𝑒𝑙 = 𝑖𝑉

(at a lower sampling rate). Nonetheless, the integrated values
of the total electrical consumption are accurate, despite the
controller dynamics and the sim-to-real gap. These findings
are reported for the energy optimal trajectory in Table III. In
addition, a hand-tuned heuristic was used to produce similar
jumps with the prototype (with similar time horizon and
jump displacement). On this heuristic, the same method was
applied to assess the electrical power consumption. It was
found that the consumption of the heuristic was higher than
the energy optimal trajectories (which are 30% more efficient
with respect to the measured values). The optimal energy
expenditure is rather accurately estimated by the method, while
for the heuristic, the prediction on the reference trajectory
overestimates the power consumption.
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TABLE III
ENERGY CONSUMPTION VALUES FOR THE JUMP

Case Measured Reference
Energy optimal 39.69J 39.64J

Heuristic 56.75J 68.47J

V. CO-DESIGN OPTIMIZATION RESULTS

A. Problem requirements and assumptions

The high-level requirements for the platform are: i) to
produce stable locomotion in the forward direction 𝑥, ii) to
be capable of dynamic motions along the 𝑧 axis as shown in
Fig. 5. In order to consider representative legged robot move-
ments, we focus on the generation of iii) stable and periodic
motion patterns. Such movements need to be performed while
being iv) energy efficient. Taking this into account, periodic
bounding and backflip were selected as benchmark tasks to
achieve.

Robot model: Fig. 5 shows a sketch of the joint place-
ments on a complete robot. The general design choice is to
place the motors as close as possible to the base to limit the
reflected inertia of the leg links. Another preliminary design
choice is to drive both the abduction joint and the hip joint
directly, while using a belt transmission with at reduction
factor of 2 for the knee joint.

Since the motion of leg abduction in the lateral plane (𝑦, 𝑧)
is not strictly needed for bounding or jumping, a planar model
was used instead of the complete one, to avoid unnecessary
complexity. The masses of the motors are lumped on a single
axis, and the abduction of the leg (rotation around 𝑥 of the
first leg joint) is blocked. The motor of the blocked DoF is
located in the base, while the hip and knee motors are on the
same axis and are shown in grey. Nonetheless, the mass of
the motors responsible for the leg abduction is considered in
the base. This choice simplifies the problem by reducing and
coupling some DoFs.

The robot model for this task exploits the symmetry of
the motion with respect to the (𝑥, 𝑧) plane. The optimization
then removes the burden of discovering symmetrical behaviors
by encoding them directly in the dynamics. Under these
constraints, the dynamical equivalence between the complete
model and the planar one is ensured by lumping each link in-
ertia and control effort on a unique joint for each symmetrical
hip and knee. The command torque on the joints (and limits)
is then doubled, and they need to be equally divided into two
legs to pass on the real system.

Fig. 5. Complete robot model (left), its planar simplification (center) and
scaling of the base, upper leg and lower leg links.

TABLE IV
PROPERTIES OF THE MOTOR SELECTION INTEGER VARIABLES

Motor type AK80-9 AK80-6
Mass [kg] 0.48 0.48
Rotor inertia [kg m2] 6.1E-05 6.1E-05
K [Nm/

√
𝑊] 0.22 0.22

Gear reduction [-] 9 6
Nominal torque [Nm] 9.83 6.55
Peak speed [rad/s] 25.66 38.22

Structural scaling of the model
The legs and torso structure are then modeled as fixed

payloads, corresponding mainly to the mass of the motors.
Additionally, there is a smaller contribution to the mass from
embedded electronics and fixating frames for the panels.
Taking this into account, and knowing that the rigidity of
the system with respect to bending is much higher than with
additive manufacturing, we can envision scaling up the link
along its main nominal dimension with a factor 𝜆 (see Fig. 5).
For the planar quadruped model of Fig. 5, three scaling factors
are considered: 𝜆𝑢, 𝜆𝑙 and 𝜆𝑏, respectively for the upper leg,
lower leg, and base of the robot. This scaling is just acting
on the links. The mass and dimension of the fixed payload
(e.g., motors) do not scale with the rest of the rigid bodies.
The material density is assumed constant, and the section of
the links is not modified. This scaling affects the link inertial
parameters as follows:
• The mass scales linearly ∝ 𝜆.
• The center of mass position scales linearly ∝ 𝜆.
• Inertia: for the inertial parameters, each link geometry is

simplified with box primitives, and each component of the
inertia tensor is modified independently after the scaling.
However, it is possible to intuitively envision the major
contribution to the tensor. For this scaling, the effect on the
inertia tensor is twofold: there is a purely geometric scaling
with respect to the main link dimension (∝ 𝜆2), and a second
one just related to the mass scaling (∝ 𝜆). The overall scaling
of the dominant inertia component is instead ∝ 𝜆3.

Design variables
For both co-design tasks, we optimize over the same set of

variables, which is here reported.
Continuous design variables: Starting from the nominal

design the following continuous design parameters are:
• lower leg link scaling 𝜆𝑙 ∈[0.5,1.5]
• upper leg link scaling 𝜆𝑢 ∈[0.5,1.5]
• base scaling 𝜆𝑏 ∈[0.5,1.5]

Discrete design variables: For the specific co-design
application the motors are chosen from the off-shelf Anti-
gravity AK series as reported in Table IV. In particular,
among AK80-6 and AK80-9, these two motors differ mainly
from the reduction of the integrated rotary gear, which is
respectively 6 and 9. Negligible differences are found for the
other parameters, especially concerning the motor constant and
the winding resistance. In the co-optimization problem the
same leg design, and consequently actuator choice, is used
for all four legs. The possible motor combinations for the hip
and knee motors (respectively 𝑚ℎ𝑖𝑝 ,𝑚𝑘𝑛𝑒𝑒) are then four.
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Actuator choice

The actuator properties are taken into account by modifying
the robot dynamics, the constraints of the OCP, and the cost
function. The main effects of the actuator are as follows:

a) Inertia: The added rotor inertia is considered in the
model via the technique explained in Ch. 9.6 of [54]: the rotor
inertia is multiplied by the value of the squared reduction and
added to the corresponding diagonal element of the joint space
mass matrix. Moreover, each motor mass contribution is added
to the parent link mass and inertia as a concentrated mass.

b) Transmission friction: Given a motor and its transmis-
sion, the overall viscous and Coulomb friction are considered
in the cost function that minimizes the overall energy, follow-
ing the same approach as in [26].

c) Motor placement: The contribution given by the mo-
tor masses is also taken into account by the structural base
scaling. Each motor is modeled as a localized mass and the
rotational inertia is modified accordingly.

B. Co-design for bounding

The first optimized task is a bounding motion, where the
robot must perform a jump of at least 0.30 m. The cyclic
constraints enforce the robot state to be equal at the beginning
and the end of the trajectory, except for the base 𝑥 position.
Finally, a constraint is added to obtain zero joint velocities
at the start and end of the trajectory. In this way the system
consumes just the energy required to perform the jump and
decelerate to a full stop in the final part of the trajectory. The
phases of such movement are as follows (Fig. 7c):
• Dual support, with all feet in contact with the ground.
• Flying phase, with no contact with the ground.
• Dual support, with all feet again in contact with the ground.
This task is symmetrical, meaning that the time left for each
contact phase is the same. For the overall problem the time
window for each cycle of the jump is 0.7 s, and the total
number of nodes for the optimization horizon is 100.

a) Outer loop hyper-parameters: For this optimization,
the CMA-ES algorithm is initialized to evolve for 10 times
a population of 1000 different individuals (different combi-
nations of the design parameters). Fig. 6 shows that this is
sufficient to reach stationary values in the cost. It is clear
from the trends that there is a diminishing return in exploring
further combinations of parameters. In particular, in the same
figure we see different bands, which correspond to the various
optimal design for the 4 combinations of the motors.

TABLE V
RESULTS OF THE OPTIMIZATION FOR THE BOUNDING TASK

Nominal Optimized
Cost L 1.78 0.41
𝜆𝑢 1.0 0.752
𝜆𝑙 1.0 0.514
𝜆𝑏 1.0 0.512
𝑚ℎ𝑖𝑝 AK80-6 AK80-9
𝑚𝑘𝑛𝑒𝑒 AK80-6 AK80-9

b) Cost comparison: For this task, the optimal design is
obtained for the values reported in Table V. We see that, with
respect to the nominal leg design, the best solution is found
for a smaller robot.

c) Discussion: The method consistently provides results
with |𝜸 | < 10−6. According to Table V, The optimization
selects as best suited a smaller robot, with a different scaling
of the thigh 𝜆𝑢 and shank 𝜆𝑙 , in particular 𝜆𝑢/𝜆𝑙 = 1.46. For
jumping forward it seems then that robots with longer thighs
are performing better. The optimal solution is chosen so to
be very close to the lower bound of the variables 𝜆𝑏,𝜆𝑙 . An
additional effect of the choice of the base can be observed
in Fig. 7b: when the base scaling is reduced (Table V) the
trajectories of the knee and hip joints are showing a higher
degree of similarity. In the nominal case the joint position
is reaching the position limits of the actuator, which is no
longer the case with the optimized hardware. Basically we
can explain this result as follows. The optimal quadruped for
bounding tends to be shaped as a planar biped: since there is
no advantage in carrying additional mass from an energetic
point of view, the base length is chosen as short as possible.
From the joint positions of the nominal design (Fig. 7c), the
knee stopper can partially limit the robot motion. So, finding a
solution that does not impose a limitation would be advisable.
For both designs the optimal joint trajectories are smooth and
not hitting the velocity bounds. So, concerning the actuator
selection for this task, a motor capable of quick motions is
not really necessary. Conversely, the choice of a higher gear
ratio allows to exert larger torques and to greatly decrease
the Joule consumption. Basically, to produce the same output
torque, as the motor constant is the same, the ratio of the
Joule dissipation of the motor types AK80-9 and AK80-6 is
equal to the quotient of the square of their gear ratio, so 2.25.
Furthermore, a higher reduction is also impacting the system
inertia and reducing the transparency. However, for bounding
with the optimal robot (which is smaller), apparently there is
no need to use more dynamic and less energy efficient motors,
hence a higher gear ratio is selected.

C. Co-design for backflip

As a second task we present the result of a backflip
optimization, as shown in Fig. 8. This motion was selected as
a complex and dynamic task example, exploiting the whole-
body dynamics of the system. The robot starts with zero
velocity and has to perform a full rotation of the base before
landing. In the landing phase, the excess velocity needs to
be damped to reach a full stop at the end of the trajectory.
Moreover, also for this task, all joint positions except the base
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(b) Optimal design minimal energy trajectories
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(c) Nominal design minimal energy trajectories

Fig. 7. Bounding task: Fig. 7a shows the different motion phases. Trajectories for the optimal and the nominal designs are respectively shown in Fig. 7b and
Fig. 7c. In both, from left to right, the plots show: base, joint positions and joint torques trajectories. Contact phases are highlighted with grey background.

(a) Backflip movement: a full base rotation is required, the state trajectory is cyclic except for the x-translation. The robot must additionally also have zero
joint velocity at the extremes of the trajectory.
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(b) Optimal design minimal energy trajectories
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Fig. 8. Backflip task: Fig. 8a shows the different motion phases. Trajectories for the optimal and the nominal designs are respectively shown in Fig. 8b and
Fig. 8b. In both, from left to right, the plots show: base, joint positions and joint torques trajectories. Contact phases are highlighted with grey background.
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TABLE VI
RESULTS OF THE OPTIMIZATION FOR THE BACKFLIP

Nominal Optimized
Cost L 5.21 0.67
𝜆𝑢 1.0 0.50
𝜆𝑙 1.0 0.689
𝜆𝑏 1.0 1.07
𝑚ℎ𝑖𝑝 AK80-6 AK80-6
𝑚𝑘𝑛𝑒𝑒 AK80-6 AK80-6

𝑥 component need to be equal at the beginning and the end
of the trajectory. For this motion the total time to perform the
task is 1 s. As represented in Fig. 8a, the different phases are
as follows.
• Dual support, with all the feet in contact with the ground.

In this phase the motors need to accelerate the base to
produce enough vertical velocity to break the contact with
the ground. Moreover the applied forces need to generate
enough momentum for the upcoming rotation of the base.

• Single support, with the front legs taking off. This phase is
added to allow the robot to start the rotation of the base and
still push the ground with the back legs.

• Flying phase, in which there is no foot in contact with the
ground and the base is following a ballistic movement. The
motion of the legs is not contributing to the jump, but is
useful to get the feet in the right position before landing
(preparing for the impact phase).

• Single support, with the front legs touching the ground first.
• Dual support, with the rear legs reestablishing contact with

the ground. The contact needs to be stable, so the forces are
inside the friction cone and the motors bring the robot to a
full stop at the end of the trajectory.

Outer-loop hyper-parameters: CMA-ES is initialized so
that each generation is made up by 103 individuals and the
number of overall evolutions of the population is fixed to 10.
In this problem, as the task is more challenging, some design
could not physically satisfy the constraints and perform the
motion within the problem constraints. IpOpt provides debug
information on the infeasibility of the problem. If an individual
is unfeasible an arbitrary high cost value, higher than the other
feasible designs, is assigned to it. The outer-loop algorithm is
elitist, meaning that when generating a new population it will
automatically discard the outlier designs.

Cost comparison: The results for this optimization are
reported in Table VI. Running the optimization routine we
notice that the leg size is reduced while the base dimensions
are slightly increased.

a) Discussion: The optimization selects a smaller robot,
but interestingly a different optimal scaling of thigh 𝜆𝑢 and
shank 𝜆𝑢 is found (with ratio 𝜆𝑢/𝜆𝑙 = 0.73) with respect to
the bounding task. For backflips it seems then that robots with
longer shanks are performing better. The optimal solution is
very close to the lower bound of the variable 𝜆𝑢. Fig. 8b and
Fig. 8c report the optimal and nominal design trajectories. The
optimal base scaling is obtained with a bigger base without
reaching the upper bound. This can be explained as there
is a trade-off between the base inertia and the capability to
apply momentum to perform a full base rotation around 𝜃

Fig. 9. Center: nominal, left: optimized backflip, right: optimized bounding.

of −2𝜋 rad. For the same applied contact forces, the longer
the base, the easier the backflip can be performed. However
there is still a trade-off as a bigger base increases also the
inertia of the rigid body. For the backflip it seems that the most
critical constraint is the maximum joint velocity. The nominal
design, featuring a higher reduction, can exert more torque but
reaches the joint velocity limit. For this task the knee joint is
reaching the position limits of the actuator, in both trajectories,
so this constitutes another hint that this limit needs to be taken
into consideration for the final robot design. Compared to the
torque required for bounding, in this case saturation is reached.
In Fig. 8b and 8c, the low-pass filter effect can be noticed
from the smooth torque trajectories that do not exceed the
upper and lower torque bounds of the actuator, (shown with
dotted lines). For the backflip a motor that can produce faster
motion is needed for task completion. So, for this task, the
motor selection goes in the opposite direction to what was
obtained for the bounding task, leading to a smaller reduction
to achieve a higher joint velocity. In this case, as the motion is
quicker, the effect of the rotor inertia is higher and a smaller
reduction helps in accelerating the joint.

D. Landscape analysis for multiple objectives

As expected, rather different designs were produced for the
two tasks by the co-design optimization (Table V and VI,
Fig. 9). Therefore, an additional grid search was performed
to better understand the impact of the design selection. In this
case, the base was kept to the nominal length 𝜆𝑏 = 1, and
we studied the leg design for the two tasks presented before.
The scaling of the upper and lower leg link is then studied
together with the motor selection. For the scaling, a uniform
grid of 50×50 was studied within the range [0.5,1.5]. The
results are depicted in Fig. 10 and 11 for the bounding and
the backflip tasks, respectively. The plots show the value of
the cost against the scaling of the upper link 𝜆𝑢 and lower
link 𝜆𝑙 once a specific motor combination is chosen. From the
trends of the optimal value L, some orthogonality emerges
between the two tasks in the design space.

With the values obtained from the grid search, the Pareto
frontier was reconstructed (Fig. 12) for the two different task
costs. The resulting Pareto front is reported in Table VII,
it constitutes a reduced set of candidates that can perform
both bounding and backflip reasonably well. As a second-
order criterion, designs that involve fewer modifications to the
nominal prototype are preferred. Practical considerations drive
this: modifying the shank link is easier than the thigh, as the
modification of the latter involves a re-design of the trans-
mission, which is more challenging. Moreover, an optimized
robot for bounding is preferred if this implies a sacrifice of
performance for backflips (locomotion on the 𝑥 direction is
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Fig. 10. Jumping task landscape for motor and link scaling combinations.
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Fig. 11. Backflip task landscape for the different motor combinations and
link scaling. The white regions are associated to unfeasible problems, which
occur consistently when the robots have short shanks and long thighs.

the main movement mode). So the closest options are the 2nd

and 3rd rows of Table VII, which use the same motors and a
lower link very close to the nominal one. Among the two, the
one with the scaling parameter of the thigh at 𝜆𝑢 = 0.66 was
selected. The chosen design decreases the cost for the motion,
as shown in Fig. 12. The relative improvement of this design
with respect to the nominal one is 52% for backflip and 67%
for bounding. Some performance was sacrificed for the sake
of versatility as, for a single task, we found improvements of
87% and 77% respectively.

TABLE VII
PARETO OPTIMAL DESIGNS FOR THE TWO TASKS

𝜆𝑢 𝜆𝑙 𝑚ℎ𝑖𝑝 𝑚𝑘𝑛𝑒𝑒 L Backflip L Bounding
0.50 0.87 AK80-6 AK80-6 1.06 1.11
0.50 1.03 AK80-6 AK80-6 2.59 0.50
0.66 1.03 AK80-6 AK80-6 2.50 0.57
0.71 0.55 AK80-6 AK80-6 0.77 3.65
0.50 0.71 AK80-9 AK80-9 0.89 1.70
0.61 0.97 AK80-9 AK80-9 1.43 0.70
1.08 0.50 AK80-9 AK80-9 2.26 0.65

Lower values of L indicate better performance.

1 2 3 4 5 6

L Back flip task

1

2

3

4

5

6
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Fig. 12. Pareto front approximation for the two tasks’ cost. The designs are
superimposed. The one highlighted in orange is the design which is requires
the least modifications to the nominal prototype, shown in red.

VI. CONCLUSIONS AND FUTURE WORK

In this work, our co-design framework was improved to
gain completeness and versatility, and we applied it to the
optimization of a quadruped robot developed at DFKI-RIC.
Two cyclic tasks were selected to represent different key
motion capabilities. In the initial phase, optimal hardware
solutions were found for each of the two tasks separately. Since
the two optimizations led to rather different designs, we used
a Pareto set approach to select a versatile and efficient trade-
off. This insight will be used for the development of the next
quadruped version. The core contributions of the proposed
co-design framework are: first, the development of a more
robust and parallelizable bi-level scheme capable of handling
mixed-integer variables and, second, a more versatile OCP
formulation with equality and inequality constraints, which
allows coping with actuation bandwidth and motion cyclicity.
The energy consumption and friction models of the actuator
used in trajectory optimization were validated on the current
prototype robot. In future work, we plan to include optimal
gain selection in the OCP. However, the main limitation of the
method remains the computational cost of the OCP resolution,
which may become a bottleneck for more complex systems or
tasks. Finally, even though key information is provided by this
tool, expert knowledge is still needed both to select a design
on the Pareto set and to practically implement it on hardware.
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