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Abstract

3D-LiDARs are heavily impacted by a degraded visual environment (DVE) like rain, fog and smoke which limits
their use for perception algorithms. The capacity to retrieve information about the environmental conditions from
an embedded sensor can be an asset to improve autonomous driving performances. False positive artifacts in the point
clouds caused by aerosols and hydrometeors particles tend to cause perception issues and thus need filtered out. However,
those artifacts can also be used as valuable information to infer weather properties and maybe improve filters. This
article proposes a Bayesian inference model which can classify discrete values of visibility using 3D-LiDAR point clouds.
Gamma and Log-normal distributions are used to model the distance distributions of the noise points and the model is
extended using the Random Finite Set (RFS) formalism with the Poisson and Binomial RFS models. Experiments in
artificial fog and smoke conditions are presented and the classification model is trained and tested independently for each
experiment. The used point clouds are extracted from specific parts of the field-of-view that can be used to generalize
the proposed method to any outdoor scenario. The model shows good classification results with increased performances
when the RFS extension is used.
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1. Introduction

Light Detection And Ranging (LiDAR) is a key tech-
nology to provide 3D measurements of the environment,
in the form of point clouds, and has become a critical
sensor for autonomous driving [1, 2]. But LiDARs are
impacted by Degraded Visual Environment (DVE) condi-
tions [3, 4, 5, 6, 7]: the interactions between the laser
beams emitted by a LiDAR and particles in the atmo-
sphere can produce false positive points and occlusions
(false negatives) [8]. This can significantly alter the qual-
ity of the point clouds, and thus the overall autonomous
vehicles behavior, possibly impeding safety and availabil-
ity. Denoising methods can identify some of false posi-
tives in the point clouds caused by DVE particles [9], but
they could be improved by the quantitative knowledge of
the DVE conditions. This knowledge is also essential to
efficiently adapt a vehicle navigation, e.g. speed, brak-
ing distances, or parameters of data processing algorithms
[10]. Weather monitoring platforms can provide large-scale
DVE information about areas the vehicle is operating in,
but it is the local conditions, in the direct vicinity of the
vehicle, that matters. One can consider the use of weather
sensors mounted on the vehicle itself (precipitation or visi-
bility sensors) but there is high interest in estimating these

conditions from a single 3D-LiDAR sensor already embed-
ded on the vehicle [11]. Indeed, the weather information
retrieved can be directly correlated to degradation levels
of the point cloud data and used to identify sensor and
system limitations, which are valuable for perception al-
gorithms. An end-goal could be to filter weather artifacts
in the point clouds using denoising algorithms with pa-
rameters trained on the inferred weather properties while
giving confidence levels as part of the results. In addition,
as each LiDAR scan can be considered individually, it en-
sures redundancy and avoids cross-dependencies which is
mandatory for the development of safety critical systems.

Related work. Various authors focused on the recogni-
tion of weather conditions using automotive LiDAR point
clouds. [11, 12, 13, 14] suggest a statistical analysis of the
water particles detections and estimate the nature of the
weather conditions (clear, rain, fog, snow) using machine
learning techniques, i.e. KNN, SVM with different fea-
ture vectors, or convolutional neural networks. The latter
require large amount of training data, and lack a robust
qualification of their results, which is a limitation to op-
erational safety of autonomous driving. A probabilistic
hierarchical Bayesian model is proposed in [15] to predict
rainfall intensity. The model is trained using point cloud
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data acquired in artificial rain and precipitation data ac-
quired with a disdrometer to assess the rainfall ground
truth. Artifacts caused by rain are used to train and test
the model. The proposed method yields a rainfall mea-
surement error of 2.89 mm/h, similar to the measurement
error of the disdrometer itself. The results presented are
promising, but the model might be too tightly fitted to the
specific experimental setup and therefore not suitable to
external conditions. Indeed, unlike realistic environments,
the considered scene only includes the walls of the chamber
and no parts of the field-of-view (FOV) is free of target.
This impacts the resulting point clouds, as explained later
in section 2.1. And, the production of rain with nozzles
at high intensity is known to produce not representative
rainfalls, closer to heavy rain showers than to spatially
scattered rain droplets [8].

In fog conditions, [16, 17] present methods to evaluate
visibility using the physical equations of light extinction
described by the Mie theory and visual observations. This
physics-based method is interesting but the full-wave Li-
DAR signals are most of the time not available on com-
mercial automotive LiDAR systems. In [18, 19], a machine
learning approach focuses on LiDAR point clouds taken in
artificial fog conditions. A statistical analysis of the im-
pacts of fog on range measurements is used to build a
Gaussian process regression model. Given a certain visi-
bility, the model predicts the range at which an object can
be detected by the LiDAR. The end of the works of [12]
proposes an estimation of the optical visibility during ar-
tificial fog conditions using a convolutional neural network
architecture and LiDAR data. The algorithm considers the
full point cloud with associated feature vectors to classify
visibility from 5 m to 100 m. Their model shows relatively
good performances except for visibilities above 60 m be-
cause their number of available data samples is reduced.
Though, using the full point cloud makes the results highly
dependent on the scene which, in the case of an artificial
chamber, is quite different from outdoor scenarios. Also,
no error metric is given concerning the visibility classifica-
tion to compare the results.

Optical visibility or meteorological optical range, in
meters, is defined by the International Civil Aviation Or-
ganization as ”the greatest distance at which a black ob-
ject of suitable dimensions, situated near the ground, can
be seen and recognized when observed against a bright
background” – see details in [20].

Contribution. This article describes a probabilistic frame-
work based on a Bayesian inference model which aims to
directly infer visibility from point clouds obtained by an
automotive 3D-LiDAR sensor. The objective is to increase
the capacity of autonomous vehicles to estimate the DVE
conditions so as to yield a more robust autonomous nav-
igation capacity. The approach is a naive Bayes super-
vised classification scheme. A series of visibility classes
are defined by contiguous visibility distance intervals and,
a labelled dataset acquired in controlled conditions consti-

tute the learning base. The dataset is composed of sets
of LiDAR echoes’ distances generated by DVE particles
and labelled with visibility values. It is exploited to es-
timate the probability of each visibility class using the
density likelihood distribution of the distances of these
LiDAR echoes. The likelihoods are modeled as Gamma
or Log-normal probabilistic distributions. Then, the Ran-
dom Finite Set (RFS) formalism (with the Poisson and
Binomial RFS models) accounts for the cardinality of the
data and allows to capture the evolution of the number of
echoes in the sets. As the number of noise point evolves
regarding to changing visibility, the RFS formalism im-
proves the inference results. At runtime, the acquired
point cloud is analysed in order to detect echoes caused
by the DVE conditions, and the application of the Bayes
rule allows to estimate partial probabilities of each visi-
bility class. The learning step of the optimal parameters
for the different likelihood distributions is done using a
Markov Chain Monte Carlo technique (MCMC) and the
Metropolis-Hastings algorithm. Finally, classification re-
sults are analysed in artificial fog and smoke conditions
and accuracy of the various likelihood models are com-
pared.

Outline. The next section depicts the proposed method-
ology to directly infer the visibility of the environment
from 3D-LiDAR data. It first presents how the data nec-
essary to the inference is extracted from point clouds, then
depicts the Bayesian formalism adopted, and finally de-
tails the various analytical probability distributions used
to model the data. Section 3 presents the two different ex-
perimental setups used to train and test the approach with
artificial fog and smoke conditions. Section 4 presents and
analyses experimental results and, a discussion concludes
the paper.

2. Bayesian inference model

2.1. Methodology

A 3D-LiDAR detects points from the laser beams it
sends out if the full-wave signals, received after backscat-
tering in the environment, contain peaks with an ampli-
tude above a threshold [21]. Then, the sensor determines if
one or multiple points from these peaks are produced (one
point for each peak and depending on the multi-echo ca-
pacity). If multiple peaks are found, the order of selection
is their magnitude (in most systems). In this study, only
the strongest echo is considered for each laser shot. Solid
targets in the path of a laser beam are likely to return
higher energy signals because of their reflectivity (in very
low visibility conditions, the obscurant can return more
signal than a solid target at given distance and reflectivity
[22]). On the other hand, DVE particles yield scatter-
ing interactions and tend to return lower energy signals.
This implies that solid targets in a LiDAR frustum can
prevent false positive echoes from signals with lower am-
plitude (e.g. caused by raindrops, fog or smoke particles).
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Conversely, a frustum free of any target is more likely to
produce such echoes and, here, we call this a free-sky frus-
tum (see fig.1).

Free-sky frustum

Figure 1: Free-sky frustum designates any FOV that is free of obsta-
cle within the range of view of the LiDAR sensor. All the 3D-LiDAR
echoes acquired in the free-sky frustum are generated by atmospheric
particles.

Our approach relies on these characteristics of LiDARs
to isolate the echoes generated by the DVE conditions from
the ones generated by actual targets. It is indeed the den-
sity and distance repartition of the echoes generated by the
DVE conditions that is representative of the visibility con-
ditions and, on the basis from which we can estimate these
conditions. To select atmospheric echoes, for both learning
and run-time cases, we consider the data that belong to
target-free frustums, denoted as “free-sky” frustums, that
are all due to atmospheric particles.

LiDAR

x = 0 xtarget
x1 x2

Figure 2: Schematic representation of the extraction of points on a
solid target and inside the LiDAR to target frustum. x represents
the distance of detected echoes (red circles) to the LiDAR sensor.

The presence and knowledge of the parts of the LiDAR
FOV that do not contain any target can be ensured in
autonomous driving operational conditions, in which the
vehicles evolve in precisely mapped environments. Alter-
natively, in the absence of such frustums, the knowledge

of some targets nature and positions can be exploited to
distinguish atmospheric echoes form target echoes – this
is the way we proceed in one of our experiments (section
3.2 and illustrated on fig.2).

2.2. Bayesian inference

The inference model is a naive Bayes classifier [23, 24,
25]. Its goal is to infer discrete classes of visibility V from
independent features – in our case, series of echoes e (fig.3).
It is a supervised model because a labelled dataset Y is
used1, and it is generative as it allows to generate sam-
ples of distances e from classes of visibility V or model
parameters θ, as shown on fig.4.

...e1 eD

V

(a)

ed

V

D

(b)

Figure 3: PGMs of the naive Bayes classifier model for visibility
classification using independent LiDAR echoes, related to eq.1. (a):
developed model, (b): same model using the plate notation.

Fig.3a shows the Probabilistic Graphical Model (PGM)
representation of a naive Bayes model applied to our prob-
lem where i.i.d. features {e1, e2, ..., eD} are used to classify
a visibility class V . A PGM representation gives visual
insight about the causal dependencies between the ran-
dom variables involved in a probabislic model, the the-
ory behind PGMs is given in [23]. Naive Bayes mod-
els are based on the assumption of independence between
the features so that the joint model can be expressed as
P (V, e1, e2, ..., eD) = P (V )

∏D
d=1 P (ed|V ). LiDAR echoes

are considered independent because the laser beams are
fired independently, and each laser emitter is paired opti-
cally with a unique detector. For each visibility class, D
features (echoes in our case) can be used for inference and
D can vary depending on the instance of the class V .

Let Y = {(En,Vn)} for n ∈ [1, N ], be the labelled
dataset which consists of distances En = {e1, e2, ..., eD}n
and discrete optical visibilities Vn. At run-time, when
operating in DVE conditions, the set of echoes distances
E = {e1, e2, ..., eD} from a free-sky sensor frustum is ac-
quired (these points are noise artifacts created by the DVE
conditions). Using Bayes’ theorem, the probability of hav-
ing a visibility value V knowing the received set E and the
dataset Y is P (V |E,Y):

1boldface means that the characters belong to the labelled
dataset, following the convention of [24].
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P (V |E,Y) =
f(E|Y, V )P (V )

N∑
i=1

f(E|Y, Vn)P (Vn)

(1)

where f(E|Y, V ) is the likelihood of the echoes distances E
for a specific visibility V , and P (V ) is the prior probability
on the discrete visibility class.

Without any knowledge on the status of visibility, P (V )
is considered uniform. Information available from a lo-
cal weather station could be included here and improve
the precision of the inference. Additionally, a recursive
Bayesian filter would improve inference results over time
by using the posterior probability at a certain time step k
as the prior probability of the next time step k + 1 [26].

We now introduce model parameters, as the vector θ,
used in the model to parametrize the different likelihood
distributions. In the following, θ remains a generic hid-
den variable but more information is given in section 2.3.
Through marginalization over θ, f(E|Y, V ) becomes :

f(E|Y, V ) =

∫
θ

f(E|θ)f(θ|Y, V )dθ (2)

Fig.4 adds θ to the PGM representation of the model. It
shows that distance samples e can be generated from the
random variable θ and f(E|θ) can be computed as in eq.5.

θ

ed

V

D

Figure 4: PGM of the naive Bayes classifier model for visibility clas-
sification using independent LiDAR echoes, with the addition of the
model parameters θ.

The Probability Density Function (PDF) f(E|θ) from
eq.2 is the likelihood of the echoes given the parameter θ.
Given that each echo feature is independent, the likelihood
f(E|θ) is the product of probabilities of receiving each echo
following the likelihood distribution L,

f(E|θ) =
∏
e∈E

L(e|θ) (3)

The second part of eq.2 is the PDF f(θ|Y, V ) which
represents the learned model parameters of the likelihood
distributions generated by the echoes observed at a given
visibility V . For each visibility class Vn in the training set,
each set of echoes En is paired with Vn in Y, so f(θ|Y, V )
becomes

f(θn|Y, V = Vn) = f(θn|En, V = Vn) (4)

This means that θn only depends on the part of the train-
ing dataset Y acquired at the specific visibility Vn. We
use Bayes’ theorem again to expose the likelihood of En

knowing θn,

f(θn|En,Vn) =
f(En|θn,Vn)P (θn|Vn)∫

θn
f(En|θn,Vn)P (θn|Vn)dθn

(5)

Similarly to the PDF f(E|θ), f(En|θn,Vn) can be mod-
elled by the likelihood distribution with independent
events so that :

f(θ|En,Vn) =

∏
e∈En

L(e|θn)P (θn,Vn)∫
θn

∏
e∈En

L(e|θn)P (θn,Vn)dθn
(6)

Eq.(6) can then be used directly to learn the distribution
of θ for each visibility class. Because the integral of the
denominator does not have an analytical closed form,
we use a sampling technique to produce a numerical
approximation on the distribution of the parameters and
best approximate f(θ|En,Vn). Markov Chain Monte
Carlo (MCMC) methods are statistics algorithms for
sampling from probability distributions where random
walk methods create Markov Chains and appropriate
distributions proportional to given functions (in our
case,

∏
e∈En

L(e|θ) from eq.6). The Metropolis Hastings
algorithm is used with a Gaussian proposal density and
a rejection rule [23]. The results consist in a collection
of learned parameter samples for each visibility instance.
To use these samples and compute the probability of a
visibility class (eq.1 and 2), we use Monte Carlo integra-
tion [27]. This technique allows to compute an integral
using random discrete samples at which the integral is
evaluated. In our case, random samples of θ are taken
from the sampled representation of f(θ|Y, V ) (learned
with the MCMC method) and injected into f(E|θ) so
that eq.2 can be calculated.

The schematic diagram of fig.5 shows the overall frame-
work with both learning and testing phases applied to vis-
ibility classification. The learning block represents the ap-
proximation of the parameters distribution as described
previously. During the test phase, frustum echoes E are
received. Using eq.2, the likelihood probability f(E|Y, V )
of each class V is calculated with Monte Carlo integra-
tion using the learned parameters θ for this class and the
product of likelihood (eq.3). Finally, eq.1 is used to com-
pute the probability of each visibility class using Bayes’
theorem.

2.3. Likelihood distributions

This section describes the different likelihood distribu-
tions used in the model to compute the probability of eq.3.
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Extract frustum points En

for each visibility class

Learn model parameters θ
using MCMC (eq.6)

Extract frustum points E

Learning

Testing

Load learned
parameters θn

for each class Vn

Compute likelihood
f(E|θn) (eq.3)

Compute f(E|Y, Vn) probability (eq.2)
using Monte Carlo integration and samples

from MCMC for each class Vn

Compute P (Vn|E,Y) probability (eq.1)
to obtain the probability of each

visibility class Vn

Figure 5: Schematic diagram of the Bayesian inference framework.

Gamma and Log-normal distributions are used to repre-
sent the statistical repartition of our echoes’ distances.
The Random Finite Set (RFS) formalism with the Pois-
son RFS and Binomial RFS is then introduced to extend
the initial likelihood with the capture of the cardinality of
the sets containing the echoes. For each combination of
likelihood, the vector θ parametrizes f(E|θ).

2.3.1. Gamma and Log-normal distributions

The Gamma distribution is introduced in the context of
autonomous vehicles sensors in [28] to model the distance
repartition of echoes from LiDAR point clouds in snow-
fall conditions. No physical explanation is given for this
choice, but it is showcased that it fits well the data. Also
under snow conditions, [29] exposes similar distance distri-
butions of echoes, but suggests to use the Log-normal dis-
tribution. They also state that the shapes of the distance
distributions arise from the product between an ”optical
detection” function and a ”building shielding effect” be-
cause the sensors are located at a building window. [22]
studies the properties of light reflected from fog-particles
and objects captured by single-photon avalanche photo-
diode detectors (SPAD) in a 3D-LiDAR design. They
showcase that the time profiles of fog and objects laser
returns respectively have Gamma and Gaussian distribu-
tions. This allows them to extract real targets inside fog
and reconstruct the 3D scene.

Considering the application of laser pulses in fog or
smoke conditions, the resulting signal on the LiDAR detec-
tor is a combination of the laser pulse shape, considered as
Gaussian, an atmospheric extinction function, which can
be modelled as a decreasing exponential function and, of
the detector response. This yields a product similar to a
Gaussian function restricted to the positive domain and,
therefore with a longer decreasing tail. In the absence of a
more refined model and according to the literature, both
Gamma and Log-normal distributions seem valid candi-
dates to model the distribution of fog or smoke echoes
returned by a LiDAR. The PDF of a noise echo at range x
which follows a Gamma distribution with the shape-scale
parametrization θ = (γ, β) is expressed as :

LG(x) =
xγ−1exp(−x/β)

Γ(γ)βγ
(7)

with Γ(γ) the Gamma function evaluated at γ and γ is the
shape parameter and β is the scale parameter. The PDF
of a noise echo at range x which follows a Log-normal
distribution is parametrized by θ = (µ, σ) with mean µ
and standard deviation σ and is defined by :

LLN (x) =
exp(−(ln(x)− µ)2/2σ2)

xσ
√

2π
(8)

2.3.2. Random Finite Sets

The Random Finite Set (RFS) theory is a mathematical
framework originated from the Point Process theory [30]
which is used in information fusion and multi-target detec-
tion and tracking [31]. A RFSX = {x1, x2, ..., xn} is a ran-
dom variable which takes values as unordered finite sets.
The purpose of an RFS is to capture the probability state
of elements contained in a set as well as the cardinality
of the set, noted |X| = n. The cardinality is random and
modelled by a discrete distribution ρ(n) = P{|X| = n}.
The elements in the set are modelled by Lθ(x1, x2, ..., xn),
the joint distribution of the elements of X, parametrized
by θ. Common probabilistic descriptors apply to it, such
as the PDF. Following Mahler’s approach [32] and finite
set statistics, the PDF of a RFS is described as follows:

f({x1, x2, ..., xn}) = n! · ρ(n) · Lθ(x1, x2, ..., xn) (9)

Our Bayesian inference model can then be extended,
using the RFS formalism, by taking into consideration the
number of echoes contained in our point clouds, in addition
to the shape of the distribution (Gamma or Log-normal).
We now consider our set of echoes E from section 2.2 as
an RFS :

E = {e1, ..., en} (10)

where a sufficient number of echoes n > nlim is received
and e is an echo distance. The following describes respec-
tively the Poisson, Bernoulli and Binomial RFS models
which are later used for the inference model as likelihood
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functions L(e|θ) of eq.3. Their discrete cardinality distri-
bution is first given before the overall PDF is deduced from
Eq.9 [33].

• Poisson RFS
The Poisson distribution is a discrete probability distri-

bution which describes the probability of a given number
of events occurring in a fixed interval of time or space,
parametrized by the Poisson rate l. The Poisson RFS
is the most common point process for spatial point pat-
terns, it uses the Poisson distribution as a distribution
over its cardinality. The number of LiDAR echoes re-
ceived from weather particles can be modelled using a
Poisson distribution. The cardinality of a Poisson point
process is Poisson distributed with rate l and likelihood
distribution of the model Lθ. In this case, the model pa-
rameters θ initially coming from Gamma or Log-normal
distributions are now extended with the Poisson rate l. If
E ∼ Poisson RFS(l, Lθ), E is described as :

{
|E| ∼ Poisson(l)
e in E are i.i.d. with likelihood distribution Lθ(e)

(11)
The Poisson cardinality distribution is described as :

ρ(n) =
exp(−l) ln

n!
(12)

Given eq.9, the PDF of a Poisson RFS E is :

P (E|l, θ) = exp(−l) ln
n∏
i=1

Lθ(ei) (13)

• Bernoulli RFS
The Bernoulli distribution is a discrete probability dis-

tribution which describes the set of possible outcomes of
any single experiment that asks a “yes-no” question. The
number of LiDAR echoes received from weather particles
can be modelled using a Bernoulli distribution, where each
laser shot is a Bernoulli trial leading to a receiving echo
or not. A Bernoulli RFS E is parametrized by the prob-
ability of success r and its cardinality distribution follows
a Bernoulli distribution. E can be empty with probability
1− r or a singleton with probability r. In the latter case,
it contains the distance e of the returned echo following a
likelihood distribution Lθ.

P (E|r, ψ) =

{
1− r E = ∅
r · Lθ(e) E = {e} (14)

• Binomial RFS
By repetitively sending independent laser shots and re-

ceiving echoes (or not), we repeat Bernoulli trials. The
binomial distribution is a discrete probability distribution
which describes the number of successes in a sequence of
independent Bernoulli trials, which in our case are the in-
dependent laser shots. So, the Binomial RFS is an ex-
tension of the Bernoulli RFS, where its cardinality dis-
tribution is described by the binomial distribution with

parameters m (number of binary experiments), n (num-
ber of successes) and r (the probability of success of each
trial). It is defined by :

ρ(n) =

(
m

n

)
rn (1− r)m−n (15)

Let m be the number of laser shots fired towards a tar-
get and E = {e1, e2, ..., en} be a Binomial RFS containing
our set of n returned echoes’ distances from frustum de-
tections, the PDF of E is :

P (E|r, θ) =

(
m

n

)
rn(1− r)m−n

n∏
i=1

Lθ(ei) (16)

In this case, the vector of parameters θ is extended with
the success probability r.

3. Experimental setups

Two distinct experiments in laboratory conditions have
been carried out. The goal is to assess degradation in the
3D-LiDAR data against DVE conditions and infer DVE
properties using the distance distributions of frustum Li-
DAR echoes and the model described previously. Fog and
smoke artificial conditions are produced in climatic cham-
bers and, context sensors are used to measure the evolving
degraded conditions and label the data. The next sections
depict the experimental setups carried for both experi-
ments with the description of the LiDAR sensor, condi-
tions produced, targets, tests protocols and context sen-
sors. In each test, the chamber is first saturated with the
DVE particles and data is recorded until full dissipation.

3.1. LiDAR sensor

The LiDAR sensor used for this study is the Ouster
OS1-128 spinning 3D-LiDAR. It uses 865 nm wavelength
vertical cavity surface emitting laser (VCSEL) and SPAD
detectors. Two columns of 128 emitters and detectors
spinning around a vertical axis provide the 360° field of
view with 128 point layers. The minimum range of the
sensor is around 0.25 m.

Figure 6: Targets layout inside the CEREMA chamber. These tar-
gets remain static for all conducted tests in the room.
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3.2. Artificial fog experiments

The fog experiments have been conducted in the
CEREMA2 laboratory. The climatic chamber is a 30 ×
10 m rectangle facility able to produce two types of fog
conditions using particle diameter modes centered at 1 µm
and 10 µm. No additional information is known about the
fog particles and in the following, we will refer these two
types of fog respectively as small fog and big fog.

The arrangement of the scene for this campaign is static
and shown on figure 6. The different targets are listed on
table 1 along with their distance from the LiDAR. Back
target is a portion of the end of the chamber and is the
target used similarly to a free-sky target. The other targets
are Lambertian with calibrated reflectivity.

Target back a1 b1,2,3 c1,2,3

d (m) 29 23 17 11

Table 1: Targets distances in the CEREMA climatic chamber.

Once the climatic chamber is saturated with homoge-
neous water-fog particles, the measured visibility reaches
its lowest value. Dissipations are then performed to ac-
quire data while visibility increases until complete dissipa-
tion of fog. A calibrated transmissiometer sensor operated
by the CEREMA team is used to measure visibility inside
the chamber at 1 Hz, a resolution of 1 m with a minimum
visibility value of 5 m.

3.3. Artificial smoke experiments

The smoke experiments have been conducted in a cli-
matic chamber owned by ONERA, shown on figure 7. The
facility is a 15 × 5 m rectangular room in which it is pos-
sible to produce artificial smoke conditions. The smoke
is produced by a fog-oil smoke machine with properties
described in table 2, as measured in [34].

Type of aerosol oil-fog

Aerosol size distribution Log-normal
Modal radius 0.18± 0.01 µm

Complex refractive index 1.508 + i10−5

Table 2: Microphysical properties of the artificial smoke particles
generated during the smoke experiment.

Fig.7 displays the experimental setup with and without
smoke. The smoke study uses 3 reflectance calibrated tar-
gets of 1 m2 each, namely a1, a2 and a3 for respectively
the 80%, 50% and 10% reflectance values (from left to right
on fig.7a). A target called free-sky is added, it represents
the empty space defined by the rear doors at the end of the
chamber. When the rear side of the chamber is open, the

2”Centre d’Etudes et d’expertise sur les Risques,
l’Environnement, la Mobilité et l’Aménagement“, Clermont-
Ferrand, France.

laser beams shot by the sensor inside the free-sky frustum
do not reach any solid targets.

The used methodology is the same as presented in 3.2.
The free-sky target is used with the same purpose as the
back target in the fog experiment as a higher level of frus-
tum points is expected for beams shot in this direction.
Concerning the monitoring of the smoke conditions, dis-
sipations are performed. The chamber is first saturated
with smoke particles while the doors are closed. Dissipa-
tions are then performed by opening the rear-doors while
data are recorded until the smoke particles are completely
dissipated. In total, 7 dissipations are performed with tar-
gets a1, a2 and a3 located at different distances from the
OS1 LiDAR, as summarized in Table 3.

(a) Sensors and targets layout in the artificial fog experimental setup. At
the rear-side of the chamber are disposed the a1, a2 and a3 targets in this
order (decreasing reflectivity order). At the entrance, from left to right :
the PSD sensor, the OS1-128 LiDAR, a Biral VPF700 scatterometer and
the smoke machine.

(b) Example of smoke dissipation performed by opening the rear-doors.
Note that the smoke is not uniformly distributed in the chamber during
dissipation and evacuates mainly by the top of the chamber.

Figure 7: Experimental setup used during the artificial smoke dissi-
pation experiments at ONERA.

Two context sensors providing visibility measurements
have been used in this campaign. The first sensor is the
Biral VPF700 scatterometer measuring visibility at 0.1 Hz
within 10 m to 75 km with a resolution of 10 m. Its charac-
teristics are not suited for measuring short visibility ranges
generated during this campaign. The second sensor is the
Lighthouse Handheld 3016 particle size diameter (PSD)
counters. It can simultaneously measure the concentra-
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Figure 8: Example of conversion of PSD data into visibility using eqs.17 and 18 for one dissipation which gives an estimation of the evolution
of visibility at 1 Hz recording frequency. Although the visibility values can seem to be too high, only its evolution is of interest for the proposed
method.

Target a1 a2 a3 free-sky

d1(m) 12.4 13.3 13.4
d2(m) 10.9 11.1 11.0
d3(m) 9.4 9.4 9.3
d4(m) 7.1 7.2 7.2 ∞
d5(m) 5.5 5.5 5.5
d6(m) 4.1 3.8 3.7
d7(m) 1.5 1.4 1.3

Table 3: Targets positions for the smoke experiments. Targets are
moved manually before each dissipation. Note that, by definition,
the free-sky target does not have any defined distance.

tion of particles according to size channels of 0.3, 0.5, 1.0,
2.5, 5.0 and 10 µm at a max frequency of 1 Hz. This study
relies only on the PSD data to give context about the
severity of the smoke conditions. Moreover, Mie theory
about scattering allows to convert PSD counts into a vis-
ibility value [35]. Visibility is related to the atmospheric
extinction coefficient by :

V =
3.912

σ
(17)

Using Mie scattering formalism, a polydisperse distri-
bution of particles gives σp as eq. 18 where r is the size
of the particles counted, Qext is the scattering cross sec-
tion and n(r) is the continuous function representing the
concentration of particles, given by the PSD sensor.

σp =
∑
r

π r2 Qext n(r) (18)

In the case of visibilities below a few kilometers, the ef-
fect of the air molecules is considered negligible and the
extinction coefficient is caused only by the contribution of
atmospheric particles σp (σ ∼ σp). An example is shown

on fig.8, where each PSD measurement during a dissipa-
tion of smoke is converted into a visibility value.

4. Experimental results

This last section showcases the results obtained from the
two campaigns successively. Measurements highlighting
the evolution of the weather conditions are given as well
as statistical results on the point clouds data and, visibility
classification results using the various inference models.
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Figure 9: Visibility evolution measured every second during the dis-
sipation in small fog and big fog conditions. The difference between
these evolutions is explained by the difference of size distributions
of the generated particles. Smaller and lighter particles tend to stay
longer in the atmosphere.

4.1. Experimental results in artificial fog

The results shown below are drawn from the experiment
described in section 3.2.

4.1.1. Evolution of visibility during fog dissipations

Fig.9 shows the evolution of the visibility measured by
the transmissiometer during both small and big fog dissi-
pations. For both tests, the trend of visibility is not linear
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but increases as visibility rises and fog dissipates. As a
result, the number of point clouds (recorded concurrently)
corresponding to specific visibility values varies and can be
low when visibility rises fast. This affects the classification
results, as shown further. In addition, the small fog test
shows a constant visibility of 5 m (minimum measurement
of the transmissiometer) at the beginning of the dissipa-
tion as well as a slower rise than big fog. The visibility
measured during the big fog test rises faster because big-
ger particles are heavier and fall faster.

4.1.2. Impacts on the point clouds

Following the test protocol and methodology described
section 2.1 and using the back target, the corresponding
detections in the point cloud as well as the associated frus-
tum detections are extracted. The probability of detection
(POD) of target or frustum points, is defined by the ratio
between the number of detections and the number of laser
beams shot towards the target.
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Figure 10: POD of back target (circles) and associated frustum
(crosses) over visibility during both fog dissipations. Color refers
to visibility in meter.

Figure 10 shows the target and frustum POD evolution
for the back target, respectively for the small and big fog
experiments. As fog dissipates and visibility rises, frustum
POD decreases as target POD increases. While the POD
of the back target is comparable to a sigmoid function for
both tests, the frustum detections do not show a similar

behaviour. Thus, there is no clear trivial relation between
the target POD and the frustum POD. Furthermore, the
noise levels decrease as visibility rises but the small fog
test shows a steeper slope, reaching close to 0 frustum de-
tections at approximately 25 m of visibility. The constant
visibility values of 5 m at the beginning of the small fog
dissipation (Fig. 9) gives high variation in frustum POD
(Fig. 10a) which forces us to consider only the end of the
5 m period for the labelled dataset. Besides, both tests
show a short constant level of frustum POD values (0.9
for big fog and 0.8 for small fog) when visibility is very
low.

These frustum noise points are used to perform the in-
ference on visibility. Finally, it is noted that bigger fog
particles require higher visibility values for the LiDAR to
start detecting the target (around 70 m for big fog and 30 m
for small fog). The next section concerns the distance dis-
tributions of noise detections inside the back frustum.

4.1.3. Distance distributions of the noise detections

An intuitive way to visualize the labelled dataset (Y
from 2.2) on which we perform the inference is displayed
on the small-multiple graph of fig.11a and 11b, with re-
spectively the results for big and small fog tests. Each
sub-graph represents, in the form of a histogram, the dis-
tance distribution of frustum noise detections when the
3D-LiDAR aims at the back target according to specific
values of visibility (here with classes of 5 m). It first shows
that these detections are located at very close-range of the
sensor, around 0.3 m. This close proximity is convenient
for our application of inference because it is unlikely that a
real object is located at this short distance. In operational
conditions, these points could be filtered out and used for
inference. Then, the mean distance of the echoes tend to
shift to a shorter distance with increasing visibility (from
almost 0.4 m to 0.3 m), especially for the big fog test. Fi-
nally and as expected from fig.10, the amplitude of the
histograms decreases with visibility. The graphs also show
how the Gamma and Log-normal distributions fit the frus-
tum distance histograms using the parameters obtained in
the learning phase for each visibility class.

4.1.4. Learning and classification results

For both fog tests, classes of visibility start from 5 m, the
minimum value of the transmissiometer and the classes
range is set to 5 m which ensures enough data to train
and test the model on each class. The last visibility class
is limited by the number of frustum points available at
higher visibility values, resulting in 100 m for big fog and
30 m for small fog.

Learning the optimal parameters of the likelihood dis-
tributions is then performed with this class configuration
using the method described at the end of 2.2. The training
results for the Gamma and Log-normal optimal distribu-
tions are depicted on fig.11a and 11b where for each class
of visibility, Gamma and Log-normal plotted curves are
parametrized with the trained parameters and correctly
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fit the distance histograms. The dataset is split into a
training-set (2/3 of the scans) and a test-set (remaining
1/3 of the scans). The model depicted in section 2 shows
that two couples of combinations of likelihood distribu-
tions (Gamma or Log-normal) or RFS models (Poisson or
Binomial) can be used to perform the inference.

Likelihood model Gamma Log-normal

No RFS model
6.4 m

1.8 m
6.3 m

1.8 m

Poisson RFS
5.4 m

1.5 m
4.9 m

1.4 m

Binomial RFS
6.0m

1.7 m
5.4m

1.3 m

Table 4: RMSE values for each model combination and fog test, or-
ange for big fog and blue for small fog. Better RMSE values in the
small fog cases can be explained by differences in the dataset. Given
the resolution of the reference visibility sensor (1 m), no significant
improvement is noted in using one RFS model over another when
looking only at the RMSE.
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Figure 12: Number of LiDAR scans used for the test phase for each
visibility class, representing 1/3 of the total dataset. We note that
the number of scans per visibility class is not homonegenous. Fur-
thermore, the small fog experiment only generated frustum detec-
tions for lower visibility values (up to 30 m), thus limiting inference
possibilities to those classes.

To quantify the performance of the inference model, we
use confusion matrices and the Root Mean Square Error
(RMSE) metric. Results from each configuration are given
and summarized in table 4. Fig.13 and 14 give, in the form
of confusion matrices, the classification results for each
combination of likelihoods on the whole dataset and for
the two types of fog. A confusion matrix is often used to
give the results of a supervised learning algorithm where
each row and column represents respectively the instance
of a ground truth class and the instance of the inferred
class. To compute a RMSE from the confusion matrix,
the following equation is used :

RMSEV = s

√√√√ N∑
i=1

(Vi − V̂i)2 / N (19)

where Vi is the ground truth visibility class id, V̂i is the

inferred class id, s is the visibility step of each class and
N is the number of classes.

As shown on fig.12, the number of 3D-LiDAR scans
within the test dataset representing 1/3 of the total dataset
and thus the number of LiDAR points available for the
classification differ for each class. The classification re-
sults are mitigated by this non-uniformity in the dataset.
Considering this non-uniformity, the 1 m resolution of
the transmissiometer and the 5 m range of our visibility
classes, our model remains robust and shows relatively
good performances for both fog tests and with any com-
bination of likelihood, with RMSE values from 4.9 m to
6.4 m. The Log-normal distribution seems to hold the best
performances for modelling the distance distributions of
the frustum echoes. There is no clear preference between
the Poisson or Binomial RFS models but the capture of
the cardinality induced by the RFS extension generally im-
proves the overall classification results. For some classes,
the model results in a null probability to infer the right
class. These failures should be investigated closely but
given the low amount of data available for this study and
the inference of neighboring classes in these worst cases,
the proposed methods still remain relevant.

The small fog test shows the best results in terms of
RMSE but has less classes with relatively high number of
available LiDAR scans (fig.12) compared to big fog. How-
ever, low number of available scans to test the model does
not always cause low classification results. For example,
the class [25, 30] for small fog has a very small number of
scans but is perfectly classified by the model. This may be
explained by clear differences in distance histograms from
one class to another in Fig. 11b.

Although the classification results show relatively good
results, it would be interesting to improve the model to
learn how to differentiate between the two types of fog
because big and small fogs cause quite different impacts
on the point clouds. This is outside the scope of this paper
but future works should include improving the inference
model by adding a variable corresponding to the fog type.

4.2. Experimental results in artificial smoke

The results shown in this part come from the smoke ex-
periments described in section 3.3. The context sensors
(visibility and PSD) used for this campaign make the cre-
ation of the labelled dataset not as straightforward as for
the fog experiments described above.

4.2.1. Context data for the smoke experiments

Measurements from the context sensors of the smoke
experiments are available on fig.15. The graph shows si-
multaneously the concentrations of particles measured by
the PSD sensor in color as well as the converted visibility
value using the PSD data and Mie theory, in black. In ad-
dition, timestamps corresponding to the recording times of
the LiDAR data are shown with the light purple vertical
bands. These time intervals correspond to the dissipation
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Figure 11: Distance histograms of frustum fog points detected with the back target for each visibility class in both fog conditions. Color
refers to visibility in meter. Trained Gamma and Log-normal distributions fit the histograms.
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(a) Gamma (b) Log-normal

(c) Poisson RFS + Gamma (d) Poisson RFS + Log-normal

(e) Binomial RFS + Gamma (f) Binomial RFS + Log-normal

Figure 13: Confusion matrices from visibility classification using the back target in big fog conditions and the multiple combinations of
likelihoods. Color represents the probability of true positive classification. Classes of 5 m visibility range are chosen for both training and
testing as a first approximation of sufficient resolution for AV scenarios.
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(a) Gamma (b) Log-normal

(c) Poisson RFS + Gamma (d) Poisson RFS + Log-normal

(e) Binomial RFS + Gamma (f) Binomial RFS + Log-normal

Figure 14: Confusion matrices from visibility classification using the back target in small fog conditions and the multiple combinations of
likelihoods. Color represents the probability of true positive classification. Classes of 5 m visibility range are chosen for both training and
testing as a first approximation of sufficient resolution for AV scenarios.

13



15:20 15:30 15:40 15:50 16:00 16:10 16:20
time

0.0

0.5

1.0

1.5

co
nc

en
tra

tio
n 

of
 p

ar
tic

le
s i

n 
m

3 
(x

1e
9)

visibility from Mie theory
LiDAR records

0.3 m
0.5 m

1 m
2.5 m

5.0 m
10 m

200

400

600

800

1000

vi
si

bi
lit

y 
in

 m

(a) Day 1

10:00 10:10 10:20 10:30 10:40 10:50 11:00 11:10 11:20
time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

co
nc

en
tra

tio
n 

of
 p

ar
tic

le
s i

n 
m

3 
(x

1e
9)

200

400

600

800

vi
si

bi
lit

y 
in

 m

(b) Day 2

Figure 15: Measurements from PSD sensor (left y-axis) and conversion into visibility (right y-axis) with synchronized recording times of
LiDAR point clouds for all performed dissipations. Although the dissipations are not fully controlled and changes in the dynamics of the
visibility evolutions are observed, the particles distributions and computed Mie visibilities show similar behaviours.

durations and last approximately 5 minutes each. This
is significantly shorter than for the fog experiments per-
formed at CEREMA, which results in less LiDAR data to
build the labelled dataset. This short duration originates
from the test protocol performed and characteristics of the
facility. Indeed, to obtain free-sky frustum LiDAR points
as explained in section 2.1, the rear-doors of the chamber
are opened at the beginning of the recordings. This leads
to faster dissipation of the smoke particles, as opposed to
the fog protocol where the chamber remains closed.
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Figure 16: free-sky frustum POD according to each particle con-
centration PSD data. The PSD sensor is able to consider particles
ranging from 0.3 µm to 10 µm. This summarizes the overall particles
distributions across recorded data in artificial smoke conditions with
a direct relation to OS1-128 LiDAR noise detections (through the
frustum POD).

Results are separated according to the test day. As
fog dissipates, visibility rises but the concentrations of all
particles between 0.3 µm and 10 µm decrease. Visibility
computed with Mie theory results in values from approx-
imately 70 m to a maximum of 980 m. These results are
quite different than the ones from the fog experiments,
with visibility values higher by one order of magnitude.
And these high visibility values do not match with either
visual observations or impacts on the point clouds. This
should be investigated but it is not a limitation to evalu-
ate our methodology nor the performances of the inference
model so the following shows the results applied to these

Mie-converted visibility values.

4.2.2. Impacts on the point clouds

As said in 3.3, the smoke experiments rely on the PSD
data to first obtain visibility values and then perform infer-
ence. As a result, the following shows the correspondence
between PSD data and LiDAR free-sky frustum points
with which we constitute the labelled dataset for the smoke
experiments. Fig.16 displays, for all recorded dissipations,
the resulting free-sky POD according to the concentrations
measured by the PSD sensor for each particle size. Across
all dissipations, a high concentration of particles leads to
a high level of noise in the 3D-LiDAR point clouds and
inversely. An exponential tendency is observable, with an
increased slope with smaller particle size.

Then, the evolution of the free-sky POD according to
the converted visibility is displayed on fig.17. This graph
shows the results for each dissipation separately to high-
light the differences between the dissipations. A common
decreasing exponential tendency is observed but disrup-
tions in the evacuation and homogeneity of the smoke par-
ticles already discussed cause different results. This has
an effect on the inference model performances because the
model is trained on data accumulated from every dissipa-
tions.

4.2.3. Distance distributions of the noise detections

The labelled dataset built from the smoke experiments
is given on fig.19. Here, visibility values are much higher
than with the fog tests and range from 100 m to 800 m
approximately. We build classes of visibility with a size
of 25 m and label the distance distributions of the free-sky
frustum points according to them. Observations found
during the fog experiments about the distance distribu-
tions of frustum echoes with the OS1-128 LiDAR are again
noticed here. Detections located around 0.3 m have char-
acteristic forms (potentially Gamma or Log-normal) and
changes in the shapes, position and amplitudes depending
on the evolution of the visibility conditions are observed.
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Figure 17: Free-sky frustum POD according to visibility converted from the PSD data for each dissipation performed.

Though, the distance distributions of the smoke experi-
ments are more chaotic than the ones of the fog of fig.11,
which confirms the erratic nature of the smoke dissipa-
tions as discussed previously. Fig.19 also shows the results
of the Gamma and Log-normal distributions trained on
each visibility class of the smoke tests.

4.2.4. Classification results

Classes of visibility are set from 75 m (minimum value
of the converted visibility) to 425 m (too few points are
available above) by steps of 25 m. This configuration is
chosen as it holds the best results notably because it en-
sures enough data available to train and test the model on
each class.
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Figure 20: Number of LiDAR scans used for the test phase for each
visibility class in the smoke dataset. This represents the distribution
of 1/3 of the overall dataset, remaining 2/3 being used for training
purposes. Note that lower and higher visibility classes have fewer
data for both testing and training purposes.

To evaluate the classification results, the dataset is split
into a training set (2/3 of the scans) and a test set (1/3 of
the scans). Results from each configuration are given and
summarized in table 5 and fig.18. Similarly to the fog tests,
the number of available LiDAR scans for the smoke test
(available fig.20) differs for each visibility class and this
mitigates the classification results. In addition, smoke dis-
sipations have erratic behaviors which lead to non homo-
geneous results when confronting the free-sky POD data
with visibility.

Likelihood model Gamma Log-normal

No RFS model 85 m 69 m
Poisson RFS 39 m 39 m

Binomial RFS 51 m 42 m

Table 5: RMSE values for each model combination in smoke con-
ditions. We first note that the RFS formalism improves inference
results. Furthermore, the RMSE metric suggests that the Poisson
RFS is better suited to infer visibility in smoke conditions than the
Binomial RFS.

The classification results, highlighted on the confusion
matrices of fig.18 and RMSE (table 5) show lower perfor-
mances than for the fog tests. While the fog tests have
RMSE values around the class size of 5 m, the RMSE val-
ues of the smoke tests range from 1.5 to 3.4 times the class
size of 25 m. This is explained by the accumulation of data
from non-uniform dissipations and the erratic behaviors as
described before. Nevertheless, we remain confident that
the model can be efficient and robust with our approach
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(a) Gamma (b) Log-normal

(c) Poisson RFS + Gamma (d) Poisson RFS + Log-normal

(e) Binomial RFS + Gamma (f) Binomial RFS + Log-normal

Figure 18: Confusion matrices from visibility classification using the free-sky target in smoke conditions and the multiple combinations of
likelihoods. Color represents the probability of true positive classification.
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Figure 19: Distance histograms of free-sky frustum smoke points detected for each visibility class, color refers to visibility in meter. Trained
Gamma and Log-normal distributions are also plotted for each class in red and green.

if the dissipations produced are improved. The RFS ex-
tension still enhances the overall inference results but here,
the Poisson RFS model holds the best results with a RMSE
value of 39 m for both Gamma and Log-normal likelihood
distributions.

5. Conclusion

This paper presents a methodology to infer optical vis-
ibility values from automotive 3D-LiDAR point clouds.
The goal is to improve the capacity of an autonomous ve-
hicle to retrieve information about the weather conditions
with embedded perception sensors. Particles of fog and
smoke produced in artificial conditions create false positive
echoes in the LiDAR point cloud data. Using the Ouster
OS1-128 LiDAR, the distance distribution of these echoes
have characteristic shapes and evolve with changing visi-
bility values. In addition these points are located at very
close range which is convenient to perform the weather
condition inference because there is hardly any chance that
a real object is located at such small distances.

A fully probabilistic Bayesian inference framework is de-
scribed with the aim of inferring discrete visibility classes
from these LiDAR points where Gamma and Log-normal
distributions model the shapes of the distance distribu-
tions, and Poisson and Binomial RFS models capture the
cardinality of the sets of echoes. The approach uses a
free-sky target with which the field-of-view does not con-
tain any objects because it increases the odds of producing
false positive echoes, and thus increases the inference per-
formance. This reproduces outdoor conditions where parts

of the field of view comprise the sky – alternatively, the
model could use known targets with appropriate learned
hyper-parameters (the paper shows an example with a low
reflectivity target). The generalization of the model to tar-
gets of multiple distance and reflectivity is a crucial point
of improvement for the deployment of this approach.

Labelled datasets are created using ground truth visi-
bility sensors or PSD data converted into visibility. The
creation of such labelled dataset is not straightforward be-
cause the dissipation of the fog or smoke particles are not
totally predictable and can create non homogeneous re-
sults. Nevertheless, the model remains robust with rela-
tively good RMSE results on visibility classification, es-
pecially for the fog experiments which are performed in
a more controlled environment. Gamma and Log-normal
distributions are suitable to model the distance distribu-
tions of false positive echoes in DVE, and the RFS for-
malism improves the classification results by statistically
capturing the evolution of the number of noise points.

Future work could include the production of a bet-
ter quality dataset (especially for smoke). The inference
model could also be trained and tested on real outdoor ac-
quisitions, with for example the dataset proposed in [36].
Finally, the temporal evolution of visibility could be taken
into account to improve the classification over time, with
for example a Bayesian histogram filter.
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