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Abstract: We experimentally demonstrate critical coupling in miniature grating-coupled
resonators known as cavity-resonant integrated-grating filters (CRIGFs). Using previously
proposed asymmetric grating coupler designs for non-linear CRIGFs, and introducing a dedicated
variant of a coupled-modes theory model to estimate physical properties out of the measured
reflection and transmission characteristics of these resonators, we demonstrate fine control over
the in-and out-coupling rate to the resonator while keeping constant both the internal losses
and the resonant wavelength. Furthermore, the critical coupling condition is also observed to
coincide with the maximum enhancement of the second harmonic generation signal.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Cavity-resonant integrated-grating filters (CRIGFs) are planar waveguide Fabry-Pérot cavities
embedding an intra-cavity surface grating coupler (GC). Their principle of operation is governed
by the GC spectrally and spatially-mediated interaction of the incident free-space beam with the
localized waveguide cavity modes. In that respect, CRIGFs are a particular implementation of
BIC-class component [1–3], with the particularity that the bound mode volume is mesoscopic,
larger than in PhC devices, and not fully delocalized as in classical planar BIC metasurfaces.

Exploiting this behaviour, CRIGFs have been used as wavelength-selective (directional)-
waveguide couplers [4], and as (tunable)-filters [5–7] with a even-more specialized application
as wavelength-control elements in extended-cavity diode lasers [8,9]. Should they include
an (organic) gain layer, they have also been proven to enable laser (surface)-emission, case
where they have become known as mixed-order distributed feedback lasers [10]. Similarly,
when the constitutive layers exhibit high nonlinear susceptibilities such as when embedding a
lithium niobate (LiNbO3) layer, the resonant nature of the CRIGFs allows the demonstration of
enhanced nonlinear frequency conversion and, in particular, of continuous-wave second harmonic
generation (SHG) with sub-10mW input levels [11].

Recently, to improve the wavelength-selectivity or the stored energy in these cavities, we have
theoretically and numerically shown that adjusting the GC coupling strength allows the CRIGF
operation to be gradually changed from the overcoupled regime through the critically-coupled
regime before reaching the undercoupled regime, and thereby optimize the device performance
[12]. This allows us to tailor the optical response of the device in a somehow similar way to the
absorption optimisation that was done in [13,14]. Our theoretical approach uses an asymmetric
structure where the GC is simply shifted with respect to the centre of the Fabry-Pérot cavity
established by the two lateral distributed Bragg reflectors (DBRs, see Fig. 1) [15,16]. Assuming
that the localized mode is set by the cavity, the position of the GC tunes the alignment of its
teeth with respect to the mode standing wave pattern and will thereby lead to a low (respectively
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high) in/outcoupling extraction of the mode when the teeth match the mode intensity nodes
(respectively anti-nodes), case referred as dark-mode (respectively bright-mode or conventional)
CRIGFs [16].

Fig. 1. Schematic view of the CRIGFs under study: two side distributed Bragg reflectors
(DBR – green) form a planar Fabry-Pérot cavity supporting a resonant mode (standing wave
– red), localized in the LiNbO3 layer (gray); an asymmetric grating coupler (GC – orange)
couples the resonant mode to an incident focused beam with coupling strength controlled by
the asymmetry offset ∆.

In this manuscript, we experimentally study dark-mode CRIGFs operated in linear and nonlinear
conditions and validate the influence of the GC coupling strength on the achievable device
performance at both fundamental and SHG wavelengths. Moreover, since CRIGFs do not exhibit a
clear signature in the (fundamental-wavelength) reflection/transmission characteristics associated
with the critical coupling condition [12], contrary to waveguide ring resonators where the resonant
transmission is minimal, we hereafter combine an analysis of the fundamental-wavelength and
of the second harmonic signal responses to detect the critical coupling condition. To do so,
we propose and validate a simplified model based on the coupled-mode theory suited for the
extraction of physically-meaningful parameters from the recorded reflection and transmission
spectra.

2. Sample design and fabrication

The device under study are asymmetric CRIGFs as proposed in [15] and further theoretically
studied in [16]. Such structures are composed of a planar waveguide on which a cavity is created
using two side distributed Bragg reflectors (DBRs, green on Fig. 1) creating a localized mode that
is coupled to free space through a grating coupler (GC – orange). In the devices under study, the
planar waveguide is made of a 47-nm-high Si3N4 layer deposited by plasma enhanced chemical
vapour deposition (PECVD) on top of na x-cut lithium niobate on insulator (LNOI) substrate
made of a 300-nm-thick LiNbO3 layer on a 500-µm-thick fused silica substrate.

The GC and DBRs are defined in the Si3N4 layer during a single coupled plasma reactive
ion etching (CCP-RIE) step with CHF3-O2 chemistry, using the lithium niobate layer as an etch
stop layer. The GC is NGC = 21 period-long and both DBRs are NDBR = 400-period long, for
optimal reflectivity. Both GC and DBRs have a filling factor close to 50%. For the conventional
design, the GC is centred in the Fabry-Pérot, with a periodicity ΛGC = λ0/neff(λ0) and the DBRs
have a periodicity ΛDBR = ΛGC/2 = λ0/(2neff(λ0)) where λ0 = 1550 nm is the wavelength of the
resonant mode and neff(λ0) ≃ 1.75 the effective index inside the LiNbO3 waveguide, resulting in
ΛGC = 884 nm and ΛDBR = 442 nm. In the transverse direction (i.e. along the y-axis in Fig. 1) to
the Fabry-Pérot cavity, the CRIGFs are 20-µm wide.
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The key idea of the asymmetric design as described in [16] is that the coupling strength of
the GC is determined by its spatial overlap with the localized standing wave. This allows to
change the coupling strength of the GC by simply shifting its position in between the two DBRs
by an asymmetry offset ∆. As the DBRs define the Fabry-Pérot cavity and set the position of
the extrema of the localized mode, ∆ changes the effective overlap between the mode and the
GC, altering neither the GC geometry nor its feature size. Indeed, when the GC is in phase with
the localized mode extrema (∆ = 0), the coupling is maximal, while when the GC is shifted
sideways by ∆ = ∆π/2 = ΛGC/4 = 221 nm, the GC and the localized mode are in quadrature
and the coupling strength is null. Accordingly, the coupling strength evolves as cos2(θ) with
θ = 2π∆/ΛGC and this approach allows to finely tune the coupling strength over a wide range
without any technological difficulties.

We thus fabricated, on a single sample, 42 CRIGFs with offsets ∆ ranging from 0 to 410 nm
by step of 10 nm, as shown in Fig. 2.

Fig. 2. Confocal microscope image of the 42 CRIGFs with varying offset ∆ and zoomed
images for the CRIGFs with ∆ = 0 nm, ∆ = 200 nm and ∆ = 410 nm.

3. Experimental setup and typical spectra

As shown on Fig. 3, the fabricated samples are characterized using a CW tunable telecom laser
(Santec TSL-550) outputting up to P = 10 mW around λ = 1550 nm.

The incident laser beam is focused down to a waist of w = 9 µm with a 19-mm focal length
lens and aligned on the GC of the CRIGF under study, with TE polarization (electric-field aligned
with the y direction in Fig. 2). The reflected and transmitted spectra at the pump wavelength
are recorded using two InGaAs photodiodes (Thorlabs PDA20CS-EC) while the generated
second harmonic spectrum is measured using an avalanche photodiode (Thorlabs APD 440A). To
increase the signal to noise ratio of the experiment, the laser intensity is modulated at ≃ 900 Hz
using a chopper and all signals are recorded using lock-in detectors (Signal Recovery 7225).
Reflection and transmission spectra are recorded for laser intensity of P = 5 mW and several
second harmonic spectra (SHG) are recorded for laser intensities increasing from 1 to 10 mW.
Typical spectra for SHG and linear reflection and transmission are presented in Fig. 4, for three
different asymmetry offsets : ∆ = 0 nm (left column) and ∆ = 130 nm (centre column) and
∆ = 220 nm (right column).

On the linear spectra, the resonant coupling to the local mode of the CRIGF results in a single
sharp peak in the reflection curves and a single sharp dip in the transmission curves. This is
typical of an (asymmetric) Fano resonance where the light is coupled to the localized mode
and its out-coupled part interferes (both in reflection and transmission) with the non-resonant
contributions through the multilayer stack (oscillating reflection of about 10 % in Figs. 4 (d),
(e) and (f)). For the SHG signal, the resonant coupling to the local mode induces a strong
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Fig. 3. Experimental setup.

Fig. 4. (a), (b), (c) typical experimental SHG spectra for varying pumping power; (d), (e),
(f) spectral reflection (red) and transmission (green). Results are presented for three offset
values : ∆ = 0 nm (a) and (d), ∆ = 130 nm (b) and (e), and ∆ = 220 nm (c) and (f).
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enhancement of the interaction with the lithium niobate layer resulting in a Lorentzian peak on a
virtually dark background (as the non-linear conversion is negligible out of the resonance [11]).
As expected, for ∆ = 220 [nm] ≃ ∆π/2, the GC is in quadrature with the localized mode and its
coupling strength is null. We thus do not observe any SHG (Fig. 4 (c)) and the transmission and
reflection spectra correspond to those of the multilayer stack (Fig. 4 (f)). For intermediate ∆ (for
example ∆ = 130 nm), the SHG efficiency can be increased whilst the linear response decreases.
The overall evolution of these spectra closely follow what was predicted in [16]. For increasing
values of ∆ in [0,∆π/2], the linear reflection spectra exhibit a peak with monotonous decrease of
both its height and width, the peak completely disappearing for ∆ ≃ ∆π/2 (Fig. 4 (f)). As for the
SHG spectra (that are directly related to the square of the intensity of the excited mode in the
cavity), they reach a maximum somewhere between ∆ = 0 and ∆ = ∆π/2 (Fig. 4 (b)).

4. Non-linear Fano coupling model

In order to determine the intrinsic losses of the various CRIGFs, together with the coupling
strength offered by the asymmetric GCs, we used the hereafter-described model to fit the linear
and non-linear responses from the CRIGFs under study.

The model is based on the temporal coupled-mode theory for Fano resonances in optical
resonators introduced by Fan [17] and more specifically on the variant for lossy two-port systems
proposed by Yoon [18]. We amend the latter model by separating the incoming free space beam
into two modal components : one that interacts with the localized resonator and gives rise to a
Fano resonance (i.e. it interacts with both the local resonator and the non-resonant stack), and the
other one, orthogonal to the first component, which effectively by-passes the resonator, and only
interacts with the non-resonant stack. We consider these two modal components as orthogonal,
and will thus sum their contributions in intensity. This decomposition follows the approach
used by Ding in [19] to model the coupling interaction between a singlemode waveguide and a
multimode (ring) resonator.

We describe the spectra as functions of the reduced frequency usually used to describe Fano
resonances, δ, whose expression is:

δ = 2Q(λ0 − λ)/λ0 = 2Q(ω − ω0)/ω0 (1)

where λ0 the central wavelength of the resonance, ω0 the central frequency and Q is the quality
factor as defined in [20].

The transmission, T(δ), and the reflection, R(δ) spectra, are then expressed as :

T(δ) = γTi(δ) + (1 − γ)Td(δ) (2)

R(δ) = γRi(δ) + (1 − γ)Rd(δ) (3)

where Ti(δ) and Ri(δ) are respectively the spectral transmission and reflection for the interacting
component of the beam expressed as in [18], and Td(δ) and Rd(δ) = 1 − Td(δ) are the spectral
transmission and reflection of the non interacting part of the beam (ie, in the absence of coupling
to the local resonator, thus equal to the non resonant transmission and reflection) and γ ∈ [0, 1] is
the fraction of the incident beam that interacts with the resonator. In this model, γ describes the
impact of partial modal overlap between the incident beam, the GC and the localized mode inside
the resonator. This modal overlap is a central issue in the design and use of CRIGFs [21–23].
It can take into account some spatial overlap, but also imperfections of the incident beam if its
phase profile or its polarization are not perfectly matching those required to optimally excite the
local resonator.
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Expanding the expressions of Ti and Ri from [18] in Eq. (2) and (3), one gets the following
expressions for the transmission T(δ), reflection R(δ) and absorption A(δ):

T(δ) = Td(δ) +γ

[︃
−

4ηaηr
1 + δ2

α(1 − α) +Td(δ)ηr

(︃
(q + δ)2

1 + δ2
− 1

)︃]︃
(4)

R(δ) = 1 − Td(δ) +γ

[︃
−

4ηaηr
1 + δ2

α2 +Td(δ)ηr

(︃
1 −

(q + δ)2

1 + δ2

)︃]︃
(5)

A(δ) = ⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
non resonant

+γ

[︃
4ηaηr
1 + δ2

α

]︃
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Lorentzian
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

Fano

(6)

with parameters that follows closely those of reference [18]: ηa and ηr = 1 − ηa are respectively
the probability for the localized mode to be absorbed inside the sample or radiated. α (respectively
(1 − α)) is the fraction of radiation towards the reflection (respectively transmission) direction. q
is the Fano shape factor which, upon trigonometric function simplification of the formula given
in [18], can be expressed as:

q = p

√︄
4α(1 − α)

Td(δ = 0)
− 1 (7)

where p = ±1 is the parity factor that governs the asymmetry of the Fano resonance (ie whether
the zero is at shorter or longer wavelength than the maximum). This parity factor is determined
by the phase of the reflection from the non resonant multistack. Here, p = −1.

The expressions of T(δ) in (4) and R(δ) in (5) contain each three terms: the first one corresponds
to the non-resonant term coming from the contribution of the multistack alone, the second one
to the Lorentzian contribution from the local resonator alone and the last one to the Fano term
resulting from an interplay between the multistack and the resonator contributions. The resonant
absorption A(δ) = 1 − R(δ) − T(δ) only contains a single term related to the resonator alone.
These expressions of the reflection, transmission and absorption are the same as those proposed
in ref [18], but for the scaling-down factor γ and the use of a more accurate spectrally-varying
Td(δ) function.

Fitting the linear response of our devices thus requires to evaluate 5 parameters: λ0, Q, ηr, α
and γ. However, the non-linear response of the CRIGFs is directly linked to the field exaltation
in the CRIGF by the Fano resonance [11]. As a result, it can provide meaningful initialization
values for λ0 and Q. Specifically, the SHG spectrum S(P, δ) is fitted using a Lorentzian function
raised to the power of 2:

S(P, δ) = P2 ×

(︃
S0

(δ2 + 1)2

)︃
(8)

where P is the pumping power and S0 the SHG intensity for P = 1 mW and δ = 0. With
this model, the SHG field amplitude, proportional to the excited mode intensity is fitted by a
Lorentzian.

Fitting the SHG spectra, we can determine Q and λ0 for each asymmetric CRIGF, as well as
S0 which is proportional to the non-linear conversion efficiency of the device. A typical fit result
is presented in Fig. 5, where the SHG spectra recorded for various pumping powers are all fitted
simultaneously.

The fitted model from Eq. (8) reproduces accurately the wavelength and power dependence of
the SHG emission, with narrow confidence intervals [24]. One subtle feature that is not taken
into account in our simple model is the small redshift with increasing pump power. We attribute
this drift to a residual optical absorption that thermally tunes the CRIGF [6] when the optical
pump power is increased.
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Fig. 5. Typical fit (red curve) of the experimental SHG spectra for varying pumping power
(blue to yellow). The inset reports the fitted parameters with their confidence interval at
95 %.

The quality factor, Q, and wavelength of the resonance, λ0, are then used as initial guesses to
fit the linear transmission and reflection spectra of the same CRIGF using Eqs. (4) and (5).

A typical result of this fitting procedure, here applied on the spectra measured for ∆ = 20 [nm],
is shown in Fig. 6 for the reflection (left), transmission (centre) and absorption spectra (right).
Experimental data (dots) are plotted with the results from our model (solid line) together with
the model from [18]. The best-fit parameters obtained with our model and their associated 95 %
confidence interval are listed in the inset.

Fig. 6. Typical fit results for reflection (left), transmission (middle) and absorption (right),
using our model (solid lines) and the model from ref [18] (dashed line) which correspond
to our model with γ = 1. The inset reports the fitted parameters for our model, with their
confidence interval at 95 %. The experimental spectra are denoted by points in light color
and the subset exp in the legends.
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First, we see that fitting with γ = 1, i.e. using the standard Fano modelling, does not allow
for a proper estimation of R(δ) and T(δ). We found out that this model tends to systematically
overestimate the losses in CRIGF structures (see Fig. 6 (left)), which, in turn, leads to an
overestimate of the intrinsic losses ηa. Contrarily, with the above-proposed model, there is a
better match to the experimental data, with good confidence intervals for the fitting parameters.

Moreover, comparing the fit results from Fig. 5 and Fig. 6, we can also see that the SHG
spectrum analysis and the linear spectrum analysis lead to a good agreement for the resonant
wavelength λ0, whilst the Q factors only differ slightly.

5. Experimental observations

This two-step fitting procedure was applied systematically for each of the fabricated CRIGFs.
The fitted parameters from the SHG signal are presented in Fig. 7 as a function of the asymmetry
offset ∆ of each CRIGF.
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Fig. 7. Fitted SHG parameters (see Eq. (8)) as a function of the asymmetry offset ∆ (blue
dots). Open dots corresponds to offsets for which the SHG signal is null, and fit results
unreliable.
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Fig. 8. Fitted parameters for R and T spectra (see Eqs. (4) and (5)) as a function of the
asymmetry offset ∆ (red). Open dots correspond to offsets for which the fitted parameters
are unreliable. For λ0 and Q, blue dots correspond to fitted parameters from the SHG signal.

As seen, the wavelength λ0 exhibits small random variations (worst relative variation being
around 0.1 %). This provides a good indication of the homogeneity of the sample, but also
shows that the GC only induces a small perturbation on the localized mode, thereby validating a
property of this approach mentioned in [16].

The most interesting variations are observed for the quality factor, Q, and the conversion
efficiency, S0, that are both symmetric with respect to the offset ∆ = ∆π/2 = 221 nm. As ∆
approaches ∆π/2 where the coupling losses through the GC are minimal, Q steadily increases,
towards values larger than 5000, with even some extreme values about Q ≃ 10000 (note that
for ∆ = 210 and 220 nm, no SHG can be observed). Moving away from ∆ ≃ ∆π/2, the coupling
losses increase and Q decreases symmetrically.
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The conversion efficiency S0 exhibits two maxima, one on each side of ∆ = ∆π/2. We attribute
these maxima to a balance between the intrinsic losses of the localized pump mode (that are
independent of the GC coupling strength) and the amount of incoming/outgoing intensity actually
coupled in the resonator (which increases with GC coupling strength). As will be shown below,
each maxima corresponds to critical coupling in the (non-linear) CRIGF, where this balance is
achieved.

The Fig. 8 shows the fitted parameters for the linear response (reflection and transmission)
for each CRIGF (red dots), as a function of the asymmetry offset ∆. Open dots correspond to
fitted parameters that are deemed unreliable because they exhibit confidence intervals that are
significantly larger than the extracted values.

Like for the SHG analysis, the fitted parameters are not perfectly accurate near ∆ = ∆π/2 where
the in/out-coupling of the CRIGF is vanishing. Aside from this central value, the parameters
are evolving as expected. For the resonant wavelength λ0 and the Q factor, the evolution is
almost identical to that estimated from the SHG as is evidenced by the quasi-superposition of the
blue dots (resulting from the SHG signal fits) and the red dots (from the linear spectra fits) in
Figs. 8 (a) and (b). The fraction γ of the incident beam that actually interacts with the GC is seen
to be independent of the asymmetry offset ∆. Indeed, as we tested the various CRIGFs on the
sample, the experimental conditions (polarization state and modal shape of the incident beam)
were constant and a careful alignment procedure was applied to ensure minimal variations of the
spatial overlap. Similarly, the balance between the forward radiation and total radiation from the
localized mode, represented by α, does not change with the asymmetry ∆. This is expected as
this ratio only depends on the vertical stack (and more precisely on the phase and the amplitude
of the non resonant reflection). Lastly, as expected, the probability for the localized mode to be
radiated out of the CRIGF by the GC, ηr, is decreasing for asymmetry offsets ∆ nearing ∆π/2
where the GC coupling strength is null.

6. Physical discussion

We define Qa and Qr as the absorption-limited and radiative-coupling-limited Q-factors :

Qa,r =
Q
ηa,r

. (9)

Both these quantities, together with the SHG efficiency S0 and the total Q factor as a function
of the offset ∆, are plotted in Fig. 9.

In this figure, we observe critical coupling in CRIGFs. Indeed, when Qa = Qr, the internal
intrinsic losses of the CRIGF are equal to the coupling losses by the GC, which corresponds to
critical coupling. This is achieved for two offset values, ∆ ≃ 130 nm and ∆ ≃ 295 nm (vertical
dashed lines), one on each side of ∆π/2 where the coupling is null. We observe that the efficiency
of conversion S0 is indeed maximum near the critical coupling, which is coherent with a maximum
of excitation of the localized mode. We also see that Qa is nearly constant with values ≃ 6000.
These observations are in good agreement with the theoretical predictions of [12] for critical
coupling in CRIGF.

From the estimated values of Q, ηr and λ0 we can estimate the intrinsic losses ka and coupling
losses kr for the localized mode expressed per unit length, using the relations :

kr =
π

λ0Qr
= ηr

π

λ0Q (10)

ka =
π

λ0Qa
= ηa

π

λ0Q (11)
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Fig. 9. Evolution with the asymmetry offset ∆ of (a) the Q-factors associated to absorption
Qa (black dots) and to radiation coupling Qr (red dots); (b) the SHG conversion efficiency
(blue dots); (c) the Q factor of the corresponding CRIGFs as estimated from the SHG spectra
(blue) and linear reflection and transmission spectra (red dots). Open dots correspond to
unreliable fit results.

Figure 10 shows the obtained values as a function of∆. As seen, the intrinsic losses (ka, black dots)
are almost constant, whilst the outcoupling losses (kr, red dots) evolves as a kr0 cos2(2π∆/ΛGC),
with kr0 the maximal coupling losses obtained for a symmetric CRIGF (∆ = 0). This evolution
corresponds to the expected change with ∆ in the overlap between the localized mode and the
GC. Fitting of the constant value for ka gives a value of ka0 = 3.9 ± 0.2 [1/cm] (black line), while
fitting of the amplitude kr0 gives kr0 = 12.3 ± 0.4 [1/cm] (red line).

This further demonstrates that the asymmetric design of the GC allows to precisely control
and adjust the coupling coefficient kr of the GC and thus of the Q factor of the device, while
keeping its intrinsic losses ka unaffected.
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(black). (Open dots corresponds to offsets ∆ for which the estimated values for kr and ka are
not accurate.)

7. Conclusion

In conclusion, this study experimentally demonstrates several theoretical predictions. First, we
evidence that the asymmetric GC design allows to easily control and tune the Q factor of a
CRIGF from the over- to under-coupled regimes or vice-versa. Indeed, we can go from maximum
to null coupling with a simple shift of the central coupler by 220 nm which has been readily
implemented using e-beam lithography.

Second, we show that going from over- to under-coupled CRIGFs, the resonant reflectivity
and transmission spectral signatures of the coupling reduce, and the SHG is maximised for
critically-coupled resonators, confirming both predictions reported in [12].

Last, we introduced a new model that allows to estimate the physical parameters for CRIGFs,
such as internal losses, which could not be done accurately with the previously available models.
We have also proved that the results extracted from the linear and non-linear responses are
self-consistent with, in particular, the detection and the agreement in the grating coupler position
leading to the critical coupling condition.

The inferred intrinsic loss values are higher (ka0 = 3.9 ± 0.2 [1/cm]) than what is typically
achieved on the same material [25], suggesting that extra-losses are present in our devices.
Finding the exact origin of these losses and methods to circumvent them are beyond the scope of
this paper and will be the object of further work to fabricate CRIGFs whose experimental quality
factors match the (ultra-high) values that have been theoretically predicted [12].
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