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Extracting Hierarchical Task Networks Parameters from Demonstrations

Philippe Hérail, Arthur Bit-Monnot
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

Hierarchical Task Networks (HTNs) are a common formal-
ism in automated planning. However, HTN models are mostly
designed by hand by expert users. While many of the state-of-
the-art approaches for learning HTN try and learn the struc-
ture and its parameterization in a single step, other focus
specifically on learning the structure of the model.

Many of these structure-focused approaches, however, learn
models with non-parameterized actions, task and methods,
which limits their generalization capabilities. In this paper,
we propose a constraint satisfaction-based approach for ex-
tracting parameters for a given HTN structure using a set of
demonstration traces.

Introduction & Motivation

Hierarchical Task Networks (HTNs) are a common planning
formalism that hierarchically decomposes abstract tasks un-
til they are refined into a sequence of executable primitive
actions. However, these models are difficult to design for
non-expert users, and several approaches have been devel-
oped to learn HTNs instead of handcrafting them.

Several of the current approaches to HTN learning (Hogg,
Munoz-Avila, and Kuter 2008; Zhuo, Mufioz-Avila, and
Yang 2014) do not generate new abstract tasks as part of the
learning process but instead rely on annotated tasks to pro-
vide intermediate tasks in the hierarchical structure. Some
systems that try and extract new intermediate tasks automat-
ically learn models that are non-parameterized, which limits
their generalization capabilities (Li et al. 2014; Chen et al.
2021). Segura-Muros, Pérez, and Ferndndez-Olivares (2017)
propagate the arguments upwards in the hierarchy, but it
is unclear how their technique would work with recursive
tasks or how it would scale to more complex hierarchies.
In another research area, that of program synthesis (Manna
and Waldinger 1971), Programming By Example (PBE) ap-
proaches (Raza and Gulwani 2018; Dong et al. 2022), also
need to map parameters to examples. However, they rely on
a Domain Specific Language (DSL) that constrains the set of
arguments in the structure of the possible programs and do
not have to determine the structure of the model parameters,
relying instead on human input.

We argue that an HTN learning system able to infer new
abstract tasks should be able to automatically parameterize
the resulting structure to generalize to new environments

with similar characteristics. We therefore take the view that
HTN learning may be split in three steps: structure, param-
eters and preconditions learning. To tackle the second step,
namely learning parameters of a fixed structure, we propose
a MAX-SMT (Nieuwenhuis and Oliveras 2006) approach
that exploits set of demonstration traces for a given top level
task tgemo and the decomposition trees of fgepm, into the
traces.

Learning Problem
Hierarchical Task Networks

In this paper, we consider HTNs as a tuple H = (7, A, M)
where 7T is a set of abstract tasks, .4 a set of primitive actions
and M a set of possible methods decomposing the tasks ¢ €
T into ordered subtasks {t4 | t4 € {T U A}}.

A primitive task (or action) a € A models the ba-
sic acting capabilities of the agent, and represents a di-
rectly executable command. They are represented using an
identifying symbol and a set of parameters, such as a =
action_name(arg, ..., arg, ). Actions are associated with
preconditions and effects that enable verifying the validity
of a plan.

An abstract (or non-primitive) task ¢ € 7T is associated
with a set of methods M that allow decomposing it. Similar
to actions, they are represented using an identifying symbol
and a set of arguments.

A method m € M, is associated with a symbol and
a set of arguments, like abstract and primitive tasks. The
method’s preconditions are denoted as Pre,,. The method’s
subtasks, IV,,, is a totally ordered sequence of subtasks in
{T U A}, representing a possible decomposition of ¢. This
totally-ordered task network represents a way to achieve the
task ¢ and is only applicable in the current state if its precon-
ditions Pre,,, hold.

Inputs & Objectives

We consider as input the structure of an HTN model, its
primitive actions defined with their parameters, a set 7 e,
of known abstract tasks to be demonstrated and a set D of
demonstration traces made of a sequence of ground actions.
Each trace demonstrates a ground instance of a given task
tdem, for which the parameters are known and fixed. New
abstract tasks ¢,t ¢ Tgen, will be called synthetic tasks.



Furthermore, we consider that a decomposition tree map-
ping each demonstrated task ¢ je., € Tgem to each demon-
stration trace is available. Note that such decompositions can
routinely be obtained using HTN planning, as used for plan
verification (Holler et al. 2021), or through parsing tech-
niques (Li et al. 2014).

For simplicity, we consider that the structure of the HTN
model does not contain any of the demonstration tasks as
a method’s subtask, i.e., that the model is non-recursive
through these demonstration tasks. A proposition to remove
this assumption is presented at the end of this paper.

The goal of the parameter learner is to capture the rela-
tionship between the arguments of the subtasks of the hierar-
chy, both vertically (across levels) and horizontally (between
siblings tasks in a single method). This in turn will enable a
solver to efficiently use the model for planning, and may be
used to extract useful preconditions.

Approach to Parameter Learning

In order to parameterize an HTN, our algorithm is decom-
posed into two main steps:

1. The identification of the set of candidate parameters for
all non-parameterized abstract tasks and methods in the
domain.

2. The simplification of this set of parameters. This is done
by identifying, in the ground examples of the demonstra-
tions, the usage patterns of the hierarchy in order to infer
possible unifications of candidate parameters.

Identification of the possible parameters

To identify the superset of possible parameters, we defined
properties for this set, listed below. These properties where
based on our observation of domains from the International
Planning Competition (IPC).

1. The parameters of a method m must allow to set the pa-
rameters for all its subtasks, and | args(m)| must be fi-
nite.

2. Each parameter of a synthetic task must be used in at
least one of its methods.

We designed algorithm 1 following these properties,
which propagates arguments from methods’ subtasks to their
parent tasks until no new argument can be extracted.

The propagation of arguments upwards would require
defining a parent task for the whole hierarchy, which is
difficult in the presence of recursive task definitions. To
solve this issue, the function EXTRACT SUBHIERARCHIES
(Alg. 1, line 2) takes each unique abstract task symbol ¢ and
convert it into a basic self-contained hierarchy containing
only the task ¢;,, with symbol ¢ as top level task, its methods
M and the direct subtasks of each method m € M.

The decomposition into subhierarchies is illustrated in
Figure 1, with ¢,,, being a demonstrated top level task with
fixed arguments, t; an abstract task with unknown argu-
ments and the ¢,, being primitive tasks. The 7 symbol is here
used to denote an unknown set of arguments for a given task
or method.

Algorithm 1: Parameter Superset Generation
1: H < HTN model structure

2: Hsups < EXTRACT SUBHIERARCHIES (H)

3: repeat

4: P <+ args(Hsups) > Existing parameters
5. forall hyyp € Haups do

6: hsup < PROPAGATE ARGS UPWARDS (hgyp)

7:  end for

8 Prew + args(Hsups) \ P > New parameters
9: forall hyy, € Heups do

10: hsub + UPDATE SUBTASKS ARGS(hsub, Prew)
11:  end for

12: until Py, = 0

This decomposition into subhierarchies has the added
benefit of permitting the parameter extraction process to
work simultaneously with demonstrations for different top
level tasks tiop € Tdem.-

ttop (Ah AZ)

‘ ma(?) ‘

O D) (i 5)

mi(?) m3(?)
-tm (Fl) @

(a) Example task hierarchy, showing how t,, can be decomposed
using the methods m and ma.

mi(?) ‘ ma(?) ‘

tp, (B1) () (1, (D1) H ity (B, Bs))

(b) Subhierarchy for ¢;p.

mi(?) m3(?)
tl’l (Fl) @

(c) Subhierarchy for ¢,.

Figure 1: Example HTN structure and corresponding sub-
hierarchies. Tasks in rounded rectangle boxes, such as ¢, ,
represent primitive tasks while oval boxes, such as ¢4 rep-
resent abstract tasks. The () as the only subtask in a method
represent a method that rewrites to no subtask.

As recursive tasks could in theory propagate new argu-
ments upwards infinitely, we need to enforce the termina-
tion of our algorithm in this case. To this end, we need to
know the propagation history of an argument. We therefore
augment each parameter p of a task or method in a subhier-

archy with the set Mp of methods through which it has been

propagated upwards, so that p = (p, M,,).



Algorithm 2: PROPAGATE ARGS UPWARDS (hgyp)
for all m € M, do

1:

2:  for all p € args(SUBTASKS(m)) do
3: args(m) < args(m) U {p}

4 if m ¢ M, then

5: P (p, MpU{m})

6: args(tp) < args(tn) U {p'}

7: end if

8: end for

9: end for

Algorithm 2 details the procedure used to propagate pa-
rameters from the subtasks to the methods and top level task
of a given subhierarchy hg,p. Line 3 propagates all the ar-
guments from the subtasks of m into the args(m). Then, the
condition on line 4 makes the methods act as filters, prevent-
ing parameters that already crossed this method’s boundary
from reaching the top level task once again. This guarantees
termination in case of recursive task definitions. In such a
case, if a task of symbol ¢ is defined with n recursive instan-
tiation of itself in its methods’ subtasks, it will end up with
n + 1 sets P} of potential parameters: P§ would contain the
parameters induced by all the non-recursive subtasks, and
the remaining sets P!, i € [1, n| will contain the parameters
used in each recursive subtask instantiation. We argue that it
is a reasonable limitation as an HTN planner can:

1. Parameterize all the non-recursive subtasks.

2. For each recursive subtask instantiation, choose whether
the parameters are the same as the parent task or not.

Algorithm 3: UPDATE SUBTASKS ARGS (Rsup, Prew)

1: for all t; € SUBTASKS(hgyp) do
2: t <« sym(ts)

3 Phey D | P € args(t) AP € Prew}
4: forallp e Pl do
5 args(ts) < args(ts) Up
6: end for
7: end for

Finally, Algorithm 3 presents the procedure to update the
subtasks, called after each round of argument propagation.
It is a straightforward procedure that is used to keep a con-
sistent parameterization of every abstract task.

Figure 2 illustrates the parameter generation using Algo-
rithm 1, focusing specifically on the subhierarchy for ¢ from
the example presented Figure 1, as it is independent of any
other subhierarchies. Figures 2a and 2b shows the effect of
the function PROPAGATE ARGS UPWARDS while Figure 2¢
shows the update of the subtasks. Note that due to the recur-
sive nature of tg, the added parameter during the subtasks
update is F, as it may or may not be bound to Fj. This
process is then repeated, as shown in Figure 2d. This time
however, the filtering condition for the argument propaga-
tion (Alg. 2, line 4) is triggered by F}, preventing it from
being added to the parameters of ¢,. As no new changes can

2

ml(Fl m2 ml(Fl)
tn () & (D D Ho

(a) Iter. 1, upwards propaga- (b) Iter. 1, upwards propaga-

tion, step 1. tion, step 2.
m§(F1) ml(Fl,Fl’) m3
tp, (F1) @) tp, (F1) FCE(FDD

(c) Iter. 1, subtasks update.  (d) Iter. 2, upwards propaga-
tion, step 1.
Final subhierarchy for ¢s.

Figure 2: Example of argument superset generation for ¢.
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Figure 3: Extracted parameters for ¢4,

be made to the subtasks of ¢, (even considering the subhier-
archy for 4, ), all the possible arguments of this subhierar-
chy have been extracted.

Figure 3 shows the resulting parameters for the task ¢;,,
after applying the same parameter extraction procedure.

From this parameterized HTN, we can easily extract pa-
rameterized decomposition trees by replacing argument in-
stantiations in the primitive actions and the demonstrated top
level tasks and propagating these substitutions throughout
the tree. A basic example of decomposition tree is given in
Figure 4, where a1, as, di, e; and ey represent constants.
These decomposition trees will be used to simplify the set
of task and method parameters from the demonstration ex-
amples.

(a) Before substitutions. (b) After substitutions.

Figure 4: Example of argument propagation in a decomposi-
tion tree for a demonstration of ¢, (a1, as) as the sequence

tp, (d1) = tp,(e1, €2).

Recursive Task Definition: Specific Considerations The
extraction and substitution procedure described in the previ-
ous section would actually lead to poor parameterization in
the case of recursive tasks definitions, allowing the top level



arguments to only refer to the first or second instantiation in
the recursive chain.

A common usage of recursive task definitions is to encode
the “do something until condition” pattern, which would be
difficult to parameterize without considering the last step
of the recursion. The ubiquitous goto(L1, Ly) pattern, pre-
sented Figure 5, is an example of such a pattern used in many
planning domains, used to move an agent from a location L
to a location L,. This is done recursively by chaining move
actions through intermediate locations until the agent arrives
at Ly, mainly to obey location connection preconditions. As
can be seen in this example, the L; parameter is used to con-
strain the next instantiation of goto and the L, parameter
constrains all of them.

goto(Lq, Lq)

Mmove (L1~, L’i7 Ld)

move(Ly, L;) goto(L;, Lg)

Mthere (Lh Ld)
(0)
)

Figure 5: Subhierarchy for a goto pattern. Preconditions
omitted for clarity.

To solve this issue, we propose a small modification of
the extracted parameters for recursive subhierarchies, pre-
sented Figure 6, as well as a preprocessing step leveraging
the demonstrations, before extracting the full parameterized
decomposition trees presented earlier. This process will be
illustrated using a simple subhierarchy structure, but could
be easily generalized to any task with a single recursive sub-
task. While this covers many of the use cases, more work
is needed for this to work on arbitrary task hierarchies. The
main idea is to be able to map parameters of the top task of a
given recursive subhierarchy to parameters from the demon-
strations’ primitive actions, while considering that recursive
tasks should be able to refer to parameters at the end of a
recursion.

(a) Basic recursive hierarchy.

ttOP(Pltv"vafi)

Tnl(Pl,..-7Pn>P1,7~-'7P7IL)

ttOP(Pl,v (RN} Pr’z)

nZQ(va'-'7P7tz)
(0)
¢

(b) Modified recursive hierarchy.

Figure 6: Parameters modification for recursive tasks.

We first modify the parameters to keep track of the non-
recursive parameters from which the recursive one has been
generated, modifying the extracted structures from the pre-
viously extracted one, presented Figure 6a, into the one

presented in Figure 6b. In this example the P} parameters
shows that this parameter originated from the P; parameter
of the task ,,, but we do not know whether it should refer to
the immediate instantiation of P; or if it needs to refer to its
last instantiation. The P/ are the instantiation of the param-
eters of the task ¢4, in the recursion chain, generated in the
same way as in the example Figure 2.

We then can substitute the ground parameters in the non-
recursive subtasks in each recursion chain, as presented in

Figure 7 where all the pZ represent constants.

ttu[)(PlOs" . 7Pr?)

7n1(p(]?7"'7p’(!)?,7P]:l""7P],)

n

tiop(PL, ..., PY)

n

P i nl 2 2
”Ll(ph-~‘7pn7P17~"7Pn)

tp(p,...,0%)

tp(p%7"'7p711) ttOP(Pizv"WPE)
T

k k k+1 k+1
"Ll(plw"vpnvpl 7"'?P'n+)

Liop(PETY, .. PEFT)

‘mQ(Pf“, ooy P ‘

Figure 7: Generic decomposition tree for a recursive hierar-
chy.

t(pf, ... k)

Applying this process to a goto task for which we want
to learn the parameters, we obtain the subhierarchy pre-
sented in Figure 8. A decomposition tree for a given exam-
ple demonstration trace is given in Figure 9. This task will
be used as a running example to illustrate the remainder of

this section.

ml(XaxX/7 Y/)
move(X,Y)

Figure 8: Extracted subhierarchy for a goto task before re-
cursion processing.

Allowed Structures We then need to determine, Vi €
[1,n], if P! is bound to P; or P/, or to the parameters of the
last step of the chain, noted PZ-L. Furthermore, we want to
know if some parameters are bound together in the method,



move(ls, L)

ma(ls, g, X3,Y3)

move(l3, 1)

(b) Decomposition tree.

Figure 9: Possible example trace and corresponding decom-
position tree example for the goto task. Colors are used to
highlight identical constants.

transferring information from one step of the chain to the
next. We note P;' the instantiation of the parameter P; in
the next step and P the set of all arguments in the example
and the subhierarchy. Pgng C P represents the set of ground
arguments, P,,, C P represents the set of lifted arguments
of a method m in the considered subhierarchy and Py, C P
the set of lifted arguments of the top level task.

Leveraging the structure of the subhierarchies and the
demonstrations, we cast the problem of grouping parame-
ters together as a MAX-SMT problem with the goal of opti-
mizing the size of the groupings of method parameters and
the number of top level task parameters bound to their last
instantiation in a recursion chain.

From the presented model in Figure 6b, we can extract
the following structural constraints where hard constraints
represent properties that must hold for the model to be con-
sistent:

Vi € [1,n]
HARD(P! = P,V P! = P)) (1a)
HARD(P! = P/ = (P} = P v P/ =P")) (lb)
HARD(P! = P} = P! = PF) (Ic)
HARD(P! = P; & P/ = P") (1d)
SorT(P! = P}) (le)

Constraints 1a and 1b are used to enforce consistency with
the origin of a top task parameter P}. Constraint 1a enforces

the fact that the top level task argument either comes from
the non-recursive subtasks (left) or the recursive instantia-
tion (right) while constraint 1b enforces the fact that a top
level parameter may only propagate information towards the
next step in a recursion or towards the last one.

The constraints 1c and 1d are used to enforce consistency
within the model generated by the constraint satisfaction
solver.

The soft constraint le encodes the desirable, but not
necessary, property that an argument is always passed re-
cursively which avoids the need of the planner to non-
deterministically choose its value.

Compatibility with Examples Equations 1%, are the con-
straints that must hold to ensure that parameter passing is
sensible in a hierarchy.

We can also extract the constraints defined in equations 2x
from each example with a structure as presented in Figure 7.

We note Vi € [1,n],Vs,s" € [0,k]U{L},p; ® the argument
pf/ considered at step s, in order to allow parameters to refer
to independent constants at each step.

Vi € [1,n]
HARD(P = pj"") (2a)
Vs € [0, k[, HARD(P;™ = pith*) (2b)
Vs € [0, k]
HARD(P; = p;"®) (2¢)
Vs € [0,k] U{L},Vj € [1,n],
HARD k,L s,s’ k,L s,s
sym(p;”") # sym(p;® ) = pj"" # py
(2d)
vs',s" € [0,k],Vj € [1,n],
HARD o s & s o s & s
sym(p; ) # sym(p; °) = p; " #p;
(2e)

When considering our goto task, some possible con-
straints that ensure consistency with the example presented
in Figure 9 are presented in the next paragraphs.

Equation 2a defines the binding for the last instantiation of
each top task parameter as presented in the following equa-
tion:

{xt=1 vE=11} (3)

Equation 4 shows the bindings from steps 0 and 1 in the
decomposition tree, showcasing the effect of the equations
2b and 2c.

X=10 X'=1I3 X=1 X'=1I3
0 yr_ 0 1y )
Y=I5 Y =1 0 Y=I3 Y =),
Finally, equation 5 shows the action of constraint 2d, pre-

venting unsound unifications involving the last instantiation
of a given task parameter.

(i #1015 #£10 5 £1 £y £ 6



Minimizing Method Parameters through Unification
To determine which parameters are bound together during
the optimization process, we define a set G of potential
groups for each p € P and a function PGROUP (equation 6a)
which maps each unique parameter to a single group (equa-
tion 6¢). We also define a function NOTCOUNTG (equa-
tion 6b) which will be used in the definition of the opti-
mization objectives and is defined through the constraint
presented in equation 6d.

PGROUP: P — G (62)
NOTCOUNTGROUP : G — {0,1} (6b)
HARD
Vp1,p2 € P (6¢)
PGROUP(p1) = PGROUP(p2) = p1 = p2

HARD
Vg € G,NOTCOUNTG(g)

#p € Ppn,, PGROUP(p) = g
V 3p € Piop, PGROUP(p) = g

(6d)

We define the objectives for our optimization problem in
equation 7 with Cgos designating the set of soft constraints.
These objectives are considered in lexicographic order.

The first optimization objective (eq. 7a) is used to sat-
isfy two of our objectives: i) grouping method arguments
together, to allow transferring information from one step of
the recursion to the next and ii) binding subtask arguments
to top level tasks arguments.

The second optimization objective (eq. 7b) is used to sat-
isfy the constraints binding top level arguments to the in-
stantiation of arguments in the last step of recursion (eq. le)
in order to transfer information throughout the recursion.

max Y NOTCOUNTG(PGROUP(p))  (7a)
PEPmy

max Z SATISFIED(c) (7b)
cECsoft

Solving this problem will generate a set of equivalence
classes. We then replace each of these classes in the modi-
fied subhierarchy with a single new parameter, unifiying pa-
rameters with their right instantiation.

Considering again our goto task example, solving the as-
sociated MAX-SMT problem will produce the equivalence
classes presented equation 8. Replacing each equivalence
class in the subhierarchy Figure 8 with a parameter using the
naming scheme shown under the classes will yield the same
structure as presented in Figure 5, which is the expected re-
sult.

(X, X%y {v,x} {Y.vLyt} ({XE} (¥
L L; L

Parameter Simplification

Now that we have described a way to extract a set of possible
parameters for a given HTN, we need to identify how param-
eters are passed from to its methods and from a method to

its subtasks. This is done in a simplification step where we
unify parameters from distinct sources.

We wish for the set of parameters to be general enough
to be able to cover all the examples (and hopefully general-
ize well to new instances) while still restricting the decom-
position possibilities to limit the search effort required of
the solver. We propose to achieve this simplification through
two main procedures:

1. Parameter unification, where parameters are unified with
one another according to the examples.

2. Parameter removal, where parameters that will not help
the solver will be dropped.

Parameter Unification We want to unify as many param-
eters as possible from the examples given as input. This is
motivated by the fact that it will (i) reduce the number of
parameters to instantiate in the model and (ii) constrain the
parameters of the subtask of a given method, allowing them
to refer to the same constant for the whole method without
requiring the planner to infer that this is the best parameter-
ization.

To achieve this unification, we frame the problem as
MAX-SMT with the theory of equality and uninterpreted
functions. We define args(x) as the function that returns the
ordered set of arguments of x, where = may be a method, a
task, a subhierarchy or a set of subhierarchies and arg,(x)
the function that returns the ¢th argument of x. We also de-
fine gnd;(P) as the function that returns the set of possible
ground instantiation of a parameter P in the demonstration
d,deD.

As information may be propagated both upwards (from
the primitive tasks in the demonstrations) and downwards
(from a high level abstract task down to lower level ones),
both cases need to be considered. While it is feasible to ex-
press this as a single set of constraint, the formulation is
more complex and the practical performance is worse, which
is why we decided to separate these two propagations into
two distinct steps. Even though the resulting parameteriza-
tion may not be optimal, preliminary results show that the
extracted parameters are consistent with the principles de-
fined earlier, while the set of constraints remains easy to
specify.

The constraints used to express the upwards propagation
of information are both extracted from the examples as well
as structural, and are defined in the following equations:

vhsub S Hsubsavpla P2 S args(hSub)7 Pl 7& P2

For any ground instantiation of h,; in d € D and
associated grounding p; of Py (resp. pa of P»): (9a)

SOFT(P1 = PQ) if p1 = po
{HARD(Pl 7& PQ) lfpl ;é P2
Vhsub € Hsubs, VP € args(hsup)
3d € D,gnd,(P) # () (%9b)
= HARD(VP' € args(Hsups) \ P, P # P')



Vh/sub S Hsubsv
T, = {ts € SUBTASKS(Hsups), sym(ts) = sym(tp)}

o (0,) € langs(ia) ? axs (1) = arg (1)
= Vs € Ty, arg,(ts) = arg;(ts)
%)

Equation 9a simply translates the fact that two parameters
can be unified if there is a positive example (soft constraint)
but must never be unified if there is a negative example (hard
constraint). Equation 9b is similar, enforcing that if a param-
eter has never been encountered in any example, then we
have no reason to unify it with any other one. Finally, equa-
tion 9c enforces that if two parameters of an abstract task of
symbol ¢ have been unified in its “reference” definition (as
the root t;, of the corresponding subhierarchy), then every
instantiation of ¢ as a subtask must unify these parameters
as well to remain consistent.

After solving the constraint satisfaction problem, equiva-
lence classes can be obtained, which are treated similarly to
what has been shown for the recursive task preprocessing:
for each equivalence class, only one single parameter is kept
for abstract tasks and method parameters.

To address the downward propagation of the information,
we try and unify parameters that are bound to higher level
tasks’ parameters, and therefore simply use a constraint sim-
ilar to the one in equation 9a, as defined below:

Vhsub € Hsubs, Vts € SUBTASK (hgyp),
V(P,, Py) = args(t,) x args(ts)
For any ground instantiation of hg,; in d € D and
associated grounding p, of Ps (resp. py, of Pp):

{SOFT(PS =Py) ifps=pn
HARD(P; # Py) if ps # pn
(10)

Analogously to the previous part, we then extract equiva-
lence classes from the solver result, and unify together argu-
ments according to these classes.

Figures 10 and 11 show an example of this process. Fig-
ure 10a shows an example of subhierarchy where we may
unify parameters as shown in Figure 10b, assuming we have
the decomposition trees as shown in Figure 11. The lower
level of methods and subtasks in Figure 10 is only included
for clarity when presenting the decomposition trees, the sub-
hierarchies considered in equation 10 actually have the same
structure as presented earlier in the paper.

Parameter Removal Once the unification process has
taken place, the HTN model may still contain abstract tasks
with a large number of parameters, leading to methods with
many parameters which will be difficult to instantiate for the
solver. Therefore, we propose to remove the parameters that
will hinder a solver’s performance rather than improve it.
We propose to define “useful” parameters as:

1. Parameters enabling early decision in the hierarchy,
propagating information downwards.

2. Parameters enabling parameter unification across sibling
subtasks.

(a) Before unification. (b) After unification.

Figure 10: Example of extended subhierarchy used for
downward information propagation.

Figure 11: Example decomposition trees for downward
propagation.

While we chose to focus on these two criteria first to de-
fine useful parameters, other possibilities are discussed at
the end of this paper.

To determine which arguments to remove, we define
two functions: PARENTS(p) and HAS SIBLINGS(p). PAR-
ENTS(p) returns the set of parameters that are used as par-
ents of a given parameter p in method’s subtask, allowing
to implement rule 1. HAS SIBLINGS(p) returns TRUE or
FALSE depending on whether p is used to unify parameters
of multiple sibling tasks, allowing to implement rule 2.

Algorithm 4: Parameter Removal

1: repeat
2: 'Pdmp —0

args(Hsubs) <~ argS(Hsubs) \Pdrop
until Py, = 0

3:  forall p € args(Hsups) do

4: if PARENTS(p) = ) A =HAS SIBLINGS(p) then
S Pdrop — Pdrop U {p}

6: end if

7:  end for

8:

9:

We then apply the procedure described in Algorithm 4,
where parameters are removed from the tasks and methods
until a fixed point is reached.

Evaluation

We here present preliminary results indicating that our ap-
proach is able to extract reasonable parameters. The con-



straint solver used for evaluation was Z3 (de Moura and
Bjgrner 2008).

Table 1 shows some results with regard to parameter ex-
traction on domains from the 2020 IPC competition'. All
the demonstrations were generated using the LILOTANE
(Schreiber 2021) planner for instances in the IPC repository
using a short 10 seconds timeout. The “IPC” column shows
the number of parameters (in method and tasks) for a ref-
erence domain from the competition, while the “Superset”
and “Simplified” columns respectively show the number of
arguments after the first generation phase and after the sim-
plification phase.

We can observe that the number of extracted arguments
is close to the one from the reference model and that the
simplification procedure is required for extracting models
of reasonable size. Results marked with the  symbol con-
tains recursive tasks, and do not make use of the procedure
detailed earlier, as it was not fully integrated into the pa-
rameter extractor at the time of writing this paper. However,
even though the extracted parameters are not as relevant in
this version, the true number of extracted parameters should
actually be lower, as the specific procedure for recursions
should allow more unifications of arguments in a given re-
cursive method.

Qualitatively, the extracted parameters are in line with
what we could expect a human user to design. The main ex-
ception is with regard to recursive methods, as expected. We
conjecture that some supplementary arguments, compared to
hand-designed domains, are caused by a lack of unifications
across methods in some cases. This issue is discussed in a
later section.

Parameter Count

Domain IPC  Superset Simplified
CHILDSNACK 12 31 14
TOWERS' 34 158 54
HIKING' 62 721 76
SATELLITE" 29 96 22
ROVERT 58 252 72

Table 1: Argument extraction results on IPC domains.

Finally, a basic version of the parameter extractor was
used in a full learner, extending the work from Hérail and
Bit-Monnot (2022). This learner has shown similarly per-
forming models to hand-designed ones, for simple domains.
Figure 12 shows planning performance on a variant of the
TRANSPORT domain for learned models with this system,
compared to the reference IPC model. The different learned
models only varied in their structure, not in the parameter
extraction procedure. These model learning parameters are
not detailed here as they are not relevant for this work. While
this does not evaluate the performance of the argument ex-
traction alone, it shows that it can be successfully integrated
in a more complete system.

!Available at https:/github.com/panda-planner-dev/ipc2020-
domains
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Domain
—— Reference
k313* a0.1 nopre
— k3I3*a0.1
— k313 20.1
kO 0.1 nopre

Planning time (s)

0.0 0.25 0.5 0.75 1.0
Proportion of solved instances

Figure 12: Planning time for models learned the proposed
approach for parameter learning using the LILOTANE plan-
ner.

Discussion

Parameter Generation Assumptions In the definition of
the assumptions surrounding the parameter superset genera-
tion, we considered that parameters of the preconditions of
a method are a subset of the parameters of the method’s
subtasks. While this assumption appears valid in most of
the IPC domains, if some domains require relaxing it, tech-
niques such as the use of deictic references (Pasula, Zettle-
moyer, and Kaelbling 2007) could be used to this end.

Parameter Removal While the presented approach shows
acceptable performance, both in terms of extraction speed
and model quality, the rules used to remove parameters
could easily be extended by taking into account pre- and
post-states.

Indeed, some IPC domains, such as the HIKING domain,
have methods that have constraints that rely on parameters
that are not passed down from a parent task nor are used
to unify sibling methods. Therefore, it may be interesting
to try and determine potential preconditions before the argu-
ment removal step and keep arguments that participate in the
specification of method preconditions, as it should lead to a
more efficient planning process from the solver. If effects of
abstract tasks (Olz, Biundo, and Bercher 2021) are to be ex-
tracted, a similar argument can be made to keep parameters
potentially participating in the definition of these effects.

Unification of Parameters Across Methods Addition-
ally, while we are able to propagate unification information
upwards from the demonstration, downwards from top level
tasks and sidewards across subtasks of a method, we cannot
unify multiple sibling methods’ parameters, without relying
on higher level tasks, as in the example presented Figure 10.

While we do not propose a solution in the case of demon-
strations taken in isolation, in the context of demonstrations
given with the explicit goal of teaching an agent, it does not
seem unreasonable to assume that multiple demonstrations
can be given in the same ground context. The learner could
then use this common context to infer additional parameter
unifications. Furthermore, if the demonstrations are given as
a form of curriculum, then it is reasonable to assume mul-



tiple high level tasks with user-defined arguments will be
given, building up the hierarchy incrementally starting with
lower-level abstract tasks, alleviating the impact of this issue
in practice.

Fixed Parameter Tasks Finally, the presented constraints
consider that the tasks with fixed arguments only appear
as the root of a decomposition tree for extracting unifica-
tion constraints. However, if they were used as subtasks, the
mapping between their parameters and the primitive action
parameters would be undefined, as can be seen in the sub-
hierarchy in Figure 3: here, if #;,, was used as part of an
arbitrary subhierarchy, this undefined mapping would break
the propagation of the arguments in the decomposition tree.

A possible solution would be to consider giving the ex-
pected effects of the demonstrated tasks along with the
demonstrations. This would allow extracting possible map-
pings for the task’s parameters, which could then be inte-
grated into the system of constraints used during parameter
simplification.

Conclusion

We presented a procedure to extract the parameters for a
given HTN structure. This procedure may be used to allow
HTN learning algorithms to focus on the model structure
to extract relevant parameters, but it could equally be used
in a system allowing a user to sketch the hierarchical struc-
ture of a domain and simply give some demonstrations of
the expected behavior, leaving the system to complete the
model. It may also be integrated into a larger system to au-
tomatically extract preconditions or even effects for task and
methods in the learned HTN models, leading to systems that
may compete with state-of-the-art learners while reducing
the burden of annotation placed on the user.

While the evaluation is still preliminary, the results show
that the approach extracts reasonable parameters for HTNs
from the IPC. However, a more thorough evaluation would
be necessary to identify the most pressing shortcomings and
promising improvements.
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