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I. INTRODUCTION

In electronics, mechanics or robotics, the output regulation is a long-standing open problem [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF]. Whenever a controller aims to track the same trajectory repeatedly, one may use a repetitive-control scheme [START_REF] Hara | Repetitive control system: A new type servo system for periodic exogenous signals[END_REF] to adjust the control retroactively and achieve a decrease in tracking error. This repetitive control tracking periodic references is based on the internal model principle [START_REF] Bin | Internal models in control, bioengineering, and neuroscience[END_REF]. Here, the periodic model is based on a transport phenomenon, which is theoretically challenging [START_REF] Michiels | Stability and stabilization of time-delay systems: an eigenvalue-based approach[END_REF], [START_REF] Yuksel | Internal model control with distributed-delay-compensator to attenuate multi-harmonic periodic disturbance of time-delay system[END_REF]. The problem of periodic tracking/rejection appears in the literature under many different keywords, such as output regulation [START_REF] Bin | About robustness of control systems embedding an internal model[END_REF], repetitive control [START_REF] Hara | Repetitive control system: A new type servo system for periodic exogenous signals[END_REF] or iterative learning control [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF]. The acknowledged solution relies on the implementation of an infinite-dimensional controller based on the use of a delay. Repetitive control schemes have been proposed for time-varying (or time-delay) linear systems [START_REF] Hara | Repetitive control system: A new type servo system for periodic exogenous signals[END_REF], [START_REF] Zhang | The linear periodic output regulation problem[END_REF], [START_REF] Wei | Regulation of linear input delayed systems without delay knowledge[END_REF], infinite-dimensional linear systems [START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF], [START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF], and nonlinear systems [START_REF] Verrelli | Adaptive learning control for nonlinear systems: a single learning estimation scheme is enough[END_REF], [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF]. More classical repetitive control schemes [START_REF] Hara | Repetitive control system: A new type servo system for periodic exogenous signals[END_REF] include the following transfer function

H(s) = 1 ∆(s) , ∆(s) = exp(T s) -1, (1) 
in the closed-loop system. Such a strategy, however, is hard to apply in the context of nonlinear systems since transfer function analysis cannot be employed. Few results exists in the context of repetitive control for nonlinear systems, see, e.g. [START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF]- [START_REF] Tomei | Linear repetitive learning controls for nonlinear systems by padé approximants[END_REF]. We highlight the results [START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF], [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF] in which the transfer function [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF] is represented via a partial differential equation (precisely a transport equation) and that will be the starting point of this article. The major flow of the repetitive control approach is that the feedback law involves a model of infinite dimension.
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1 Mathieu Bajodek is with Université Paris Saclay, CNRS, CentraleSupelec, Laboratoire des signaux et systèmes, 91190 Gif Sur Yvette, France mathieu.bajodek@centralesupelec.f 2 Daniele Astolfi is with Université Lyon 1, CNRS, UMR 5007, LAGEPP, Villeurbanne, France daniele.astolfi@univ-lyon1.fr Indeed, the realization of the transfer function (1) involves a delay which is an object of infinite-dimensional nature (either in space or in time). In other words, the denominator ∆ in [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF] has an infinite number of roots. The question of implementation is still pending. How to obtain stability guarantees with few control parameters? What is the best way to approximate the internal periodic model by preserving the dominant modes while attenuating the high frequencies?

The need for model reduction arises in many contexts where delays lie [START_REF] Gu | Approximation of infinitedimensional systems[END_REF], [START_REF] Scarciotti | Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays[END_REF]. The idea is to obtain finite dimensional control laws that preserve the stabilizing properties on the initial model, e.g. [START_REF] Gu | Approximation of infinitedimensional systems[END_REF], [START_REF] Moreau | Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree[END_REF]. Two main routes for discretizing the regulator (1) are possible. The first consists in applying a time discretization and realizing the regulator in discretetime domain, e.g. [START_REF] Hillerstrom | Repetitive control using low order models[END_REF]. The second one consists in approximating the transfer function ( 1) by an implementable transfer function, namely such that its equivalent realization in state space domain corresponds to a finite-dimensional ordinary differential equation. Following this second route, a common approach is to include a low-pass filter to the transfer function ( 1), e.g. [START_REF] Weiss | Repetitive control of MIMO systems using H ∞ design[END_REF]. The issue with this approach is that it is not clear how to analyze the properties of such a realization in the context of nonlinear systems. An other possible approach is to use a harmonic approximated model. This has been investigated also in the nonlinear context, e.g. [START_REF] Ghosh | Nonlinear repetitive control[END_REF]- [START_REF]Harmonic internal models for structurally robust periodic output regulation[END_REF]. Finally, a Padé approximated model has been studied in [START_REF] Tomei | Linear repetitive learning controls for nonlinear systems by padé approximants[END_REF]. It is worth noticing however that in order to discretize a delay, other approaches exist. This includes the least-square method [START_REF] Vyasarayani | Spectral approximations for characteristic roots of delay differential equations[END_REF] or the tau method [START_REF] Ortiz | The tau method[END_REF].

The objective of this work is to compare different continuous-time realizations of the repetitive control scheme [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF] in the context of minimum-phase nonlinear systems developed in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF]. In particular, we introduce and rigorously analyze three approximated models based on the tau method [START_REF] Ortiz | The tau method[END_REF]. Among them, the Fourier approach [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF] is recovered and two new approximated models appear, namely the tau-Legendre [START_REF] Bajodek | Frequency delay-dependent stability criterion for time-delay systems thanks to Fourier-Legendre remainders[END_REF] and tau-Chebyshev [START_REF] Vyasarayani | Spectral approximations for characteristic roots of delay differential equations[END_REF] models. Thanks to the use of series expansion and convergence analysis, we characterize the behavior of the steady-state regulated output showing, under regularity assumptions, that output and its first d-th derivative are ultimately bounded. The ultimate bound decrease with n, where n is the dimension of the tau internal model. This shows that we can regulate the output error by increasing the dimension of the internal model, similarly to the context of harmonic regulation studied in [START_REF] Ghosh | Nonlinear repetitive control[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF]Harmonic internal models for structurally robust periodic output regulation[END_REF]. For a given order, the Fourier realization allows to reach a better steady state than Legendre or Chebyshev ones. Finally, we compare the three different schemes on simulations.

Notation. The sets N, R, iR, C correspond to natural, real, imaginary and complex numbers. Note also that i = √ -1. |•| is the Euclidean norm. For any square matrix M , we denote its determinant det(M ), its upper triangular part triu(M ) and He(M ) = M + M ⊤ with M ⊤ the transpose of M . We also consider the identity matrix I n of size n. Given a set of matrices (M 1 , . . . , M n ), we denote with diag(M 1 , . . . , M n ) the block diagonal matrix containing the matrix M i on the ith block. The set C ∞ represents smooth functions. A function α : R ≥0 → R ≥0 is said to be of class K if α is continuous, increasing, and α(0) = 0. If moreover lim s→∞ α(s) = ∞, we say that α is of class K ∞ . Lastly, L 2 (0, 1; R) is the set of square integrable functions from (0, 1) to R and dµ is a localized measure satisfying

1 0 dµ(x) = 1.

II. PROBLEM STATEMENT

A. Problem Formulation

Following the framework in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], consider the class of nonlinear minimum-phase systems with unitary relative degree of the form that can be written, possibly after a change of coordinates, as ż = f (t, z, e), ė = q(t, z, e) + u,

where (z, e) ∈ R m ×R is the state, e ∈ R the regulated output and u ∈ R the controlled input. We suppose that functions f and q satisfy the following properties stated below.

Assumption 1. The functions f, q : R × R m × R are Tperiodic with respect to the first argument, globally Lipschitz with respect to the second and third components, and

C ∞ in [0, T ] × R m × R.
In particular, there exists ℓ f , ℓ q > 0 such that

|f (t, z, e) -f (t, ẑ, ê)| ≤ℓ f |z -ẑ| + ℓ f |e -ê|,
|q(t, z, e) -q(t, ẑ, ê)| ≤ℓ q |z -ẑ| + ℓ q |e -ê|, for all t ∈ [0, T ], z, ẑ ∈ R m and e, ê ∈ R. Furthermore, for any compact set Z ×E ⊂ R m ×R, f, q are exponentially-like functions. There exists ℓ > 0 such that, for any d ∈ N,

sup (t,z,e)∈[0,T ]×Z×E ∂ d f (t, z, e) ∂t d + ∂ d q(t, z, e) ∂t d ≤ ℓ d . ( 3 
)
Assumption 2. The zero-dynamics ż = f (t, z, 0) admits a unique C ∞ T -periodic bounded solution z(t) which is globally uniformly stable. In particular, there exists a positive definite function V : R×R m → R ≥0 and class K ∞ functions α, ᾱ and real numbers α, γ > 0 satisfying

α(|z -z(t)|) ≤ V (t, z -z(t)) ≤ ᾱ(|z -z(t)|), ∇V (t, z -z(t)), f (t, z, e) -f (t, z(t), 0) ≤ -α|z -z(t)| 2 + γ|e| 2 , for all (t, z, e) ∈ R × R m × R.
Remark 1. In Assumption 2, it is supposed that system (2) is minimum-phase allowing to look for a pure output feedback control (i.e. that depends only on the measured output e). Furthermore, note that since q is not zero at the origin, the regulation problem at hand cannot be solved by a pure highgain feedback controller of the form u = -σe, σ > 0 [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF].

The problem of output regulation for system (2) consists in finding a dynamical regulator such that the output e is asymptotically regulated to zero, namely

lim t→∞ e(t) = 0. (4) 
B. Highlights on a repetitive control scheme Following [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], a robust1 solution to this problem can be solved by employing a repetitive control scheme of the form

       ∂ ∂t η(t, x) = 1 T ∂ ∂x η(t, x) ∀ (t, x) ∈ R + × [0, 1], η(t, 1) =η(t, 0) + e(t) ∀ t ∈ R + , η(0, x) =η 0 (x) ∀ x ∈ [0, 1], (5) 
with initial conditions η 0 ∈ L 2 (0, 1), scalar T > 0 known, and the stabilizing feedback law

   u(t) = -σe(t) + v(t) , v(t) = µ 1 0 M (x)(η(t, x) -M (x)e(t))dx , (6) 
where σ, µ > 0 are design parameters and the function M : [0, 1] → R in ( 6) is defined as the solution of the following two-point boundary value problem

d dx M (x) = σT M (x), M (1) = M (0) + 1. (7) 
whose solution is given by

M (x) = exp(σT x) exp(σT ) -1 , x ∈ [0, 1]. (8) 
From a theoretical point of view, the scheme ( 5), ( 6) allows to achieve the regulation objective (4) for any σ large enough. Note that such a condition is needed to have a preliminary stabilizing effect for the (z, e)-dynamics.

C. Objectives of this article

Due to its infinite-dimensional nature, the proposed repetitive-control scheme ( 5)-( 6) cannot be implemented and needs to be discretized. Such a discretization can be done in space and time. When both discretizations are realized, a pure digital controller is obtained. In this article, we are interested in space discretization, so that to obtain a finite-dimensional continuous-time controller described by an ODE of order n of the form

ηn = A n η n + B n e u = -σe + µM ⊤ n (η n -M n e) (9) 
with η n ∈ R n and matrices (A n , B n , M n ) to be defined later with respect to T . It can be noted that the structure of the regulator (9) preserves that of ( 5)- [START_REF] Bin | About robustness of control systems embedding an internal model[END_REF]. The objective of the next sections is to investigate a series of different methodologies to obtain such realizations. From the common tau method framework, we will present the Fourier realization explored in [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF] as well as two new models based on Legendre and Chebyshev polynomials approximation [START_REF] Vyasarayani | Spectral approximations for characteristic roots of delay differential equations[END_REF].

Furthermore, since the controller ( 5), ( 6) is "truncated", the asymptotic regulation objective (4) is generically inevitably lost. For this reason, such an asymptotic goal is modified into an approximate regulation objective as follows

lim t→∞ |e(t)| ≤ ε,
where in particular we will show that the parameter ε > 0 can be tuned by increasing the number n defining the approximation of the finite-dimensional regulator [START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF].

III. TAU METHOD

The tau method is a pseudo-spectral approach introduced in [START_REF] Ortiz | The tau method[END_REF]. As an extension of the Galerkin method [START_REF] Gottlieb | Numerical analysis of spectral methods: theory and applications[END_REF], it approximates infinite-dimensional systems on canonical bases like Fourier, Legendre or Chebyshev polynomials, which are not necessarily the Riesz basis of the operator. The principle of the method is to solve the problem satisfied by the corresponding quasi-spectral truncated series.

For a given order n ∈ N, consider a set of linearly and orthogonal independent functions {φ k } k∈{0,...,n-1} defined on L 2 (0, 1; R) with the measure dµ. We define Φ n = (φ 0 , . . . , φ n-1 ) ∈ R n as well as the following matrices.

• Gram-Schmidt matrix:

I n = 1 0 Φ n (x)Φ ⊤ n (x)dµ(x).
• Derivation matrix:

J n = 1 0 Φ n (x) d dx Φ ⊤ n+1 (x)dµ(x).
• Boundary matrix:

K n = I n - Φ ⊤ n (1)-Φ ⊤ n (0) φn(1)-φn(0) . Let us define η(t, x) = Φ ⊤ n+1 (x)[ ηn ν ](t)
, where the vector [ ηn ν ] can be seen as an approximation of the n + 1 first projections of the state of system (5) on the selected basis. Assuming that this function η is solution of system (5), the following equations must be satisfied

Φ ⊤ n+1 (x) ηn ν = 1 T d dx Φ ⊤ n+1 (x) η n ν , (10) 
(φ n (1) -φ n (0))ν = -(Φ ⊤ n (1) -Φ ⊤ n (0))η n , (11) 
corresponding to the fulfillment of the transport dynamics and the boundary condition, respectively. The constraint [START_REF] Califano | A stability analysis based on dissipativity of linear and nonlinear repetitive control[END_REF] and the projection of the constraint [START_REF] Verrelli | Adaptive learning control for nonlinear systems: a single learning estimation scheme is enough[END_REF] on

Φ n (x) yields ν = - Φ ⊤ n (1) -Φ ⊤ n (0) φ n (1) -φ n (0) η n , I n ηn = 1 T J n K n η n ,
which leads to system (9) with matrix

A n = 1 T I -1 n J n K n . (12) 
Thus, this method leads to several finite-dimensional realizations according to the base used.

A. Tau-Fourier model

For a given odd integer n ∈ N, consider the trigonometric functions on the interval [0, 1] given by φ k,F (x) = cos(kπx), if k even, sin((k + 1)πx), if k odd, orthogonal with respect to the measure dµ(x) = dx. The Fourier functions matrices I n , J n , K n are stored in Table I. From [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], we obtain the approximated matrix

A n,F = 2π T diag 0, 0 1 -1 0 , . . . , 0 n-1 2 -n-1 2 0 .
For instance, for n ∈ {1, 3, 5}, we obtain matrices

A 1 = 0, A 3 = 2π T 0 0 0 0 0 1 0 -1 0 , A 5 = 2π T 0 0 0 0 0 0 0 1 0 0 0 -1 0 0 0 0 0 0 0 2 0 0 0 -2 0
, whose eigenvalues are {0}, {0, ± 2π T i} and {0, ± 2π T i ± 4π T i}. The denominator ∆(s) = exp(T s) -1 of the transfer function H(s) in ( 1) is therefore approximated by

∆ n,F (s) = s n-1 2 k=1 s 2 + k 2 2π T 2 -→ n→∞ ∆(s).
The tau-Fourier model allows to recover the first n modes.

It can be remarked that it coincides with a truncation of the transport equation on the Riesz basis.

B. Tau-Legendre model

For a given odd integer n ∈ N, consider the Legendre polynomials on the interval [0, 1] given by

φ k,L (x) = k i=0 (k + i)! (i!) 2 (k -i)! (x -1) i , ∀k ∈ N,
orthogonal with respect to the measure dµ(x) = dx. The Legendre polynomials matrices I n , J n , K n are stored in Table I. From [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], we obtain the approximated matrix

A n,L = 1 T (2D n + I n ) U n - 1 2 (1 n + 1 * n )(1 n -1 * n ) ⊤ , with D n = diag (0, . . . , n -1) , U n = triu(1 n 1 ⊤ n -1 * n 1 * ⊤ n ), 1 n = [ 1 1 ••• 1 ] ⊤ , 1 * n = [ 1 -1 ••• 1 ] ⊤ .
For instance, for n ∈ {1, 3, 5}, we obtain matrices

A 1 = 0, A 3 = 2D3+I3 T 0 0 0 0 0 2 0 -2 0 , A 5 = 2D5+I5 T 0 0 0 0 0 0 0 2 0 2 0 -2 0 0 0 0 0 0 0 2 0 -2 0 -2 0 .
Note that the eigenvalues of matrices A 1 , A 3 and A 5 are respectively {0}, {0, ± 7.75 T i} and {0, ± 6.30 T i ± 19.50 T i} and that they tend to ±k 2π

T i as n goes to infinity. As a matter of fact, as shown in [START_REF] Bajodek | Frequency delay-dependent stability criterion for time-delay systems thanks to Fourier-Legendre remainders[END_REF]Proposition 3], the realization [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF]. The denominator ∆(s) = exp(T s) -1 of the transfer function H(s) in ( 1) is then approximated by ∆ n,L (s) = det(sI n -A n,L ).

H n (s) = 1 2T (1 n + 1 * n ) ⊤ (sI n -A n,L ) -1 I -1 n 1 n -1 2 , is the (n|n) Padé approximant of H(s) in
-Schmidt (In) diag 1, 1 √ 2 , . . . 1 √ 2 (2Dn + In) -1 π diag 1, 1 2 , . . . , 1 2 
Derivation (Jn) √ 2πdiag 0, 0 1 -1 0 , . . . , 

0 n-1 2 -n-1 2 0 0 Un (1n + 1 * n ) π UnDn (1n + 1 * n )n Boundary (Kn) In - In -1 2 (1n -1 * n ) ⊤ In -1 2 (1n -1 * n ) ⊤
∆ n,L (s) = n-1 2 p=0 (2(n -p) -1)! (2p + 1)!(n -2p -1)! s 2p+1 -→ n→∞ ∆(s),
The tau-Legendre model is the best rational approximation of the transfer function H when s tends to zero, for low frequencies.

C. Chebyshev realization

For a given odd integer n ∈ N, consider the Chebyshev polynomials of the first kind on the interval [0, 1] given by φ k,C (x) = cos(k arccos(2x -1)), ∀k ∈ N, orthogonal with respect to the measure dµ(x) =

dx π √ x(1-x)
.

With Chebyshev polynomials matrices I n , J n , K n are stored in Table I. From [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], we obtain the approximated matrix

A n,C = diag (1, 2, . . . , 2) T U n I n - n 2 (1 n +1 * n )(1 n -1 * n ) ⊤ .
For instance, for n ∈ {1, 3, 5}, we obtain

A 1 = 0, A 3 = 1 T 0 -4 0 0 0 8 0 -12 0 , A 5 = 1 T 0 -8 0 -4 0 0 0 8 0 16 0 -20 0 -8 0 0 0 0 0 16 0 -20 0 -20 0 .
Note that the eigenvalues of matrices A 1 , A 3 and A 5 are respectively {0}, {0, ± 9.80 T i} and {0, ± 6.36 T i ± 27.56 T i}. Though no explicit forms can be provided, we know that ∆ n,C (s) = det(sI n -A n,C ) approximates ∆(s) in (1).

IV. CONVERGENCE PROPERTIES OF TAU METHOD

Consider a function f ∈ C ∞ (0, T ) and, for a given order n, consider orthogonal independent functions {φ k } k∈N defined on (L 2 (0, 1; R), dµ). Define the truncated series approximation of the function f as

f n (t) = n k=0 φ k ( t T ) T 0 φ k ( t T )f (t)dµ(t) T 0 φ k ( t T )φ k ( t T )dµ(t)
, and the corresponding remainder

fn (t) = f (t) -f n (t) = ∞ k=n+1 φ k ( t T ) T 0 φ k t T f (t)dµ(t) T 0 φ k t T φ k t T dµ(t)
.

A. Convergence of Fourier series Lemma 1. Assume that there exists ℓ > 0 such that

sup t∈[0,T ] |f (d) (t)| ≤ ℓ d holds for all d ∈ N. Then, for n > d + 1, ∃ l > 0 s.t. sup t∈[0,T ] f (d) n,F (t) ≤ ln n n-d-1 .
Proof. According to [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF]Theorems 4 and 9], by integration by parts, there exists a positive scalar c F such that

T 0 φ k,F t T f (t)dt T 0 φ k,F t T φ k,F t T dt ≤ c F ℓ k n , ∀ k > n.
Since φ

(d) k,F t T ≤ (πk) d for any k ≥ 1 on [0, T ], | f d n,F (t)| ≤ c F π d ℓ n ∞ k=n+1 1 k n-d , ∀t ∈ [0, T ],
yields the desired result. 

∃ l > 0 s.t. sup t∈[0,T ] f (d) n,L (t) ≤ ln (n -d -2)! .
Proof. According to [START_REF] Wang | On the convergence rates of Legendre approximation[END_REF]Theorem 2.1], by integration by parts, there exists a positive scalar c L such that

T 0 φ k,L t T f (t)dt T 0 φ k,L t T φ k,L t T dt ≤ c L ℓ n-2 (k -1)! , ∀ k > n. Since φ (d) k,L ( t T ) ≤ k . . . (k + d) for any k ≥ 1 on [0, T ], we obtain the desired result. 2 
C. Convergence of Chebyshev polynomials series Lemma 3. Assume that there exists ℓ > 0 such that sup

t∈[0,T ] |f (d) (t)| ≤ ℓ d holds for all d ∈ N. Then, for n ≥ d+2, ∃ l > 0 s.t. sup t∈[0,T ] f (d) n,C (t) ≤ ln √ n(n -d -2)! , Proof.
According to [START_REF] Boyd | Chebyshev and Fourier Spectral Methods[END_REF]Theorems 10], from a comparison between Legendre and Chebyshev decay rates, we know that

sup t∈[0,T ] f (d) n,C (t) sup t∈[0,T ] f (d) n,L (t) = O( 1 √ n )
, concluding the proof.

V. MAIN RESULT

A. Preliminaries

For a given odd integer n and positive scalars µ and σ, consider the finite-dimensional controller [START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF] where the state matrix A n is designed as explained in Section III and formatting in the Jordan real form being then a skewsymmetric matrix, the input matrix B n is selected in order to have a controllable pair (A n , B n ) and where the output matrix is given by

M n = -(A n + σI n ) -1 B n . ( 13 
)
It can be seen as an approximation of the infinite-dimensional repetitive control law [START_REF] Bin | About robustness of control systems embedding an internal model[END_REF]. This feedback is inspired by the recent series of works [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF], [START_REF] Astolfi | Nonlinear robust periodic output regulation of minimum phase systems[END_REF], [START_REF]Harmonic internal models for structurally robust periodic output regulation[END_REF] and derived from the forwarding approach. Before going any further, let us show that these matrices have a stable and bounded pattern. Lemma 4. For any µ > 0, the matrix A n -µM n M ⊤ n is Hurwitz. In particular, there exists a positive matrix Π n and a positive real scalar κ such that

He[(I n + κΠ n )(A n -µM n M ⊤ n )] ⪯ -µM n M ⊤ n -κI n .
Proof. The proof is similar to [21, Lemma 1]. Since the matrix A n is skew-symmetric, He(A n ) = 0 holds. Adding on both side the term -2µM n M ⊤ n yields

He(A n -µM n M ⊤ n ) = -2µM n M ⊤ n .
In addition, the controllabily of the pair (A n , B n ) leads to the observability of the pair (M ⊤ n , A n ). Then, there exists a matrix K n and a positive definite matrix Π n such that

He(Π n (A n -K n M ⊤ n )) = -I n .
Combining these two equations concludes the proof. 2

Lemma 5. Consider the linear system

ζn = (A n -µM n M ⊤ n )ζ n -M n q.
There exist scalars κ 0 , κ 1 > 0 independent of n such that the transfer function between q and ζ satisfies

ζ * ⊤ n (iω)ζ n (iω) ≤ (κ 0 +κ 1 ω 2 )q * (iω)q(iω), ∀ω ∈ R. ( 14 
)
Proof. The proof is similar to [21, Lemma 2]. Applying Woodbury matrix identity yields

ζ * ⊤ n (s)ζ n (s) q * (s)q(s) = M ⊤ n (sI n -A n ) -2 M n 1 -µ 2 (M ⊤ n (sI n -A n ) -1 M n ) 2 .
Then, for s = iω, we can analyze such a transfer function between each modes of A n in a similar way to [21, Lemma 6] and concludes that (14) holds. 2

B. Stability and convergence analysis

With the change of coordinate ζ = η -M n e, the closedloop system (2)-( 9) is rewritten as follows

     ż = f (t, z, e), ė = q(t, z, e) -σe + µM ⊤ n ζ, ζ = (A n -µM n M ⊤ n )ζ -M n q(t, z, e). (15) 
First, we show that system (15) admits a T -periodic steady state (z p , e p , ζ p ) in C ∞ (0, T ) which is exponentially stable. Theorem 1. Under Assumptions 1-2, for any µ > 0 and sufficiently large σ > 0, there exists a periodic solution (z p , e p , ζ p ) to system (15) which satisfies

∃ℓ > 0 s.t. sup t∈[0,T ] z (d) p (t) + e (d) p (t) + ζ (d) p (t) ≤ ℓ d ( 16 
)
and which is globally exponentially stable.

Proof. First, we know that the existence of a T -periodic solution (z p , e p , ζ p ) is issued from [30, Lemma 5.1] and the Banach fixed point theorem. Indeed, system (15) rewrites as χ(t) = F (t)χ(t) + G(t) with F a T -periodic Lipschitz function. Moreover, the maps (z(0), e(0)) → (z(t), e(t)) is a contraction and the transfer from e to ζ satisfies ( 14) in Lemma 5. Furthermore, from Assumption 1, note that the functions f, q are C ∞ in all their arguments and that (3) holds, so the solution (z p , e p , ζ p ) is C ∞ and satisfies [START_REF] Moreau | Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree[END_REF]. Then, we follow a similar approach to [21, Proposition 2] in order to study its stability properties. In particular, with the change of coordinates (z, ẽ, ζ) = (z, e, ζ) -(z p , e p , ζ p ), we obtain the following system

       ż = F p (t)z + fδ (t, z, ẽ), ė = q(t, z, ẽ) -σẽ + µM ⊤ n ζ, ζ = (A n -µM n M ⊤ n ) ζ -M n q(t, z(t), ẽ), (17) 
with the notation

F p (t) = ∂f ∂z (t, z p , e p ), f δ (t, z, ẽ) = f (t, z, e) -f (t, z p , e p ) -F p (t)z.
We introduce the function V = z⊤ P z + ẽ2 + ζ⊤ (I n + κΠ n ) ζ where P is defined as in Assumption 2 and matrix Π n as in Lemma 4. Then, we follow the calculations provided in [21, Proposition 2 (108)-( 109)]. At the end, for any µ > 0 and sufficiently large σ > 0, we obtain that there exist ν 1 , ν 2 > 0 such that along the trajectories of system (17)

V ≤ -ν 1 |x| 2 + |ẽ| 2 + |M ⊤ n ζ| 2 -κν 2 | ζ| 2 .
Applying the Lyapunov theorem, we conclude that the periodic solution is exponentially stable. 2

Finally, we show that the steady state e p as well as its derivatives is vanishing as the order n goes to infinity. 

|e (d) p (t)| ≤ ln √ n(n -2d -2)! , ∀n > 2d + 2, ( 18c 
)
where (18a), (18b) and (18c) apply respectively for Fourier, Legendre and Chebyshev approximations.

Proof. Using the T -periodicity of η p = ζ p + M n e p , the two following relations hold

T 0 Φ n ( t T ) η⊤ p (t)dµ(t) = T 0 A n Φ n ( t T )η ⊤ p (t)+B n τ ⊤ n (t) dµ(t),
in which τ n denotes the tau remainder. Applying the dynamics (9) in the previous equation yields

T 0 Φ n ( t T )e p (t)dµ(t)B ⊤ n = Ξ n +B n T 0 τ ⊤ n (t)dµ(t).
where Ξ n is a skew-symmetric matrix. We evaluate the diagonal components of the previous matrix equation to obtain

1 T I -1 n+1 T 0 Φ n+1 ( t T )e p (t)dµ(t) ≤ c 1 sup t∈[0,T ] |τ n (t)|, (19) 
for a positive scalar c 1 , independent of the order n. From now, the proof is split depending on the selected basis.

For the Fourier spectral case, the tau remainder in ( 19) is null for any order n ∈ N. Then, we have

1 T I -1 n+1 T 0 Φ n+1,F ( t T )e p (t)dt = 0. (20) 
Applying Lemma 1 on the function e p which satisfies [START_REF] Moreau | Periodic output feedback stabilization of single-input single-output continuous-time systems with odd relative degree[END_REF], there exists a scalar l > 0 such that the d-th derivatives of the output e p is bounded by

sup t∈[0,T ] |e (d) p (t)| = sup t∈[0,T ] |ẽ (d) p (t)| ≤ ln n n-d-1 , ∀n > d + 1,
which concludes the proof for tau-Fourier controller model. Otherwise, with a quasi-spectral basis, there exists a scalar c 2 > 0 such that the tau remainder in [START_REF] Ghosh | Nonlinear repetitive control[END_REF] is bounded by

|τ n (t)| ≤ c 2 sup t∈[0,T ] |η p (t)|, ηp (t) = η p (t) - n k=0 φ k ( t T ) T 0 φ k t T η p (t)dµ(t) T 0 φ k t T φ k t T dµ(t)
.

The d-th derivatives of the output e p can be bounded by

sup t∈[0,T ] |e (d) p (t)| ≤ sup t∈[0,T ] |ẽ (d) p (t)| + Φ (d)⊤ n+1 ( t T ) 1 T I -1 n+1 T 0 Φ n+1 ( t T )e p (t)dµ(t) .
Focusing on Legendre case, we apply Lemma 2 on the smooth functions (e p , η p ) and we use the inequality sup

t∈[0,T ] Φ (d) n+1,L t T ≤ n . . . (n + d) to obtain sup t∈[0,T ] |e (d) p (t)| ≤ ln (n -d -2)! + c 1 c 2 n . . . (n + d) ln (n -d -2)! ,
which concludes the proof for tau-Legendre controller model. Similar developments happen for the Chebyshev case. 2

Whether it is for Fourier, Legendre and Chebyshev, the convergence is exponential with respect to the order n. Still, Fourier leads to the lowest steady state's upper bound.

C. Discussion of the main result

The result of Theorem 2 ensures the convergence of e to zero as t → ∞ and as the dimension n of the tau internal model regulator (9) tends to infinity. It highlights the efficiency of the proposed regulation method for sufficiently large orders. Furthermore, with respect to [START_REF] Tomei | Linear repetitive learning controls for nonlinear systems by padé approximants[END_REF], we characterize the behaviour of the approximated error in terms of the approximation of the exact infinite-dimension repetitive controller. In particular, we show that the asymptotic behaviour of the regulated error e p is such that e p and all its d first derivatives (with d = n-3 2 and n being the order of the controller) are bounded. This implies that for systems satisfying Assumption 1 this regulator has a smoothing effect on the regulated output.

VI. NUMERICAL RESULTS

Consider the simple numerical example proposed in [START_REF] Astolfi | Repetitive control design based on forwarding for nonlinear minimum-phase systems[END_REF] ż = -z 3 + cos(2πt) -0.5 + e, ė = (2t[1] -1) 2 + 2 arctan(z)(1 + e) + u.

(

) 21 
where t [START_REF] Longman | Iterative learning control and repetitive control for engineering practice[END_REF] stands for the modulus and the control law [START_REF] Paunonen | Internal model theory for distributed parameter systems[END_REF] with parameters σ = 2, µ = 10 and T = 1 and with matrices

A n ∈ {A n,F , A n,L , A n,C }, B n = 1 n . (22) 
The transfer function from q to e is given by

G(s) = [ 0 1 ] sI n+1 - An Bn µM ⊤ n -σ-µM ⊤ n Mn -1
[ 0 1 ], In the case of the three tau models, the bode diagram is depicted on Fig. 1 for orders n ∈ {3, 9}. It is a pass-band filter. We note that the cutoff frequencies correspond to the poles of the approximated model, fitting with the {k 2π T } k∈N harmonics as the order n increases. As expected, we fall exactly on the n first harmonics {k 2π T } k∈{1,...,n} only for the tau-Fourier model (spectral decomposition).

From the initial condition (z(0), e(0), ζ(0)) = (2, -1, 0), the output of the closed-loop system and its sup norm are plotted on Fig. 2 and Fig. 3 for orders n ∈ {3, 9}. As proved in Theorem 1, the output e is converging towards a periodic solution for any initial conditions and any orders n. Moreover, Theorem 2 adds that the steady state is vanishing as the order n increases, with a geometric rate. Lastly, when comparing the plots for a fixed order n, we confirm that tau-Fourier model seems to reach the smallest asymptotic output. Fig. 2: Output e with respect to the time.

VII. CONCLUSIONS

In this article we have introduced tau-Fourier, tau-Legendre and tau-Chebychev finite-dimensional models to mimic the infinite-dimensional output regulator structure of a repetitive control scheme. The proposed approximations have the ability to reach a periodic steady state output, whose norm decreases exponentially fast as the order increases. We proved and showed in simulation that the Fourier model seems to be the most appropriate and accurate model.

For future works, we would like to investigate generic tau models that could be more easily adapted to internal models which are not governed by the transport equation. 

2 B. Convergence of Legendre polynomials series Lemma 2 .

 22 Assume that there exists ℓ > 0 such that sup t∈[0,T ] |f (d) (t)| ≤ ℓ d holds for all d ∈ N. Then, , for n ≥ d+2,

Theorem 2 .

 2 Considering the closed-loop system[START_REF] Scarciotti | Model reduction of neutral linear and nonlinear time-invariant time-delay systems with discrete and distributed delays[END_REF], there exists l > 0 such that the periodic steady state e p satisfies supt∈[0,T ] |e (d) p (t)| ≤ ln n n-d-1 , ∀n > d + 1, (18a) sup t∈[0,T ] |e (d) p (t)| ≤ ln (n -2d -2)! , ∀n > 2d + 2, (18b) sup t∈[0,T ]
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 1 Fig. 1: Magnitude of G with respect to the frequencies.
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 3 Fig. 3: The sup norm of e with respect to the time.
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 I Properties satisfied by Fourier, Legendre and Chebyshev functions.

	According to the explicit forms of Padé approximations
	provided by [27, page 436], we have

Robust to model uncertainties, in the sense that the control law depends as little as possible by the knowledge of the functions f, q. In this case, we require only the knowledge of the constants ℓq, γ and the period T .