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Abstract: We introduce a new class of hybrid Lur’e dynamical systems where a sector nonlinearity
may affect both the continuous-time evolution and the reset map acting on suitable closed-loop states,
under a time-regularization mechanism ensuring dwell time of solutions. For this class of systems we
characterize Lyapunov-based exponential stability conditions exploiting homogeneity of the closed loop.
In particular, we show that, with quadratic Lyapunov certificates these conditions can be cast as linear
matrix inequalities. We then focus on the control design problem, where both the feedback gains acting
on the continuous evolution and the reset action must be designed, in addition to the sets where such
resets are triggered, expressed by sign-indefinite quadratic forms. For this control design problem we
also show that the synthesis can be performed by solving a set of linear matrix inequalities.
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1. INTRODUCTION

Reset control systems (see, for example, Goebel et al. (2009,
2012), Prieur et al. (2018), Le and Teel (2021) and references
therein) is a specific class of hybrid dynamical systems wherein
continuous motion of the plant-controller dynamics is equipped
with resetting rules inducing instantaneous re initializations of
certain controller states, whenever the so-called reset condi-
tions are satisfied. Beyond the fact that this class of systems
allows to deal with a broad range of applications, as automo-
tive systems, power systems and biological systems, they can
overcome the limitation of classical continuous control law and
achieve desired behavior as for example robustness, perfor-
mance improvement (see, e.g., Hespanha and Morse (1999);
Prieur (2005), Safaei et al. (2010), Aangenent et al. (2010);
Beker et al. (2001); Goebel and Teel (2009); Hespanha et al.
(2003); Prieur and Astolfi (2003); Nešić et al. (2008, 2011),
Prieur et al. (2011, 2013)).

In this paper, a new class of hybrid Lur’e dynamical systems
is introduced, where a sector nonlinearity may affect both the
continuous-time evolution and the reset map acting on suitable
closed-loop states. In other words, we consider reset control
systems with Lur’e non-linearity, consisting in the intercon-
nection between a linear plant and a non-linearity through a
feedback loop. The nonlinearity verifies a cone bounded sec-
tor condition Khalil (2002), Castelan et al. (2008). Lyapunov-
based exponential stability conditions exploiting homogeneity
of the closed loop are proposed by adapting results issued from
Goebel et al. (2012); Nešić et al. (2008); Zaccarian et al. (2011).
Following the ideas presented in Fichera et al. (2016a), Fichera
et al. (2016b), with quadratic Lyapunov certificates these con-
ditions can be cast as linear matrix inequalities (LMIs). We then
focus on the control design problem, where we must design 1)
the state feedback gains acting on the continuous evolution and
the reset action and 2) the shape of the sets where such resets
are triggered, expressed as sign-indefinite quadratic forms. For

this control design problem we also show that the synthesis can
be performed by solving a set of linear matrix inequalities. The
contribution of the current note can be viewed as complemen-
tary to the results developed in Fiacchini et al. (2012) dealing
with quadratic stability problem for hybrid systems with nested
saturations.

The extended abstract is organized as follows: Section 2 intro-
duces the class of hybrid systems under consideration and states
the problems at stake. Section 3 presents theoretical results
dealing with the stability analysis. Section 4 then expands the
stability analysis results in order to handle the control design
problem. Finally, some concluding remarks are given in Sec-
tion 5.

Notation. The notation is standard. The Euclidean norm of a
vector is denoted by | · |. If A is a compact set, the notation
|x|A = min{|x− y| : y ∈ A} indicates the distance of the
vector x from the set A. If A is the origin then |x|A = |x|. For
any s ∈ R, the function dz : R → R is defined by dz(s) = 0
if |s| ≤ 1 and dz(s) = sign(s)(|s| − 1) if |s| ≥ 1. Given a
matrixQ, He(Q) = Q+Q>. Moreover, λmin(Q) (respectively,
λmax(Q)) denotes the minimum (respectively, the maximum)
eigenvalue of Q.

2. PROBLEM STATEMENT

Consider the following hybrid system, including an input non-
linearity φ,ẋ = AFx+BFφ(uF ),

τ̇ = 1− dz

(
τ

ρ

)
(x, τ) ∈ C (1a)

{
x+ = AJx+BJφ(uJ)

τ+ = 0,
(x, τ) ∈ D (1b)

where x ∈ Rn is the physical state, τ ∈ R is a dwell-time
logic (with ρ > 0), and uF ∈ Rm and uJ ∈ Rm are suitable



control inputs to be designed. The flow and jump sets C and D
are defined as follows:

C := {(x, τ) : x ∈ F or τ ∈ [0, ρ]}
= {(x, τ) : x ∈ F} ∪ {(x, τ) : τ ∈ [0, ρ]} (2)

D := {(x, τ) : x ∈ J and τ ∈ [ρ, 2ρ]}
= {(x, τ) : x ∈ J } ∩ {(x, τ) : τ ∈ [ρ, 2ρ]} (3)

with F and J symmetric cones defined by a symmetric (typi-
cally not sign definite) matrix M = M> ∈ Rn×n as

F := {x ∈ Rn : x>Mx ≤ 0}
J := {x ∈ Rn : x>Mx ≥ 0}. (4)

The nonlinearity φ affecting the system input is a known,
continuous, decentralized cone bounded nonlinearity (see, for
example, Khalil (2002), Castelan et al. (2008)) as stated in the
following assumption.
Assumption 1. The nonlinearity φ : Rm → Rm is a known,
continuous and decentralized function, which verifies the fol-
lowing generic cone bounded sector condition for any diagonal
positive definite matrix S ∈ Rm×m:

φ>(ζ) S (φ(ζ)− Ωζ) ≤ 0 ∀ζ ∈ Rm (5)
Matrix Ω ∈ Rm×m is a positive definite diagonal matrix
defining the sector [0,Ωi,i], where each component φi of φ lies.

In this note, the inputs of the flow and jump maps are selected
as linear static state feedbacks:

uF = KFx and uJ = KJx, (6)
with KF ∈ Rm×n, KJ ∈ Rm×n. Then the closed loop (1)-(6)
can be rewritten asẋ = AFx+BFφ(KFx)

τ̇ = 1− dz

(
τ

ρ

)
,

(x, τ) ∈ C (7a)

{
x+ = AJx+BJφ(KJx)

τ+ = 0,
(x, τ) ∈ D, (7b)

where the flow and jumps sets C and D are defined in equa-
tion (2) and (3), respectively.
Remark 1. Note that in the closed-loop system (7), the two non-
linearities φ(KFx) and φ(KJx) satisfy Assumption 1. There-
fore, the generic relation (5) can be particularized for both
φ(KFx) and φ(KJx) as follows

φ(KFx)> SF (φ(KFx)− ΩFKFx) ≤ 0 ∀x ∈ Rn (8)

φ(KJx)> SJ (φ(KJx)− ΩJKJx) ≤ 0 ∀x ∈ Rn, (9)
which holds for any diagonal positive matrices SF ∈ Rm×m,
SJ ∈ Rm×m and where ΩF ∈ Rm×m and ΩJ ∈ Rm×m are
suitable positive definite diagonal matrices. Matrices ΩF and
ΩJ are supposed to be known.

In this note we address 1) the stability analysis of system (1)-
(6), or equivalently system (7), whenKF areKJ are given, and
2) the design problem where KF are KJ must be designed.

These two complementary problems can be summarized as
follows.
Problem 1. Given the gains KF are KJ , devise conditions to
guarantee that the compact set A defined as

A = {0} × [0, 2ρ] ⊂ Rn × [0, 2ρ] (10)
is globally asymptotically stable for the closed loop (1)-(6)
(equivalently, system (7)).
Problem 2. Design the gains KF are KJ in (4) such that the
compact set A defined as in (10) is globally asymptotically
stable for the closed loop (1)-(6) (equivalently system (7)).

3. STABILITY ANALYSIS RESULTS

In this section, theoretical results addressing Problem 1 are
proposed by exploiting some ingredients provided in Fichera
et al. (2016a), Prieur et al. (2018).

Recall that due to the dwell-time, the solutions (x, τ) to system
(7) may flow outside the flow set as emphasized for example in
Zaccarian et al. (2005),Prieur et al. (2018). Hence, to deal with
the effects of dwell-time on trajectories and in order to allow
for more design flexibility consider the following definitions,

F̃ = {x ∈ Rn : x>M̃x ≤ 0} (11)

F̃ε = {x ∈ Rn : x>M̃x− εx>x ≤ 0} (12)

with M̃ = M̃> ∈ Rn×n and ε > 0 to be designed.

Note that (12) is the ε-inflated version of (11), therefore the
inclusion F̃ ⊂ F̃ε is always satisfied.

Stability conditions to solve Problem 1 are first proposed by
focusing on a generic Lyapunov function, and then they are
specialized to a quadratic Lyapunov function, thus leading
to a convenient formulation involving convex linear matrix
inequalities (LMI).
Theorem 1. Consider system (7) and the sets defined in (11)
and (12). Assume that there exist a continuously differentiable
function V : Rn → R≥0, positive real scalars α1, α2, α3 and a
nonnegative scalar ρ satisfying

α1|x|2 ≤ V (x) ≤ α2|x|2, ∀x ∈ Rn, (13)
〈∇V (x), AFx+BFφF 〉+ α3V (x)

− 2φ>FSF (φF − ΩFKFx) < 0, ∀x ∈ F̃ε \{0} (14)
V (AJx+BJφJ)− exp(α3ρ)V (x)

− 2φ>J SJ(φJ − ΩJKJx) ≤ 0, ∀x ∈ J (15)

x+ ∈ F̃ , ∀x ∈ J (16)

F ⊂ F̃ε (17)

with φF and φJ being shorthands for φ(KFx) and φ(KJx),
respectively. Then there exists ρ̄ > ρ such that, for any ρ ∈
(ρ, ρ̄), the set A := {0} × [0, 2ρ] ⊂ Rn × [0, 2ρ] is globally
asymptotically stable for the hybrid closed-loop system (7).

Proof. The proof is omitted in this extended abstract. However,
the key ingredients of the proof emerge from a careful expan-
sion of the proof of Theorem 5.1 in Prieur et al. (2018) to the
case of system (7) subject to the nonlinearities φ(KFx) and
φ(KJx) satisfying the cone-bounded conditions (8) and (9),
respectively. �

An interesting way to particularize Theorem 1 is to select a
quadratic Lyapunov function V (x) = x>Px, in order to derive
LMI-based conditions. Then, the following result can be stated
in the context of Problem 1.
Proposition 1. Given System (7) and positive scalars α3 > 0,
ρ > 0, assume that there exist matrices P = P> > 0,
M̃ = M̃>, SF , SJ and S̃J diagonal positive definite matrices,
non-negative scalars τS , τR, τ̃C , τ̃F and a positive scalar ε such
that the following inequalities hold,(

He(PAF ) + α3P − τS(M̃ − εI) PBF +K>F ΩFSF
B>F P + SFΩFKF −2SF

)
< 0

(18)



(
A>J PAJ − exp(α3ρ)P + τRM A>J PBJ +K>J ΩJSJ

B>J PAJ + SJΩJKJ B>J PBJ − 2SJ

)
≤ 0

(19)(
A>J M̃AJ + τ̃CM A>J M̃BJ +K>J ΩJ S̃J

B>J M̃AJ + S̃JΩJKJ B>J M̃BJ − 2S̃J

)
≤ 0 (20)

M̃ − τ̃FM ≤ εI. (21)

Then there exists ρ̄ > ρ such that for any ρ ∈ (ρ, ρ̄) the set
A is globally asymptotically stable for the hybrid closed-loop
system (7).

Proof. We only present a sketch of the proof, which consists
in rewriting the conditions of Theorem 1 fpr the case where
V (x) = x>Px. Indeed, let us consider the case of relation (14),
which reads

2x>P (AFx+BFφF ) + α3x
>Px

−2φ>FSF (φF − ΩFKFx) < 0,∀x ∈ F̃ε \{0}

with φF the shorthands for φ(KFx). We can handle the fact that
the condition has to be satisfied for any x ∈ F̃ε \{0} by using
the S-procedure (see Boyd et al. (1994)) and the definition (12),
which leads to

2x>P (AFx+BFφF ) + α3x
>Px

−2φ>FSF (φF − ΩFKFx)−−τSx>(M̃ − εI)x < 0

with τS ≥ 0. Hence, if relation (18) is verified then the above
inequality and therefore condition (14) are satisfied.

The same reasoning holds for relation (15). In the case of
condition (16), since φJ is involved, one has to consider that
this relation holds for φJ satisfying the cone-bounded condition
(9). This leads to relation (20). �

Remark 2. The inequalities presented in Proposition 1 are not
LMIs in the matrix decision variables P , M̃ , SF , SJ , S̃J and
the scalar decision variables τS , τR, τ̃C , τ̃F , ε due to the product
between certain scalar and matrix decision variables. These
products can be eliminated, thereby transforming the conditions
into authentic LMIs, when multiplying by τS inequalities (20)
and (21), and performing the following change of variables:

M̄ = τSM̃, ε̄ = τSε, τ̄C = τS τ̃C , τ̄F = τS τ̃F , τSS̃J = S̄J .

so that the emerging conditions become linear in the trans-
formed decision variables P , M̄ , SF , SJ , S̄J , τR, τ̄C , τ̄F and
ε̄.

It still is required to fix a priori the two scalars α3 and ρ but we
emphasize that these quantities should be selected small enough
for the construction to be effective and this helps in an iterative
selection.

4. DESIGN RESULTS

In this section we take inspiration from Proposition 1 and
Remark 2, to propose sufficient conditions to solve Problem
2. Recall that the matrices ΩF and ΩJ involved in relations (8)
and (9) are supposed to be known.
Proposition 2. Given System (7) and positive scalars α3 > 0
and ρ > 0, if there exist matrices P = P> > 0, M̄ = M̄>,
K̄F , K̄J , diagonal matrices SF > 0 and SJ > 0, non-negative
scalars τ̄F , τ̄C , τR ∈ R≥0 and positive scalar ε̄ such that the
following inequalities hold,

(
A>FP + PAF + α3P − M̄ + ε̄I PBF + K̄>F

B>F P + K̄F −2SF

)
< 0 (22)(

A>J PAJ − exp(α3ρ)P + τRM A>J PBJ + K̄>J
B>J PAJ + K̄J B>J PBJ − 2SJ

)
≤ 0

(23)(
A>J M̄AJ + τ̄CM A>J M̄BJ + K̄>J
B>J M̄AJ + K̄J B>J M̄BJ − 2SJ

)
≤ 0 (24)

M̄ − τ̄FM ≤ ε̄I, (25)
Then there exists ρ̄ > 0 such that for any ρ ∈ (ρ, ρ̄) the
set A is globally exponentially stable for the hybrid closed-
loop system (7) with the gains KF = S−1F Ω−1F K̄F and KJ =

S−1J Ω−1J K̄J .

Proof. The proof follows the same lines as in the proof of
Proposition 1 by modifying the conditions thanks to the change
of variables suggested in Remark 2. Furthermore, one can also
use the change of variables K̄F = SFΩFKF and K̄J =
SJΩJKJ , allowing to recover the gains KF and KJ because
matrices SF , SJ , ΩF and ΩJ are all diagonal positive definite
and therefore nonsingular. �

5. CONCLUSION

This note introduced a new class of hybrid Lur’e dynami-
cal systems where a sector nonlinearity may affect both the
continuous-time evolution and the reset map acting on suit-
able closed-loop states, under a time-regularization mechanism
ensuring dwell time of solutions. For this class of systems,
both the stability analysis and the control design problems
have been addressed by exploiting Lyapunov-based stability
conditions and homogeneity of the closed loop. By selecting
a quadratic Lyapunov certificate these conditions can be cast as
linear matrix inequalities. In the control design problem, both
the feedback gains acting on the continuous evolution and the
reset action can be designed. For this control design problem
the synthesis can also be performed by solving a set of linear
matrix inequalities.

The studies proposed are preliminary but pave the way for
future directions of research including addressing regional sta-
bility properties and taking into account nonlinearities affecting
also the shape of the flow and jump sets. Another interesting
problem could be to study how the conditions change if the flow
and jump maps are subject to different input-nonlinearities,
with independent sector bounds.
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