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AN ENUMERATIVE APPROACH FOR ANALYZING
TIME PETRI NETS

Bernard BERTHOMIEU and Miguel MENASCHE*

Centre National de la Recherche Scientifique
Laboratoire d’Automatique et d’Analyse des Systemes
7, Avenue du Colonel Roche, 31400 TOULOUSE, FRANCE

abstract: This paper is concerned with specify-
ing and proving correct systems in which time ap-
pears as a parameter. We model such systems via
Merlin’s Time Petri Nets. An enumerative analysis
technique is introduced for these nets based on the
computation of a set of state classes and a reacha-
bility relation on the set. State classes are defined
in the text and an algorithm is provided for their
enumeration. This enumerative approach allows us
to derive a finite representation of their behavior
for a large family of Time Petri Nets. The analysis
method is illustrated by the analysis of a commu-
nication protocol.

1 INTRODUCTION

This paper analyses concurrent systems in which
time appears as a quantifiable and continuous pa-
rameter. Communication protocols are among such
systems: recovery mechanisms for losses of mes-
sages or network topology changes are usually im-
plemented using time outs.

Several attemps have been made in the past for
specifying and verifying such systems. Among the
models developed, two were based on Petri Nets.
They are known as Time Petri Nets [12] and Timed
Petri Nets [13].

Merlin defined Time Petri Nets as Petri Nets in
which two times, a and b, with 0 < a < b and b
possibly unbounded, are associated with each tran-
sition. Times a and b, for transition ¢, are relative
to the moment at which the transition was last en-
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abled. Assuming that transition ¢ has been last
enabled at time #. Then t may not fire before time
0+ a and must fire before or at time #+b unless it is
disabled before then by the firing of another transi-
tion. Firing a transition takes no time to complete.

Using Time Petri Nets, Merlin investigated the
recoverability problems in computer systems and
the specification of communication protocols [11],
[12].

Ramchandani’s Timed Petri Nets are obtained
from Petri Nets by associating a firing time with
each transition of the net. The firing rule is fur-
ther modified considering the time it takes to fire
the transition, and that transitions fire as soon as
enabled. Timed Petri Nets and related equiva-
lent models have been used mainly for performance
evaluation.

Merlin’s Time Petri Nets were choosen for mod-
eling our systems since these nets have been proven
convenient for expressing most of the temporal con-
straints required, including duration. We devel-
oped an enumerative analysis technique for these
nets that allows a reachability analysis similar to
the well known method for Petri Nets and Vector
Addition Systems [7]. This method permits com-
puting a finite representation for the behavior of
a large family of TPNs in terms of a set of state
classes and a reachability relation on the set.

The method is explained in section 2. Time Petri
Nets and their behavior are presented in section 1,
section 3 focuses on analysis of some properties of
Time Petri Nets, and some applications are dis-
cussed in section 4.



2 TIME PETRI NETS, TERMINOLOGY
AND BEHAVIOR

Time Petri Nets (or TPNs for short) are obtained
from Petri Nets by associating two times with each
transition. Let us call the smallest and the largest
of these times for any transition its Static Earliest
Firing Time (Static EFT for short) and Static Lat-
est Firing Time (Static LF'T for short), respectively.
The Static Firing Interval of the transition will be
the closed left bounded interval of times comprised
between its Static EFT and LFT.

States in TPNs will be pairs S=(M,]I) in which M
is a marking and I is a a Firing Interval function.
Function I associates with each enabled transition
the time interval in which the transition is allowed
to fire.

When the net is behaving, these intervals are
generally different from the Static Firing Intervals,
they will be simply refered to as (dynamic) Firing
Intervals, and their bounds as (dynamic) EFTs and
LFTs.

Firing a transition ¢, at a time 6 , from a state
S = (M,1I), is allowed iff both the following condi-
tions hold:

(i) The transition is enabled;

(ii) Time 6 is comprised (bounds included) be-
tween the EF'T of transition ¢ and the smallest
of the LF'T's among those of the transitions en-
abled.

The first condition is the usual one of enabledness
for Petri Nets, the second results from the necessity
of firing transitions in their firing interval.

Firing ¢ at the time 6 from a state S = (M, 1)
leads to a new state S’ = (M’',I'), computed as
follows:

1) The new marking M’ for each place is defined
for any place p, as in Petri Nets, as:

where B and F are the Backward and Forward

Incidence Functions of the net, respectively;

2) The new firing intervals I’ for transitions are
computed as follows:

a) For all transitions not enabled by the new
marking M', then empty;

b) For all transitions k enabled by marking M
and not in conflict with ¢, then

max(0, EFT}, — ), LFT}, — 6

where EFT);, and LFT}, denote the lower and
upper bounds of interval I for transition k, re-
spectively;

c¢) All other transitions have their interval set to
their Static Firing Interval.

In other words, the transitions not enabled by
the new marking M’ receive empty intervals; the
transitions that remained enabled while transition
t was firing have their intervals shifted towards the
origin of times of the value 8 of the time at which
transition ft fired (restricted to non negative val-
ues); the remaining transitions (those enabled by
M’ and either in conflict with ¢ for M, or not en-
abled by M) have their intervals set to their Static
Firing Intervals. Time 4 is relative to the moment
at which state S has been reached.

For simplicity, we consider in this paper only
Time Petri Nets such that none of their transitions
may be enabled several times ”simultaneously” by
any marking, i.e. TPNs such that for any marking
M and any transition ¢, some place p is such that
M(p) < 2.B(t,p). This restriction may be dropped
by defining some meaning for multiple enabledness
in these nets; some solutions are presented in [4, 9]
but lack of space prohibits discussing these here.

The firing rule above defines a reachability rela-
tion among states of Time Petri Nets. Firing se-
quences may be defined for TPNs, as they are for
Petri Nets, as sequences of successively firable tran-
sitions. A Firing Schedule will be a firable sequence
of pairs (transition, time). The behavior of a TPN
is characterized by the set of states reachable from
its initial state or, alternatively, by the set of firing
schedules feasible from its initial state.

Representing the behavior of a TPN by its set
of states, as the behavior of a Petri Net is repre-
sented by its set of reachable markings, is generally
not possible. This is because, as the time is con-
tinuous and as transitions may fire at any time in
their allowed intervals, the states have in general
an unbounded number of successors.

Before defining state classes, let us give a more
convenient formalism for the states. A TPN state
may be seen as a pair (M, D), in which M is a
marking and D is a set of vectors called the Firing



Domain. Vectors in the Firing Domain have one
component per transition enabled. Projection 4 of
the domain is the interval currently associated with
the i*? transition enabled. These domains may ex-
pressed as solution sets of some systems of inequal-
ities, with variables one to one associated with the
transitions enabled.

The initial State SO of the net fig. 1 below, for
instance, may be defined as the pair composed of
the initial marking of the net and the domain D0
defined as follows:

MO : pl1(1),p2(2)
DO : Solution set of:
4<t <9

Where variable ¢; is associated with transition
t1, which is the sole transition enabled for MO0.

pl p2

\

ts | [03] t1 t2 |02 t3

p3
p4 p5
t4

[0.2]

[13]

[4.9]

Figure 1: A Time Petri net

Firing transition ¢t1 from the initial state, at a
relative time #; (comprised in the interval [4,9])
leads to state S1 = (M1, D1), with:

M1 : p3(1),p4(1),p5(1)
D1 : Solution set of:
0<ty <2
1<t;<3
0<ts <2
0<t; <3

Time 6; does not appear in this system since
no transition remained enabled while ¢1 was firing.

Firing transition ¢2, at a time #y (in the interval
[0,2]) from state S1 above leads to the following
state S2 = (M2, D2):

M2 :p2(1),p3(1), p5(1)

D2 : Solution set of:
max(07 1-— (92) S ts S 3 - (92
0<t4 <2-0;
0<ts <30

As time is continuous, #; may take any value
among the infinitly many contained in the interval
[0,2]. An infinity of different states may be reached
by firing transition ¢2 from state S1.

3 STATE CLASSES AND THE ENU-
MERATION METHOD

State Classes

Rather than considering the state reached from the
initial state by firing some feasible schedule, we
will consider, for each firing sequence s, the set of
all states reachable from the initial state by firing
schedules with this firing sequence s. This set of
states will be called the State Class associated with
the firing sequence s.

More formally, the class associated with a firing
sequence s is defined as the pair (M, D) in which
M is the marking reached from the initial marking
by firing sequence s and D is the union of all firing
domains of states reachable from the initial state
by firing schedules with firing sequence s.

Domains in the classes may be expressed as solu-
tion sets of systems of linear inequalities, with one
variable per transition enabled by the marking of
the class. Classes are pairs C = (M, D), in which
M is a marking and D is a firing domain defined as
the solution set of some system of linear inequali-
ties:

At<b

in which A is a matrix, b is a vector and vari-
able t; corresponds to the i*" transition enabled by
marking M.

In practice, we are interested in computing re-
cursively the set of classes, i.e. deriving the class
associated with sequence s.t from the class associ-
ated with sequence s, the initial class being defined
as the class containing only the initial state. This
is provided by the following firing rule.



The firing rule for state classes

A transition ¢ is firable from a class C = (M, D) iff
both the following conditions hold:

(i) t is enabled;

(ii) There is in the domain D a vector in which the
component corresponding to transition ¢ is not
greater than any other component.

The first condition is the usual one of enabled-
ness. Domains in the state classes express a set of
intervals for each transition enabled and, eventu-
ally, relationships between the firing times of these
transitions. The second condition expresses that
transition ¢ is fired in its allowed interval, and that
it is fired the first among the enabled transitions.

In the form of inequalities, D being the solution
set of some system A.t < b and t being the 5"
transition enabled, this second condition is true iff
the following system of inequalities is consistent:

At<b
t; < t;, for all variables ¢, j # i.

Computation of the successor class C' =
(M',D') is carried out as follows:

1) Compute new marking M’ as in Petri Nets;
2) Compute new domain D’ in four steps:

a) Augment the system A.t < b with the above
firability conditions for transition t¢;

b) Eliminate from this system the variables asso-
ciated with transitions in conflict with ¢; these
transitions are those enabled by M and not
enabled by M — B(t,—), where B(t,—) is the
Backward Incidence vector of transition ¢;

¢) In this reduced system, express each remaining
variable ¢;, with j # ¢, as the sum of variable
t, and a new variable z;-, and eliminate from
the system all old variables, including t;;

d) In this new system, add one variable for each
newly enabled transition, constrained to be-
long to the Static Firing Interval of the transi-
tion it is associated with. Newly enabled tran-
sitions are those enabled by M’ and not en-
abled by M — B(t,—).

Step a) corresponds to selecting from the starting
domain all vectors such that the component corre-
sponding to transition ¢ is not greater than any
other, i.e. transition ¢ fires the first among the en-
abled transitions. Elimination of the variables at
step b) does not affect the firing intervals of the
remaining variables in the system, nor their rela-
tionships; elimination corresponds to a projection
of the domain. The solution set of the system found
at step ¢) may be seen as the firing domain for the
transitions that remained enabled while ¢t was fir-
ing, expressed with the time at which transition ¢
fires as the new time origin. Step d) simply intro-
duces intervals for the newly enabled transitions,
equal to their respective static firing intervals.

Comparing classes for equality

Two classes will be defined equal iff both their
markings are equal and their firing domains are
equal. Comparing for equality the set of solutions
of two systems of linear inequalities is generally
costly but, as shown in the sequel, this compari-
son can be done efficiently in our particular case.
Normal Form Lemma: Firing domains of the
state classes of T-Safe Time Petri Nets may be ex-
pressed as solution sets of systems of inequalities
with the following general form:

a; <t; < by, for all i;
t; —ty < cji, for all j, k with j # k

where t; is the variable associated with the ith
transition enabled by the marking of the class and
a;, b; and c;i, are constants (some b; or c;; may be
unbounded).

The proof is straightforward: initial domains sat-
isfy this property and this general form is kept by
the four transformations that together constitute
the firing rule. QED

These systems admit canonical forms defined as:

a; <t; <b;, for all 7
t; —t, <cjy, for all j, k with j # k

Where a7, b; and ¢}, are the smallest possible
value for variable ¢;, the largest possible value for
variable ¢; and the largest possible difference be-
tween the values of variables ¢; and ¢, respectively.

A result in [1] implies that these canonical forms
can be computed in polynomial time. Once the



canonical forms for domains are derived, compar-
ing domains for equality reduces to comparing their
canonical forms for identity.

The graph of state classes

The reachability relation defined by the firing rule
allows building a tree of state classes as follows: its
root is the initial class and there is an arc labelled
with transition ¢, going from class C' to class C’,
iff transition ¢ is firable from C and firing it leads
to class C'. The graph of state classes is obtained
from the tree by merging equal classes.

It is clear from the definition of the state classes
that any sequence of transitions firable from the ini-
tial state will be a path in the above tree of classes.
Further, existence of a path labelled s from the ini-
tial class to a class C' implies that a firing schedule
with firing sequence s is feasible from the initial
state.

Let us illustrate the firing rule for classes by some
firings in the net of fig. 1: The initial class C0
contains only the initial state SO (given at the end
of section 1). Firing transition ¢1 from this class at
a relative time comprised in the interval [4,9] leads
to a class C1 = (M1,D1) equal to the state S1
previously computed since no transition remained
enabled while ¢1 fired. Firing transition ¢2 from
class C1 leads to a class C2 = (M2, D2) with:

M2 p2(1),p3(1), p5(1)
D2 : Solution set of:
0<t3<3
0<ts4 <2
0<t; <3
ty—t3 <1
ts —t3 <2

System D2 gives the possible firing times of tran-
sitions t3, t4 and t5 with time origin being the mo-
ment at which transition ¢2 fired. Note that the
firing times of transitions ¢3, t4 and t5 are tied to-
gether. The firing rule allows the enumeration of
12 state classes for this net.

Our intent is to use the graph of classes of a TPN
for representing and analyzing its behavior. It fol-
lows from the definition of the classes that each can
only have a bounded number of successors. So, for
the graph of classes to have a bounded number of

nodes, it suffices that the net does not admit an
infinite length firing sequence going through a se-
quence of all different state classes. This property
is investigated in the next section.

4 SOME PROPERTIES OF TIME PETRI
NETS

Let us denote R(MO0) the set of markings of a TPN
that can be reached from its initial marking. The
Reachability problem is whether or not a given
marking belongs to R(M0) and the Boundedness
problem is whether or not all markings in R(MO0)
are bounded, i.e. are such that all of their compo-
nents are smaller than some integer constant k.

Let us recall also that TPNs considered in this
paper do not admit multiply enabled transitions.
TPNs with this property are called T-Safe in the
sequel. T-Safeness is easy to check incrementaly
when enumerating classes. Theorem 1 below recalls
an undecidability result for Time Petri Nets:
Theorem 1: The Reachability and Boundedness
problems for Time Petri Nets are undecidable.

A direct proof is produced in reference [6]. Oth-
ers proofs may be given: it may be shown that
TPNs can simulate Inhibitors Nets or Priority Nets
and have equivalent Reachability and Boundedness
problems. Since these problems are known unde-
cidable for these nets, it may be infered that they
are also undecidable for Time Petri Nets.

A straightforward consequence of theorem 1 is
that the finiteness of the set of classes of a TPN is
undecidable, since classes are pairs (marking, do-
main). The following theorem 2 will help for stat-
ing sufficient conditions for this property.
Theorem 2: If Static EFTs and LFTs for all tran-
sitions are choosen among rational numbers, then
the number of state classes of a T-Safe TPN is
bounded if and only if the net is Bounded.

The proof is rather lengthy and will be only
sketched here, more rigorous proofs may be found
in references [4] and [9]. First, it must be shown
that if Static EFTs and LFTs are choosen among
rational numbers then the constants a7, b} and ¢
in the canonical forms of the domains are rational
numbers and are either unbounded (and remain so
by the firing rule) or admit upper and lower bounds
in all domains that depend only on the Static EFTs
and LFTs of the transitions. This implies that only



a bounded number of distinct values may be com-
puted for these constants. Further, the number of
variables in these systems is boun-ded, since TPNs
considered are T-Safe. Thus, only a bounded num-
ber of non equivalent systems of inequalities that
characterize domains may be computed using the
firing rule. Last, if the net is Bounded and T-Safe,
then it admits both a bounded number of markings
(consequence of the Boundedness property) and a
bounded number of non equal domains. QED

The restriction that Static EFTs and LFTs be
rational numbers was not made in [12]. This re-
striction, essential here, does not induce in prac-
tice any limitation. Assuming this restriction, any
sufficient condition for Boundedness will provide a
sufficient condition for the finiteness of the set of
state classes of the net, and conversely. Some of
these are investigated in the sequel.

The necessary and sufficient condition for Bound-

edness of Petri Nets and Vector Addition Systems
[7] provides a sufficient condition for Boundedness
of TPNs. This condition allows proving bounded a
large class of TPNs but has been proven too weak
for the applications we have in mind. The following
is stronger.
Theorem 3: A T-Safe Time Petri Net is Bounded
if no pair of state classes C = (M, D) and C' =
(M',D’") reachable from its initial state class are
such that:

(i) €' is reachable from C;
(ii) M' > M and M' # M,
(i) D’ = D;

An unbounded TPN necessarily admits an infi-
nite length firing sequence , going through a se-
quence s of all different state classes. Since the net
is T-Safe, it admits only a bounded number of dis-
tinct firing domains and, as classes are pairs (mark-
ing, domain), the unbounded sequence s must con-
tain an infinite length subsequence s’ in which all
markings are different and all domains are equal.
Any pair of classes in this sequence satisfies (iii).
Further, using [7], this sequence s’ will necessar-
ily contain two classes C and C’ satisfying (i) with
their markings satisfying (ii). QED

This condition, augmented with user defined se-
mantic conditions for stopping enumeration as soon
as possible if the behavior of the net is not as
expected, have been proven adequate for most of

the meaningfull examples we have treated so far.
Stronger sufficient conditions are discussed in [4]
and [9].

When a TPN has been proven bounded, its graph
of state classes allows checking the specific proper-
ties that characterize its correct behavior, some-
what the same way as properties of Petri Nets are
investigated using the reachability analysis. Fur-
ther, liveness properties similar to those defined
for Petri Nets may be defined for TPNs and, for
bounded TPNs, proved using the graph of state
classes.

5 EXAMPLE, ANALYSIS OF TIME DE-
PENDENT COMMUNICATION PRO-
TOCOLS

As mentionned earlier, communication protocols
make a wide use of timing constraints in their
specifications: recovery mechanisms for losses of
messages are usually implemented using time outs.
Time Petri Nets constitute a suitable tool for ver-
ifying that these time-outs are correctly set. The
Alternating Bit Protocol will provide an illustra-
tive example for the analysis method presented in
section 2 and 3.

This protocol is a stop and wait data transfer
protocol. Before sending a new message, the sender
waits for the acknowledgement of the last mes-
sage it sent. Hypotheses on the behavior of the
transmission medium are that messages or their ac-
knowledgements may be lost or damaged while in
transit.

A mechanism is provided for recovering from
these losses: a time-out is set when a message
is sent and if its acknowledgment does not arrive
in time the message is retransmitted. This basic
mechanism is sufficient for recovering from losses
of messages but does not prevent from duplication-
free reception: if an acknowledgment is lost, the
receiver is unable to decide whether the next mes-
sage it receives is a new message or another copy of
the last message it received. To solve this problem,
messages are numbered prior to transmission with
modulo-2 sequence numbers and acknowledgments
refer explicitely to these numbers.

Fig. 2 below shows a TPN for the Alternating
Bit Protocol. For simplicity, damaged messages are
considered as lost. Notice that losses of messages



and acknowledgements are simply represented with
transitions that have no output places; there is no
need here for any artificial mechanism relating lost
messages to messages retransmitted.

tl : Send Packet 0 t9 :
t2 : Resend Packet 0

Receive and
Reject Packet O

t3 : Receive Ack 0 t10 : Receive and
t4 : Send Packet 1 Release Packet 1
t5: Resend Packet 1 t11: Send Ack1
t6 : Receive Ack 1 t12 : Receive and
t7:  Receive and Reject Packet 1
Release Packet 0 t13 : Lose Packet O
t8 :  Send Ack 0 t14 : Lose Ack 0
t15 : Lose Packet 1
t16 : Lose Ack 1

Figure 2: A TPN for the Alternating Bit Protocol.

Estimates for the durations of all elementary ac-
tions of the protocols have been provided. Retrans-
mission of a message occurs at a time comprised
between 5 and 6 units after the last copy of the
message has been sent. Equal estimates (between
0 and 1) are given for losses and receptions of mes-

sages and acknowledgments. No constraints, i.e.
the intervals [0,in fty[, are given for transmission
of the first copies of the messages.

The net fig. 2. has been analysed with the help
of an experimental computer package we developed.
This net has been proven bounded, it admits six-
teen classes. It is clear from these classes that only
one message or acknowledgment will be in transit
at a time (places p9, p10, p11 and p12 hold at most
one token, in any marking). This assures that the
retransmission time out is correctly set. Further,
no duplicate message may be delivered (transitions
t7 and t10 alternate in all paths of the graph) and
the transfer of messages can actually occur (the net
is live).

Among other communication systems we have
analyzed is a bus allocation protocol, called RE-
BUS, taken from [2]. REBUS is an experimental
fault tolerant distributed system designed for real
time control applications. The typical REBUS con-
figuration is a set of functional units running ap-
plication tasks linked together by a hardware bus
through which they communicate. Units are orga-
nized in a virtual ring independently of the physi-
cal organization. Control of the bus is successively
given to all units in the ring in a circular fashion.
A broadcast message is used for transmitting the
privilege.

Fault hypothesis are that messages may be dam-
aged or lost, when transmitted or when received,
and that units may become permanently ”deaf” or
permanently "dumb”. Further, it is assumed that
any fault is recovered before another occurs. Recov-
ery of the faults is done using a watch dog based
mechanism and private messages.

This bus allocation protocol has been specified
and proven correct in [2], using Petri nets and struc-
tural analysis methods. A specification and a proof
of correctness using TPNs and the analysis method
introduced here is detailled in [10]. The interest of
the exercise was in its significant complexity. For
keeping manageable the number of state classes, we
used a superposition like analysis method, analyz-
ing separately the effects of each possible fault on
the behavior of the system instead of building a
global net with all possible faults represented in it.



6 CONCLUSION

The reachability analysis technique presented here
has been proven adequate for most of the meaning-
full examples we experimented with. However, its
limitations must be kept in mind.

A first limitation is that no necessary and suffi-
cient condition for boundedness can be devised for
Time Petri Nets, and proving this property is nec-
essary for acheiving the reachability analysis. Little
can be done to overcome this limitation, except de-
vising stronger sufficient conditions.

The second limitation, also typical of the reach-
ability analysis technique for usual Petri Nets, is
that, even if bounded, the number of state classes
of a Time Petri Net may be very large. Care must
be taken, with a careful proof methodology, to keep
the number of state classes manageable.

Alternative methods, avoiding partially or to-
tally the enumeration phase, such as reduction
methods or structural analysis [3, 8] are being in-
vestigated. Also being investigated is extending the
field of application of the method towards perfor-
mance analysis.
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