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Abstract — Devolvement of high-performance logic application in 
sub-20 nm technology node has gained significant attention due to 
their improved electrostatic and thermal control. In this work, we 
investigate electro-thermal transport in vertical junctionless 
nanowire transistors (VNWFET) at cryogenic temperatures to 
understand thermal effects in nanoscale regime. It highlights that 
heat dissipation and thermal stability are more efficient compared 
to planar Finfet configuration. 
 
Keywords: Semiconductor, junctionless nanowire transistors, 
nanoscale thermal transport, thermal conductivity, cryogenic. 

I.  INTRODUCTION:  
In the present era, transistors have attained a state of high 
miniaturization, with technology nodes such as N5 possessing 
physical gate lengths less than 20 nm. At these scales, 
classical physical principles confront competing mechanisms 
and configurations intrinsic to the nanoscale. Additionally, in 
short channel lengths thermal management poses significant 
challenges, encompassing low thermal stability and leakage 
current due to self-heating effects and hot-spot formation [1]. 
This paper presents an investigation of the thermal properties 
of a vertical conduction sub-20 nm gate-all-around (GAA) 
junctionless transistor technology, a promising candidate for 
future technology nodes due to its ability to support denser 
architectures through a compact device layout. Given its 
highly miniaturized design and unconventional layout of 
metallic and insulating layers, this architecture is particularly 
intriguing for addressing thermal challenges of highly 
advanced devices. In this scope, it has thus become crucial 
that design considerations include renewed focus on 
electrothermal optimizations to satisfy Moore’s law trends 
[2]. Thermal conduction is governed by phonon transport in 
sub-10 nm devices that include (1) ballistic, (2) boundary 
scattering and (3) confinement regimes [3]. Guyer and 
Krumhansl equation (GKE) has recently been demonstrated 
to capture non-diffusive heat transport in nanoscale regime 
beyond the classical Fourier’s law, offering understanding of 
non-local thermal effects [4]. Based on the GKE formulation, 
this work investigates for the first time electrothermal 
behavior of nanoscale GAA junctionless transistors.  

II. DEVICE AND TEMPERATURE CHARACTERIZATION 
Fig.1 present a schematic view of the vertical junction-less 
device with a metallic GAA of 18 nm and symmetrical PtSi 
contacts, as described in [5]. The measured ID-VG curves are 
plotted in Fig. 2 for different temperatures ranging between 
100 K ≤ T ≤ 400 K, for p-Type JL GAA MOSFETs (Fig. 2) 
with a NW diameter 23 nm. The drive current increases 
monotonically with the temperature both at low and high VD, 
in accordance with the behavior observed for junctionless 
FETs [6]. The decrease in drain current at lower temperatures 
can be attributed to the suppression of the thermally-activated 
conducting currents at the contact which is not compensated 
by the improvement of mobility at low temperature. A 

transition between low and high temperature regimes for Vth 
(reflected by a change of slope of the Vth-T plot in Fig. 3) at 
around 200-300 K, exhibit a NW size-dependent transition of 
the dominant scattering mechanisms in the nanostructures. 
The subthreshold slope evolution with the temperature for 
different NW diameters (Fig. 4) is compared to a theoretical 
prediction for MOSFET devices (ln10·(KT/q)).  

III. THERMAL ANALYSIS 
Through cryogenic static characterizations and finite element 
modeling, we studied heat accumulation in a single nanowire 
using COMSOL Multiphysics [7] based on GKE formulation. 
Unlike the linear temperature gradient in classical regimes, 
non-Fourier transport can accurately describe nonequilibrium 
states in both steady and transient ultrafast nanoscale thermal 
transport based on GKE and energy conservation. Non-local 
response of phonon destitution is used for the prediction of 
the effective thermal conductivity in nanowires as shown in 
Fig. 5, illustrating that the present GKE matches well with the 
reported data [8]. Thermal conductivity reduces significantly 
below the 10-nm regime. Distribution of thermal conductivity 
and temperature along the nanowire, shown in Figs. 6 and 7, 
respectively, indicate a degradation of thermal performances 
near the drain region due to the dominance of resistive phonon 
transport. However, beyond the point of heat accumulation 
near the drain, especially at VD= -1.1V, device temperature 
drops rapidly towards the drain contact (Fig. 7), indicating an 
efficient heat evacuation that further improves with more 
parallel nanowires. In terms of electrical performance under 
temperature, a key parameter for the junctionless device is its 
threshold voltage, which shows two distinct temperature 
coefficients between two heat conductive regimes separated 
around 250K (Fig. 3). The VNWFET compact model [9] has 
been adapted to incorporate this effect through temperature 
dependence of key parameters such as Vth, Schottky barrier, 
Raccess, vsat and SS. Following model calibration against room 
temperature data (Fig. 8), good model accuracy was achieved 
for drain current temperature dependence (Fig. 9), 
highlighting the need for better understanding of nanoscale 
thermal transport for accurate electro-thermal modelling. 
Finally, Table 1 demonstrates that the extracted thermal 
conductivity in JLNTs is higher than FinFETs technologies. 
The structure of GAA JLNTs guarantee less confinement 
effects and therefore higher effective thermal conductivity. In 
technological point of view, JLNT is more thermally stable. 

CONCLUSIONS 
We investigated nanoscale electrothermal transport in sub 20 
nm GAA vertical nanowire junctionless transistors. Results 
indicate two distinct heat conduction regimes at low and high 
temperature ranges that were taken into account to model its 
electrical characteristics. Efficient heat dissipation and better 
thermal stability justify the benefits of this technology as a 
beyond CMOS alternative. 
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Fig. 1:  Schematic and TEM cross section view of the vertical junction-less GAA 
devices. The metallic GAA features 18nm gate length. The channel is p-type 
homogeneous doping (3E19 at.cm-3) and have symmetrical Pt-silicided contacts.                             

Fig. 2:  Id-Vg of 18 nm GAA VFET from 100K to 400K (step 50K) at a) VD= -0.1V and b) VD= -1.1V  Fig. 3:  Evolution of Vth as a function of temperature  

Fig. 4:  Evolution of SS as a function of temperature 
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Fig. 5:  Comparison of effective thermal conductivity 
for silicon nanowire at room temperature  Fig.  8:   Compact model validation at room temperature    

Fig.  9: Compact model validation against temperature data at 
VDS= -1.1V and -0.1V.       

(b)(a)
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Fig. 6:   Effective thermal conductivity along the nanowire for (a) Vds= -0.1V. (b) Vds= -1.1V    

Fig. 7: The temperature distribution within the nanowire for (a) Vds=-0.1V. (b) Vds=-1.1V 

Table 1: The extracted thermal conductivity in SOI FinFETs [10] 
and JLNTs (present work) 

 JLNTs FinFET 
23-nm Lg 18 (W/m/K) 12 (W/m/K) 
18-nm Lg 10 (W/m/K) 8.2 (W/m/K) 

 


