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Abstract—Timely and up-to-date information about road link
quality is essential for the efficient and reliable dissemination
of urgent messages in dynamic vehicular network environ-
ments. However, existing literature lacks models that provide
infrastructure-to-vehicle link quality estimations. This is due
to vehicular communication networks’ high variability and
complexity (channel variations, complex interference patterns),
making it difficult to integrate into a practical analytical model.
To address this, we propose a supervised-machine-learning-based
prediction model that estimates the Packet Reception Rate (PRR)
on the road. Our model updates communication zones to adapt
to changes in traffic conditions. It uses a dataset generated
from a realistic mobility scenario using the NETSIM simulator
and SUMO for training and evaluation. Our performance tests
show promising results in terms of prediction accuracy. This
work represents the first step toward developing an efficient and
reliable scheme for disseminating urgent messages that considers
traffic conditions and vehicular mobility changes.

Index Terms—Vehicular communications, Quality of Service
assessment, Machine Learning
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I. INTRODUCTION

In order to support Intelligent Transportation Systems (ITS)
services with strict Quality of Service (QoS) requirements,
despite rapidly changing traffic conditions, the network must
be able to anticipate possible changes related to the evolution
of traffic.

Moreover, in vehicular networks, the conditions of the radio
signal propagation channel can vary considerably in time
and space, which affects the Infrastructure-to-Vehicle (I2V)
link quality on the road [2]. In order to ensure reliable and
durable performance in such networks, efficient estimation of
the link quality on the road is required by some communication
services so that alternative or more reliable routes/areas can
be selected for data retransmission [3].

The high variability of communication networks with many
changing factors seems to us difficult to be integrated into a
realistic analytical model. On the other hand, to our opinion,
effective link estimation or prediction, started by network state
observation, offers a more adaptable and usable approach.

The estimated view of the network’s future state [4] can
be integrated into a proactive network control function to
guarantee the continuity of services within the required QoS.

This work proposes an Infrastructure to Vehicle (I2V) link
quality estimation technique on the road. It relies on Machine
Learning techniques to estimate the link quality (Packet Re-
ception Rate (PRR)) in each zone defined by a 40 × 40m2

square, which allows us to determine the reception quality
of each square area. A supervised learning model has been
proposed, with the particularity of using traffic information
and ”Hello” default exchange messages between vehicles and
infrastructure, thus limiting transmissions’ overhead.

In order to train and evaluate the proposed model, a dataset
has been generated, as the ones available from the literature
do not fit the needs of our study. This dataset has been created
using mainly the NETSIM framework and is based on mobility
traces.

This paper is organized as follows. Section II presents a
synthesis of existing works in the scientific literature. Section
III gives a general model overview for the proposed link
quality estimation model. Section IV details the proposed
framework, while section V describes the dataset and the
model. Section VI focuses on the experimental part. It first
presents the metrics considered, then analyzes the evaluation
results for the proposed model. Finally, section VII describes
the more global application schema.

II. RELATED WORK

During the last decade, wireless link quality estimation and
characterization have been studied in wireless mobile networks
and are considered crucial for reliable communication [2], [5].
Due to the dynamic nature of the vehicular environment, the
statistical channel models do not predict wireless link quality
with high accuracy [5].

We have not found any standard definition for link quality
nor a standard unit of measure for the metric [6] [7]. In this



work, we consider that link quality can be generally thought
of as a link description derivative of throughput or reliability.

Machine Learning (ML) techniques [2] have been recently
used for predicting link quality in wireless environments [8].

In [9], [10], authors propose ML-based algorithms to predict
Vehicle-to-Vehicle (V2V) path loss, proving that such models’
application offers better performance than traditional analyt-
ical models utilization (e.g., log distance path loss model).
Benrhaim and al. [11] method relies on periodically beacons
exchanges between vehicles to estimate V2V link reception
quality. They propose a Bayesian network-based scheme at
different locations in the zone covered by the transmission
range of the sender for the estimation. This is the only work
that estimates the road links’ quality. Estimation results show
good accuracy. However, the sample of parameters considered
in all the simulations remains small and limited.

Most of the works proposed in the literature to estimate the
vehicular communication links’ quality assume simplifications
of vehicle mobility. We note these works concern V2V links,
where only one is interested in estimating V2V link quality
on the road, and approaches based on machine learning
techniques generally present the best performances for both
problems. Our work is the first one that focuses on I2V
wireless quality links on the road. The proposed method for
estimating road links’ quality excludes any vehicle mobility
or communication range assumption [1].

III. PROPOSED MODEL OVERVIEW

The proposed work aims to estimate the quality of I2V links
on the road, precisely, the Packet Reception Rate (PRR) of
RSUs’ transmission for each small square zone in a predefined
region. Each region is represented by a matrix of small squares
of 40× 40m2 as described in [12] (see Fig. 2). These squares
are used to identify gray zones in the region, where their PRR
is less than a predefined threshold (90% in our case) [13]. The
gray zones are identified within the controller. Fig. 1 shows
the network architecture with the key elements of the proposed
approach. A Software Defined Network (SDN) controller is
assigned to each region as described in [14]; it manages all the
Road Side Units (RSU) that provide V2I wireless connectivity
within its region.
We assume all vehicles are equipped with a GPS module and
can send information, such as their position (P (x, y)) and
the packet response of the ”Hello” message received from
the RSU at the time of association and beacon messages
exchanges. This information is periodically collected by each
RSU and hosted in the cloud or shared directly with the
network controller to extract features used as input to the
model in order to estimate the PRR. Finally, we assume that an
RSU entity reports information about each newly associated
vehicle to the SDN controller.

The proposed model MPRR based on machine learning
techniques runs within the SDN controller. It mainly merges
the information reported by the RSUs. Centralizing the MPRR

model within the SDN controller, which manages a collection
of nearby RSUs, allows the MPRR model to learn the link

Fig. 1. Key elements of the proposed approach [1].

Fig. 2. Considered geographic map [1].

quality variations in the concerned coverage area. Finally, this
information is combined with other data to extract features
used as input to the model to estimate PRR in each small
square zone. The design of the MPRR model is detailed in
the next sections.

IV. SDN-ENABLED MACHINE LEARNING ROAD I2V LINK
QUALITY PREDICTION

A. Supervised Machine Learning

Our work consider supervised machine learning, where
learning is performed from a labeled dataset so the training
data contain the desired solutions. Formally, in a dataset D
defined by D(x1, y1), ...(xn, yn), the training of the model M
aims to find the best relationship between the inputs X , called
predictors, and the outputs y, called labels, y = M(X), such
that, for new input data Xn whose outputs are unknown, the
model can predict the corresponding output ŷn = M(Xn)
with good accuracy. We distinguish two types of supervised
learning: regression, when the value to be predicted is a
continuous real number, y ⊂ R, and classification when y
belongs to a finite set C = c1, c2, ..., cn called classes.

Furthermore, we consider the so-called ensemble learning
techniques [15], allowing us to train several models (of the



same or different techniques) and combine their predictions.
This technique represents one of the most popular and pow-
erful supervised algorithms. It allows for the design of a
generalized model and avoids overfitting. The model retained
is the Random Forest technique [16], which trains a set of
decision tree models.

The PRR estimation problem has been modeled as a re-
gression problem. The estimated variable is the PRR in each
map’s little zone (square) under the SDN controller coverage.
In the following sections, we present the considered training
variables (or features) to design our models. These features
are designed according to the objectives, i.e., i) features that
require a minimum of information from the vehicles and ii)
features that are independent of the network technology used.
Next, we detail the techniques used to train and calibrate the
model parameters.

B. Proposed framework

The propagation channel characteristics of vehicular net-
works differ significantly from other wireless systems. The
physical environment in vehicular channels is expected to
experience random variations caused by several factors, in-
cluding mobility patterns and rapid changes in traffic density,
path loss, and environmental effects. The rapid temporal
variability and non-stationary channels are rationales for de-
veloping a unique framework for predicting the link quality of
vehicular networks. In this work, we aim to build a machine
learning model capable of predicting the PRR on the road with
minimum error.

The classical machine learning workflow [17] is composed
of the following steps: Problem formulation, Data Collection,
Data Analysis, Model Construction, and Model Validation, and
the last step is Deployment and Inference. By combining this
workflow and leveraging SDN [18], we come up with the
SDN-enabled machine learning PRR prediction framework in
Fig. 3. The framework learns some properties of an historical
dataset and leverages the learned properties to provide good
estimations on new observations.

Fig. 3. Packet Reception Ratio inference framework.

From Fig. 3, the framework’s workflow is as follows. Firstly,
the prediction model MPRR is constructed offline by training
and tuning the parameters of the historical data. The historical
dataset may be composed of a large number of samples. Each
sample represents a combination of features’ values and the
associated target value. Collected data include vehicle posi-
tions, message identifications, and quality of communication
exchanges (signal power, losses, packet status). The features’
description, collection, and processing are detailed in the next
section.

The designed model MPRR based on machine learning
techniques is then deployed (Fig. 3, step (1)) in the Inference
Agent instance. The PRR inference is used to predict gray
zones in the region. We can suppose that this approach can be
used proactively, i.e., we assume the controller has a historical
idea about traffic conditions change (e.g., traffic density at
peak hours), so it updates these zones according to these
schedules (e.g., every two hours or three times a day).

The online input for each zone after processing (Fig. 3, step
(2)), composed of vehicle density and the packet loss exponent
in the concerned zone (These input parameters are detailed in
Tab. II in the next section), is got when the controller launches
the updates of gray zones for the geographic map under its
coverage. Taking this input, an inference of the PRR in each
zone (small square) is made, so gray zones are identified
(Fig. 3, step (3)).

Finally, when the process is complete, its observed output is
also collected, and the historical dataset can be updated with
the newly collected data (Fig. 3, step (4)). Therefore, having
the database up-to-date is essential and will allow considering
new dynamics from the traffic changes. The historical data
gathering and online update of the historical data with the
newly collected data form a base for our framework. The
historical data could be enriched from the cloud [1].

V. LEARNING-BASED MODELING

This section begins with the problem formulation. For the
PRR inference, the target metric is a continuous variable; its
prediction is a regression problem.

A. Dataset and analysis

The case study comes from an urban environment. In order
to evaluate the proposed model in a realistic framework, it
is necessary to have a data set that meets the following
requirements:

• Network coverage: it considers cells with varied com-
munication ranges (small and large coverage) by manip-
ulating the transmission power of RSUs. In addition, it
is necessary to know the geographical positions of these
entities to calculate the distance.

• Road traffic: we collect vehicle data (location) driving
on most roads (main and secondary) covered by a given
RSU.

• Size of the dataset: a collection of data for a long duration
by varying the density of the vehicles, the transmission
powers, the position of the RSUs, and the coefficients



of path loss, allowing the exploration of the temporal
variations of the measured metrics.

TABLE I
COLLECTED DATASET

Name Feature Description
Packet Id Sent packet identifier
RSU Id Sender RSU identifier

Vehicle Id Receiver vehicle identifier
P (x, y) Vehicle position
T (i) Transmission power of the sender RSU

Ploss(i) Path loss exponent
Packet status ”received” or ”not-received”

The dataset used in this work was generated using the
microscopic road traffic simulator SUMO coupled with the
event-based network simulator NETSIM as described in [19].
NETSIM simulates the DSRC protocol stack (signal strength,
handover, connectivity), while SUMO handles vehicle mo-
bility. We extract the area of 2 × 2km2 of a European-like
city (namely, Toulouse, France), with high traffic densities
(Urban environment), large buildings affecting the quality
of signals on the road, and irregular road structures, using
Open Street Maps (OSM). The area is decomposed in regular
40 × 40m2 square zones. In each zone, the PRR parameter
will be estimated. For network simulation parameters, we run
196 simulations where each RSU broadcasts a control message
every 100ms for 500s (27 hours in total), varying each time
the transmission power, the positions of the RSUs, vehicle
densities, and the path loss coefficients.
The dataset generated and collected after each simulation is
described in Tab. I. Path loss is the reduction in the power
density of an electromagnetic wave as it propagates through
space. It may be due to many effects, such as free reflection,
aperture-medium coupling loss, and absorption. The path loss
exponent varies between 2–5 depending on the surrounding
environment coherence bandwidth and Doppler shift. In re-
ality, the path loss exponent can be calculated according to
several parameters (e.g., the transmission power, the distance
from the sender, the wavelength of the carrier wave (which
depends on whether and obstacles), etc.), but as we work with
data collected by a simulator, we use this parameter directly
from the simulator. However, an SDN controller can use its
global view and knowledge to calculate this parameter based
on the real-time information (distance between RSUs and
zones, urban or other environments, weather, etc.) shared by
the RSUs and the cloud [3]. After each packet, we record the
vehicle position (to identify the zone identifier), the vehicles
that received the message, and the packet status (success or
error). The results of simulations generate a dataset of 52007
observations. Figure 4 shows the number of samples generated
for each PRR range.

We predict the PRR by a small road zone/square (only
squares containing road areas are considered) instead of a road
because the quality of links at the beginning of the road could
differ from the end and the center. Hence, predicting the PRR
by zone (a small portion of the road) is more precise and

accurate. We realize some data processing to have our dataset
suitable for our model, which allows us to predict the PRR
in each zone as described in Tab. II. First, we consider the
vehicle’s position to define the concerned zone. Then for each
simulation, we calculate the density of vehicles per zone and
hour, the average distance between the zone and the sender,
and the PRR (the number of packets received by vehicles in the
zone compared to the number sent by RSUs to those vehicles).
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Fig. 4. Number of samples generated for each PRR range [1].

B. Model training

The features of the MPRR model (vehicle density, distance,
transmission power, and path loss exponent) are designed
according to two main criteria i) those requiring a minimum
of information from the vehicles and ii) those independent of
the network technology used.

TABLE II
PARAMETERS AND NOTATIONS

Name Feature Description
Zi Zone identifier

Vd(i) Vehicle density per hour in a zone
D(i) Average distance between the sender and the zone
T (i) Transmission power of the sender RSU

Ploss(i) Path loss exponent
P̂RR(Zi) Packet Reception Rate in the concerned zone

Algorithm 1 Road PRR Estimation
Require: Zi, i ∈ 0, .., N List of road zone ID
Ploss(i) per zone: path loss per zone
T (i) : Transmission power of the RSU that covers the zone
Vd(i) : Vehicle density in the concerned zone

Ensure: P̂RR(Zi) : the Packet reception ratio by zone
for i = 0 to i = N do

D(i) =
√

((xRSU − xi)
2 − (yRSU − yi)

2)
/* distance between the zone i of coordinates (xi, yi) and
the RSU that covers it of coordinates (xRSU , yRSU ) */
P̂RR(Zi) = MPRR (D(i), Ploss(i), T (i) , Vd(i) )

end for

Algorithm 1 summarizes the information used as input and
the features considered by the MPRR model to estimate the



packet reception ratio for each road zone covered by the SDN
controller. From a dataset composed of the various attributes
listed previously, labeled by the desired results (PRR), a
training of the models is performed offline to find the best
representation between features and labels. As mentioned
previously, we use the Random Forest (RF) technique to train
a set of Decision Tree (DT). First, each tree is trained with
a randomly chosen subset of the dataset. Furthermore, during
this process, the concerned attribute is randomly chosen when
splitting a node. Finally, predictions made by each tree are
aggregated to produce a global prediction at the end: the
average of the values estimated by all the trees is used in
the regression case [1].

VI. PERFORMANCE EVALUATION

The goal is to evaluate the model’s capabilities to estimate
the packet reception ratio in each square to identify the
region’s gray zones. We analyze the results based on the data
visualization of the studied scenario. In addition, we identify
the strengths and limitations of the proposed model [1].

We use 75% of the dataset for model training and the
remaining 25% for testing, a commonly used ratio. Then, for
each input i in the test set X , we compute the corresponding
output ŷi = M(Xi) using the model M (model after the
training phase). Then we compare this output with the real
value yi. In this way, we compute the prediction accuracy of
each model using the performance metrics presented below.

A. Performance metrics

To evaluate the accuracy of the proposed ML performance
models, we consider two evaluation metrics:

• Prediction score R2 (Eq. 1): it represents which part of
the variance in the dependent variable is predictable from
the independent variables. In other words, it is the pro-
portion of correctly predicted samples. The most precise
regression model would be the one with a relatively high
R squared, close to 100 when expressed in percentage.

• Normalized Mean Absolute Error (NMAE) (Eq. 2):
it defines the average of the absolute differences between
the estimated and observed values of PRR. We want the
NMAE to be as small as possible.

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)∑n
i=1(yi − ȳ)

, with ȳ =

∑n
i=1 yi
n

(1)

NMAE(y, ŷ) =

∑n
i=1|yi−ȳ|

n

ȳ
, with ȳ =

∑n
i=1 yi
n

(2)

B. Results

For a subset with n samples of 10000, where 7500 samples
are used to train the random forest model, we obtain a score
R2 = 90.70% and NMAE = 5.20% on the 2500 remaining
sets. Using all the datasets (52007 samples) generated through
NETSIM simulations give scores around 95%, with NMAE
of around 5%. These results prove the ability of the ML-
performance approach to provide accurate predictions.
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Fig. 5. Predicted versus real observations (K = 10000 samples) [1].
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Fig. 6. Predicted versus real observations (K = 52007 samples) [1].

Figure 5 shows the real observed test points and their
corresponding predictions with the random forest model for
K = 10000 samples. But, of course, when the subset contains
all the initial dataset (K = 52007 samples), the prediction
accuracy is better, with a score almost equal to 0.95, as shown
in Figure 6.

The performance of the proposed model mostly meets the
needs of a proactive network control based on the estimation
of the quality of I2V links on the road, which allows defining
and updating gray zones periodically in the region in order to
update the rebroadcast zones.

Figure 7 represents the features’ importance, where the
Mean Decrease in Impurity (MDI) is used to calculate each
feature’s importance. It is calculated as the sum over the
number of splits (across all trees) that includes the feature,
proportionally to the number of samples it splits. This shows
that the distance and the packet loss coefficient (where we
consider the geographic area, urban/non-urban, the size and
presence of the buildings in the area, the weather, etc., that
influence communication channels) are the most important
features. Indeed, the absence or disregard of these features
will significantly decrease the model score accuracy on the
test set (e.g., by removing the path loss from the features, the
score accuracy can decrease up to 55%).

VII. APPLICATION

This work constitutes the first step of a more global com-
munication service chain to improve the broadcast of critical
messages. The proposed Machine Learning algorithm is used
to precisely assess the communication quality of 40 × 40m2



Fig. 7. Feature importance using Mean Decrease in Impurity (MDI) [1].

square zones in a geographical area. Then, it can be used
as an input of a Reinforcement Learning (RL) placement
algorithm proposed in [12]. According to their communication
characteristics, the goal of the RL placement algorithm is to
select the optimal number of rebroadcast square zones where
relay vehicles could retransmit messages to vehicles located
in gray zones (estimated by our method). This approach has
been tested in the case of critical communications by designing
and assessing an emergency service to ensure reliable alert
message dissemination [20].

VIII. CONCLUSION. FUTURE WORK

Estimating link quality on the road paves the way for
intelligent and efficient network control. In the proposed
approach, we mainly exploited the road packet reception
ratio identification as our model’s main learning variable. The
performance tests showed excellent results in the vast majority
of cases.

The model is trained offline using data collected under
varying traffic conditions to approximate real mobility and
traffic conditions that differ from one hour to another daily.
However, the trends captured by the models during real-
world training can vary even more when considering new
installations and reconstructions in the area (new buildings,
facades, parking, etc.), thus changing several parameters such
as the communication medium and path loss. Therefore, the
controller must be updated by these changes in order to update
its road zones and be able to recalculate the path loss by each
zone efficiently.

On the other hand, the service provider (ITS) can modify
the network parameters in order to optimize its network
(modification of the cell coverage, addition, or deletion of a
cell). This can affect the model performances. Re-training can
occur if the prediction error exceeds a certain threshold (set
according to the service using the predictions) with the new
data collected and obviously considering these new conditions.

The presented work focuses on a specific urban environment
(Toulouse, France) and utilizes simulated data. The next step

will be to consider other urban areas and real-world scenarios.
Real data should reinforce the model’s applicability. Network
parameters, as path loss exponent calculation, should be fine-
tuned with real data feedbacks.
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methods for v2v path loss prediction, ” IEEE Wireless Communications
and Networking Conference (WCNC), pp. 1-6, 2019.

[11] W. Benrhaiem, and A. Senhaji Hafid, ”Bayesian networks based reliable
broadcast in vehicular networks, ” Vehicular Communications, Vol. 21,
pp.100–181, 2020.

[12] R. Chakroun, S. Abdellatif and T. Villemur, ” Q-Learning Relay Place-
ment for Alert Message Dissemination in Vehicular Networks, ” 19th
International Conference on Mobile Systems and Pervasive Computing
(MobiSPC), Niagara Falls, Canada, pp. 222–230, August 9-11 2022.

[13] R. Meireles, M. Boban, P. Steenkiste, O. Tonguz, and J. Barros,
”Experimental study on the impact of vehicular obstructions in VANETs,
”IEEE Vehicular Networking Conference, pp. 338–345, 2010.

[14] S. Toufga, S. Abddellatif, H.T. Assouane, P. Owezarski, and T. Villemur,
”Towards Dynamic Controller Placement in Software Defined Vehicular
Networks,” Sensors, Vol. 20, No. 6, pp. 1701, March 2020.

[15] O. Sagi, and L. Rokach, ” Ensemble learning: A survey, ” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, 2018.

[16] L. Breiman, ” Random forests, ” Machine learning, Vol. 45, No. 1, pp.
5 – 32, 2001.

[17] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, ”Machine learning
for networking: Workflow, advances and opportunities, ” IEEE Network,
Vol. 32, No. 2, pp. 92–99, 2017.

[18] N. Foster, N. McKeown, J. Rexford, G. Parulkar, L. Peterson, and O.
Sunay, ”Using deep programmability to put network owners in control,
”ACM SIGCOMM Computer Communication Review, Vol. 50, No 40,
pp 82—88, 2020.

[19] J. S. Weber, M. Neves, and T. Ferreto, ” VANET simulators: an updated
review, ” Journal of the Brazilian Computer Society, Vol. 27, No. 1, pp.
1–31, 2021.

[20] R. Chakroun, S. Abdellatif and T. Villemur, ” LAMD: Location-based
Alert Message Dissemination scheme for emerging infrastructure-based
vehicular networks, ” Internet of Things , Vol. 19, Article 100510, 2022.


