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Robust data-driven control design for linear systems
subject to 1nput saturation

A. Seuret, S. Tarbouriech

Abstract—This paper deals with the problem of providing a
data-driven solution to the local stabilization of linear systems
subject to input saturation. After presenting a model-based
solution to this well-studied problem, a systematic method to
transform model-driven into data-driven LMI conditions is pre-
sented. This technical solution is demonstrated to be equivalent
to the recent advanced results on LMI formulations based on
S-procedure or Peterson Lemmas. However, the advantage of
the proposed method relies on its simplicity and its potential
to be applicable to a wide class of problems of stabilization of
(non)linear discrete-time systems. The method is then illustrated
on both an academic example and the spacecraft Rendezvous
problem.

Index Terms—Linear systems, Saturation, LMI, Data-driven
control design

I. INTRODUCTION

The robustness properties for dynamical control systems
have been studied in several works from an analysis or design
context [11], [17], [18]. Then, robustness conditions to face
uncertainty or presence of additive disturbances have been
proposed allowing to ensure the stability and a certain level
of performance for the systems under consideration. Most
of these conditions are formulated in the form of linear
matrix inequalities (LMlIs), due to the powerful numerical and
optimization procedures, as semi-definite programming, which
can be handled. The general common feature of this kind of
methods is that they are model-based, possibly modeling also
the presence of uncertainties as norm-bounded or polytopic
uncertainties. In front of complex systems to model, we need
to consider very imprecise or even unknown mathematical
models of the dynamic evolution, including for examples
non-linearities. The consequence is then that the model-based
methods for analysis and controller design may reveal to be
difficult or even impossible to apply. Adapting the tools issued
from the control theory, some works have emerged based on
some data information: see, for example, [1], [2], [14], [24]
and the references therein.

Hence, some studies addressing the stability or stabilization
criteria from a data-driven point of view, have been pub-
lished. In particular several problems related to the design of
state/output feedback controllers for linear systems have been
revisited [5], [8]-[10], [23], [24]. In these works considering
the case of exact data experiments for linear time-invariant
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systems, i.e. without noise or uncertainties, equivalent formu-
lations between model-based and data-based criteria both in
stability analysis and control design have been exhibited.

Another important feature when dealing with dynamical
control systems pertains the control input saturation due to
limitations on the actuators [21]. At our knowledge, few
works in the literature addressed the problem to deal with
constrained control (see, for example, [6], [16] and the ref-
erences therein) and more especially with saturating control
input. The objective of the current paper is to bring some
preliminary bricks in considering this aspect. To this end, we
consider the design of a state-feedback saturated control law
allowing to ensure the regional (local) asymptotic stability of
the origin when the system is noisy-free and to ensure the
convergence to an attractor when the system is affected by
noise, which has not been fully considered in the literature,
to the best of our knowledge. Indeed, the characterization
of an inner-approximation of the basin of attraction of the
origin together with an outer-approximation of the attractor
are proposed first by model-based techniques and then by
data-driven techniques. Taking inspiration from the model-
based conditions (see Theorem 1 in Section III), which are
written in a friendly-data form, the data-driven local stabi-
lization is formulated through matrix inequalities conditions
(see Theorem 2 in Section IV-C). The technique allowing
to exhibit the sufficient conditions is based on the use of
Lyapunov arguments, generalized sector-bounded conditions
to deal with the saturation and S-procedure to handle the
presence of noise. The implicit objectives are to maximize the
inner-approximation of the basin of attraction of the origin and
to minimize the outer-approximation of the attractor. The main
rational behind the matrix inequalities formulation is due to
the friendly form of the model-based conditions which allows
to directly derive the data-driven conditions thanks to a matrix-
constrained relaxation (see Lemma 3 in Section IV-B). Note
that the matrix inequalities conditions are quasi-LMIs in the
sense that there is the product between matrices and scalars.

The paper is organized as follows. Section II presents the
system under consideration and formally states the problem. In
Section III, sufficient conditions to solve the control problem
are formulated as quasi-LMIs, in the sense that there is a
product between a matrix and a scalar. Section IV deals with
the local stabilization from a data-driven point of view. Section
V illustrates the theoretical results and proposes some insights
regarding the influence of the tuning parameters. Comparison
between model-based and data-driven approaches is proposed
for different collections of data to depict the trade-off between
the approximation of the basin of attraction and that one of
the attractor. Section VI draws some concluding remarks.



Notation. Throughout the paper, N denotes the set of natural
numbers, R the real numbers, R" the n-dimensional Euclidean
space, R"*™ the set of all real n x m matrices, S™ (S7}) the
set of symmetric (positive definite) matrices in R"*" and D"}
the set of diagonal positive definite matrices in R™*". For
any n and m in N, matrices I,, and 0,, ,,, (0, = 0,, ,) denote
the identity matrix of R™*™ and the null matrix of R"”*™,
respectively. When no confusion is possible, the subscripts of
these matrices that precise the dimension, will be omitted. For
any matrices A = A", B,C = CT of appropriate dimensions,
matrix [/ 2] denotes the symmetric matrix [ 2+ 2. For any
matrix N € R™™, notation N;, for any i = 1,...,n,
stands for the i*" row of N and notation || N||?> to denote
the symmetric matrix NN . If N is a square matrix, Tr(N)
denote the trace of V. For any matrix M of R™*", the notation
M > 0 means that M is in S’. For a matrix M € S%
and any positive scalar @ € R, we denote the ellipsoid
EM,a)={z eR", 2" Mz <a™'}.

II. PROBLEM FORMULATION
A. System data

Consider the discrete-time linear system subject to an input
saturation and affected by an external perturbation. Such a
system is described by the following equations

{ v = Az + Bsat(u) + w, 0
rg € R"=,
where, for any given positive integers n, and n,, z € R"*
is the state vector, for which adopts the following notation
2t = a1 and & = xp, u = u € R™ is the control input.
The initial condition is ¢ € R™=. The dynamics of the system
is defined by matrices A € R™"»*"» and B € R"=*"+_ In the
sequel, notation G stands for the matrices of the system as
G:=[A B]. The system is perturbed by the unknown noise
signal w = wy, € R™, assumed to be bounded leading to the
following assumption.

Assumption 1: There exists A > 0 such that the norm of the
disturbance verifies wlwk < A, for all k > 0. In other words,
the disturbance belongs to the following set 2

Oy :={veR™, vv<A} (2)
The saturation function sat(u) is the classical decentralized
vector-valued saturation map from R™“ to R™-, whose the

components are defined by:

Vi=1,... 3)

where u; refers to the ' control input and ; is the i*" entry
of the vector u € R™« that is the level vector of the saturation.

In this paper, we focus on the design of a static state-
feedback control law of the form

sat(u;) = sign(u;) min(|u;], @;), s Moy

uw= Kz, “4)

with K € R™*"=_ that regionally (locally) stabilizes the
trajectories of the closed-loop system (1) with (4) in the
absence of perturbation.

B. Preliminaries on generalized sector conditions

Due to the presence of the saturation map in system (1),
stability of the closed-loop system (1)-(4) should be addressed
with attention [21]. To this hand, we follow the approach
proposed in [12] and [21], which consists in rewriting (1) as

rt = (A+ BK)x + Bé(u) +w, 3)
where ¢(u) is the dead-zone function defined by
o(u) = sat(u) — u. (6)

Following Remark 7.3 in [21], we use the following General-
ized sector condition lemma to handle the dead-zone (6).

Lemma 1: ( [21]) Consider a matrix G € R™*"=, The
following relation holds

o(u)" T[sat(u) + Gz] <0, (7)

with any diagonal positive definite matrix 7' € R"=*"«
provided that z € S(G) where the polyhedral set S(G) is
defined as follows

My e

C. Control objectives

It is well-known (see [15], [21] and the references therein)
that ensuring global asymptotic stability of the origin for
saturated systems (1) (without perturbation) is in general
impossible, unless the open-loop dynamics is not exponentially
unstable. That means that the basin of attraction of the origin
is not the whole state space and needs to be determined, that
turns out to be a complex task. In this case, the objective is to
characterize an inner approximation of the basin of attraction
of the origin by considering level sets built from a Lyapunov
function. Furthermore, in presence of perturbation satisfying
Assumption 1 (bounded but not vanishing), the closed-loop
trajectories cannot converge to the origin but only to a neigh-
borhood of it. Therefore, it is of interest to characterize the
attractor toward which the closed-loop trajectories converge
to, by using again level sets of the same Lyapunov function.
Hence, this paper deals with the following problems:

(P1) In the case w = 0, characterize an approximation of the
basin of attraction, expressed as a level of the Lyapunov
function given by &(P,1), where P is a symmetric
positive definite matrix to be designed. Thus, for any
initial condition belonging to £(P,1), the closed-loop
trajectories will asymptotically converge to the origin.
In the case w # 0, characterize an approximation of the
attractor capturing the closed-loop trajectories expressed
as a level set of of the same Lyapunov function given by
E(P,e), where P is a symmetric positive definite matrix
and € > 0 are to be designed.

In addition to the previous problems, maximize the ap-
proximation of the basin of attraction £(P, 1), as well as
minimize the approximation of the attractor £(P, ¢).

(P2)

(P3)

Moreover, as we consider that the model is not assumed to
be perfectly known but only approached via finite set of data
experiments, the final objective is to solve Problems (P1), (P2)
and (P3) but from a data-driven point of view. Hence, we want



to revisit the solutions obtained from a model-based approach
to provide a new data-driven practical stabilization criterion,
which arises from matrix manipulations of a suitable model-
based preliminary result. This transformation is made possible
thanks to a lemma, which can be seen as a particular case of
those from the literature, but which is particularly well-suited
for data-driven design for saturated systems.

III. MODEL-BASED LOCAL PRACTICAL STABILIZATION

The following theorem follows the methods presented in
Chapter 3 in [21] and deals with the model-based design of
stabilizing controllers (4) for system (1) under Assumption
1. Therefore, the following theorem states a solution to solve
Problems (P1), (P2) and (P3) through a model-based approach.

Theorem 1: Under Assumption 1, and for a given p € (0, 1),
a1 > 0 and ao > 0, assume that there exists

D\lj = {e,u,W,S,Y, 7}
€ RyoxR5 xS xDY» xR x RMeXmu

solution to the following optimization problem

maxp) are + axTr(W)
W Z.

s.t. e>1, ®(G) =0, [ _(4 =0, ©)
x U

forallz=1,...,n,, where
A—pwW Y'+2" WA'™+Y'B"
d(G) = * 25 SBT
* * W — %Inz

Then, the control law (4) with K = YW ! ensures that
Problems (P1), (P2) and (P3) are solved, i.e.

e When w = 0, the ellipsoid £(W =1 1) is an approxi-
mation of the basin of attraction of the origin for the
closed-loop system (1)-(4).

e When w € Q) and w # 0, the solutions to the closed-
loop system (1)-(4) initialized in E(W =1, 1)\ E(W ~1,¢)
converge to the attractor £(W 1, ¢).

o Sets E(WL1) and E(W ™1 ¢) are optimal with respect
to the cost function aye + aTr(W), which aims de-
riving a compromise between enlarging £(W =1 1) and
minimizing £(W 1, ¢).

Proof. Consider the Lyapunov function given by V(z) =
x" Pz, for a given P € S%=. In order to address Problems (P1)
and (P2), the objective is to ensure that the forward increment
of V,ie. AV(z) = o+ Pat — 2 Px verifies:

re&(P1), (ie z'Pr<1)
r¢E(Pe), (e z'Pr>e 1)
weNy, (ie. whw < N)

(10)
which is implied, thanks to the use of S-procedure [4], by the
following condition

Lz, w)= AV (x)+j1(x" Pr—e™ ) +jis(A—w' w)
+i3(1 — 2" Px) <0
with ; > 0, ¢« = 1,2,3. Let us introduce the following
augmented vector £ = (x, (K x),w), then AV (z) reads:

T T
AV(z) = € ({(AJF;;K) }P[(A-&-BBTK) ] B [183%})5'

AV (2) =0, V(z,w) s.t.

(1)

I I

ng ng

The last inequalities in (9) ensure that the ellipsoid
E(W=1,1) is included in the set S(G). From Lemma 1, for
x € &MWL 1) inequality (7) holds and reads using & as
follows:

0 (K4+G)'T 0
'3 |:T(K+G) 2T o]f <0. (12)
0 0 0

Then, merging (12) and (11) yields

0 (K+G)'T 0
Ly(z,w) := L(z,w) — er [T(K+G) 2T 0]5 > Lz, w).
0 0o 0
Therefore, having £ (z, w) negative implies that £(z, w) is
also negative for all (z,w). Let us rewrite the expression of
L1(z,w) in a more compact form.

Ly(z,w) = =€ 1(G)€ — Oy,

where
(1—arHaz) P (KHG)'T 0 A+BK)" A+BE)"
®4(G) = T#<1K+é) 2T 0 }—{( BT )]P{( BT )},
0 0 fizln, Ing In,

O = e~ ! — fio X — fis.

In the next developments, we will show that the existence
of a solution to condition ®(G) > 0 ensures the existence of
fi1 >0, fig > 0 and fi3 > 0 such that £;(z,w) <O0.

Applying the Schur complement to ®1(G), pre- and post-
multiplying it by diag(W, S, I5,,_ ), with W = P! and S =
T—1, and selecting Y = KW and Z = GW yield

(1—pgy+as)W Y'+zZT 0 WA +Y'BT
* 25 0 SBT .0
* * /_L2Inm Inm ’
* * * W
which is equivalent to
(1—p+ias)W Y+ZT WAT+Y'BT
Dy(G) := * 25 SBT > 0.
* * W — ﬂ;llnw
(13)

We have shown so far that having £, < 0 is equivalent to
®5(G) = 0 and O, > 0. Enforcing the introduction of ®(G),
we get the following expression

(1= +pas)W 0 0
D2(G)=P(G)+ * 0 0 . (14)
* * e _ 1)1
(32 5.

Then, consider the following selection

ﬂ1::N€(0u1)> ﬂZZ%(l_%)u ﬂ3<’77

for sufficiently small v > 0 such that zi5 > 0. This selection
ensures that © = v — i3 > 0, which is required. Using this
selection for fio, we note that

Ae 1 e ( 1 >_ —yAe? —izAe?
po fiz p l—ye/p) p2—ryep = p?—vyep’
so that the following inequality holds
w0 0
©3(G) = @(G) +ps | ¥ O 0 (15)
" % — 2)\52 n
pP—yep Ne



Hence, if condition ®(G) > 0 holds, then there exists a
sufficiently small i such that ®2(G) > 0, which ensures that
there exist i3 > 0,712 > 0,713 > 0 such that £q(x,w) is
negative, which ensures (10).

Therefore, the satisfaction of relation ®(G) > 0 ensures the
local stability of the closed-loop system with the control gain
K =YW~ for any initial condition inz e 5( w-i).

Since € > 1, one gets E(W~1,e) C EW1,1). In order
to prove that E(W™1,¢) is an attractor for the closed-loop
system, it remains to demonstrate that £(W 1, ¢) is invariant,
ie.

reEW e = ate&W ).
To do so, the satisfaction of ®(G) = 0 ensures that
0 (K+G
Vi) = Vi) + falew) +€ [0 T e
N—— * * 0
<0
<0
—m(V(z)—e ) —z(A—w"w)~fi3(1-V (z))
N———
<0
< (U= fin + [13)V (@) +fne™" —fis

Since ji; = p is in (0, 1), there exists a sufficiently small fig
such that 1 — ji; + jiz > 0 and, consequently, as V (x) < e~ 1,

we have
V(@) <= +fs)e™ e

which implies that V (z7) <e™?, since ¢ > 1.

The last step of the proof addresses the particular case
when w = 0 (or A = 0). In this situation, ¢ disappears from
the condition and can be selected as large as possible, so
that £(W ™1, ¢) shrinks to {0}. Therefore, the solution to the
system, initialized in £(W~!,1) converges to the origin. [J

"—pg=e'—pz(1—e71),

Remark 1: Note that ®(G) > 0 is not an LMI due to the
terms pW and Aep~'. Nevertheless, once  is fixed a priori,
the resulting LMI can easily be solved. A gridding on the
parameter p should be included to the LMI solver.

IV. LOCAL DATA-DRIVEN CONTROL DESIGN

In the previous section, the model G was assumed to
be constant and known. However, as ¥(G) is convex with
respect to G, i.e. the system’s matrices A and B, Theorem 1
enables the extension of the condition to the case of uncertain
(polytopic or norm-bounded) systems, following the classical
manipulations. In this section, we will now assume that G is
unknown and possibly time-varying. Therefore, the objective
aims to find a method to guarantee that the conditions of
Theorem 1 holds for all G that belongs to an unknown
and bounded set Z2 C R7e*(atnu) Unfortunately, such
an extension requires additional information on as Z, to be
stated and solved properly. The motivation of this section is
first to use several data experiments to estimate the set of
uncertainties. In a second step, the objective is to use a generic
transformation to adapt the previous model-based theorem
to a data-based one. After presenting the main features and
assumptions on the data experiments, we introduce a lemma
to achieve this transformation in a systematic manner and to
exhibit the main result of this paper.

A. Data collections and assumption

Unlike the usual situation where the system model is avail-
able, our objective is here to formulate a data-driven design
result. To do this, let us first specify the notion of data, we are
considering here. We define the data collection D as follows

D= (X1, X,U) € R™*P x R"™*P x R™*P_ (16)

where the matrices that collect the available measurements for
the control design are given by

Xt = [ af ry x; I,
X = 1 T . zp ], a7
U = | sat(u1) sat(uz) sat(up) 1,

Let us formulate the first assumption on the data, which refers
to the persistence of excitation or the informativity of the data
Assumption 2 (Data Informatlw%‘y) The data collection D
in (17) is such that matrix [fj][u] is non singular.
This assumption is weak since, if it is not satisfied, it suffices
to consider additional data to complete it. For any pair of

matrices A and B, let us define the matrix W, given by

W:=X" - AX - BU

€ R"=*P, (18)

Matrix W collects the error between the measurements X'+
and the expected values of the data, i.e. AX + BU, built with
some matrices A and B. Of course, the matrix depends on the
available data and on the selection of A and B.

Following the principles of the least squares approximation
and if Assumption 2 is verified, the optimal pair of matrices A
and B that minimizes the norm of W is the solution of the least

squares optimization given by G := Xt [ 1" ([ b 1"

Then, the computation of the optimal value of ||[WW*||? obtained
by selecting [A B] = G, we get
W2 = [|XF = G = | X P||* = X FPY+T.

where P is the symmetric projection matrix given by

T T\~
P=1,—F" (511F)7) (3,
which verifies P> = PP = IP. The following lemma holds
Lemma 2: For any o > 1, the set C,, given by

Co:={[AB], |X"—[A B][¥]|? Lox TPATT} C R (et

(19)

with P given in (19), is nonempty.
Proof. Following the previous calculations related to the
least squares optimization, it holds

XPATT=|| X -G X ||t [A B[] <oxtPAtT

Therefore, set C, is nonempty since o > 1 and contains, at
least, the least squares estimate G. (]

Remark 2: Note that in the case of a perfect LTI system,
the data experiments are such that X*PAX+T = 0. This
means that C, captures inherently the uncertainties in the data,
independently of the values of o.

Recall that matrix G corresponds to the best values of [A B]
that minimizes ||[W*||?. It does not mean that the dynamics
of the system follows the linear dynamics (5) with [A B] =



G. To include robustness to the analysis, we will introduce
the following assumption, which allows considering pairs of
matrices [A B] that are close to G in the sense of the norm
of the approximation errors. This assumption is stated below.

Assumption 3: Assume that the data verifies Assumption 2
and that there exists a known scalar o > 1 such that Z C C,.

B. Matrix-constrained Relaxation

The following lemma, which is the main brick of the
paper, presents a generic method to transform a problem of
a particular matrix inequality which depends on parameters
verifying a quadratic constraint into a formulation that is
independent of these parameters. It is stated below.

Lemma 3: For given positive integers ni,ne,ns, and
given matrices (M1, Mz, M3) in S}' x R™*"2 x §'% and
(N1, N2, N3) in §"3 x R™ %72 % §"% | the following statements
are equivalent

(i) Inequality

M1 Mo AT

M(A) = [ M

} =0, VAeXy, (20

holds true, where ¥ C R™3*"2 represents the set of
allowable uncertain matrices A characterized by

T
e n3Xnz Ing Nl NQ In3
seimfacwen, (] [ ][] o]

(2D
(ii) There exists n > 0 such that
Ml Onl,n3 M2
* M3z + 7]N1 nNa| = 0. 22)
* * nN3

The proof can be found in [19, Lemma 1] and is therefore
omitted. Lemma 3 provides an alternative formulation in
robust analysis for uncertain matrices subject to quadratic
constraints of the form (21) compared to the one presented in
[23], [24]. For the sake of consistency, the S-Lemma provided
in [23] is recalled in the following lemma.

Lemma 4: [23, Th.9] Let M, N, € R(stms)x(nstms)
be s¥mmetric matrices and assume that inequality
[1}5} N, {Z‘Tﬂ >= 0 for at least one matrix A, € R™sX™Ms,
Then' the next statements are equivalent:

L, (I

o) [Xﬂ Mg {;@J =0, VA; € Xp.,

where set X5, has the same definition as in (21) but
replacing A and N by As and N, respectively.

(i) There exists > 0 such that M, — nN; = 0.

Note that both lemmas address the problem of the satis-
faction of an inequality subject to uncertain matrices char-
acterized by a quadratic constraint. The main interest of both
lemmas is to derive equivalent inequalities that are independent
of the uncertain matrix A (or Ay), resulting from the appli-
cations of the Schur Complement, the Finsler’s lemma and
the S-procedure. Despite their similarities, both lemmas have
substantial differences. First, Lemma 4 requires that matrix
M, has the same size as N, the matrix that characterizes

the quadratic constraint on 4. Lemma 3 is more flexible in
this sense, as there is no relationship between matrices My
and N, which are independent. This flexibility has the benefit
of reducing the initial manipulations to derive, from usual
stability or control problems, the appropriate expressions of
M, and N, for i = 1,2, 3, to fit the framework of Lemma 4.
In fact, the relationship between both lemmas can be seen by
selecting ng = ny1 + n3, ms = ng, AL = [Onyxn, A'] and

M 0o M 0 0 0
M= [ 0t M= =] M.
* * 0 * % N3

From this selection, it is clear that item (ii) of Lemma 4 is
equivalent to item (ii) of Lemma 3, showing that Lemma 3
is a particular case of Lemma 4. That being said, the main
advantage of Lemma 3 is that the structure of M(.A) arises in
many LMI problems in control as it will be shown hereafter.
It avoids enforcing an initial LMI problem to fit with the
structure of Lemma 4, which is not an easy task in general.
Remark 3: A similar lemma was already presented in [19],
where block Mo AT is extended to My + Mo AT, where
Mo is a term that is independent of the uncertain matrix.
In addition, a deeper discussion on the similarities with the
existing lemmas from the literature has been proposed therein.

C. Data-driven local stabilization of saturated systems

This section provides a new contribution on the data-based
design of stabilizing control law for linear systems subject
to input saturation. The method is highly inspired from [23]
but has been reformulated to get a simpler and user-friendly
formulation. In this section, we will demonstrate how Lemma
3 can be easily applied to the stabilization problem of saturated
systems.

Theorem 2: Under Assumptions 1 and 3, i.e. for a given
matrix A,, > 0, and for given p € (0,1), a3 > 0 and as > 0,
assume that there exist

’D% = {e,n,W,S8,Y,Z}
€ RyoxR5ox S xDMe x R x RMeXu

that are solution to the following optimization problem

maxpz o€ + axTr(W)
Wz
s.t. e>1,1n1>0, ¥Y(D) >0, [ X u@] =0,
@
forallz=1,...,n,, where
(1—p)W YT+ZT 0 W YT
* 25 0 0 S
U(D) = * U3 —pXtXT —pxtu’
* * * red nXU"
* * * * nUuU"
Ug= W =220, +nXt (I —oP)XtT.
(24

The control law (4) with K = YW ! ensures that Problems
(P1) and (P2) are solved, i.e. the following statements hold:
e When w = 0, the ellipsoid £(W =1 1) is an approxi-
mation of the basin of attraction of the origin for the
closed-loop system (1)-(4);



e When w € Q) and w # 0, the solutions to the closed-
loop system (1)-(4) initialized in E(W 1, 1)\ E(W1L,¢)
converge to the attractor £(W 1, ¢).

o The estimations of the basin of attraction and of the
attractor are optimal with respect to the cost function
aq€ + aoTr(W), leading to a compromise between en-
larging £(W~1,1) and minimizing £(W 1, ¢).

Proof. Let us first note that, in Theorem 1, conditions ¢ > 1
and {V: ZE(T> > 0 do not involve the matrices of the system
and thus remains unchanged. On the other side, condition

®(G) > 0 has to be adapted to remove the system’s matrices.
To do so, let us note that ®(G) is rewritten as follows

I S]]

®(G) = * 28 0 S| |B"

which has the same structure as M(.A) in Lemma 3. Indeed,
selecting ny =ns=mn,+n,, ng=n, and

(a—pw YT + 27 _[wyT
M= 25 | M2 0 5|
My=W—2¢1, , N1 = X" (I, - oP)XTT,

T T
X Xl [x

—_y+ —

o ] = [a]

and with the uncertain matrix A = § = [A B] € C, C
R % (netnu) - Altogether, the problem can be expressed as
in (20) with this set of matrices. Then, the problem resumes
to the satisfaction of condition ®(G) > 0 for all matrices
G € Z C C,. Note that N3 = 0 is required in Lemma 3, which
refers to the informativity of the data and is also required for
the satisfaction of condition ¥ (D) > 0. We are thus in position
to apply Lemma 3, ensuring that ®(G) > 0 for all G € C, is
equivalent to the existence of 7 > 0 such that ¥(D) > 0. O

Remark 4: The informativity of the data, which refers to the
persistence of excitation [26] is a necessary condition for the
solvability of the LMI optimization problem. In other words,
if matrix [79][Y " is singular, then the LMI cannot be solved.

Remark 5: Note that, contrary to [1] or [23], our method
does not require to study the dual system involving (A +
BK)'. First, this trick is not possible for nonlinear systems.
Second, our method directly treats the initial problem without
using this artifice of calculus to avoid a technical problem.

Remark 6: Differently from [3], the additional variable 7
cannot be “absorbed” by the other decision variables. This is
due to the nature of the local stabilization problem.

Remark 7: It is worth noting that the resulting LMI con-
dition is very similar to the ones presented in [3] based on
the application of the Petersen’s lemma for the case of linear
systems. Indeed, selecting any S > 0, and Z = 0 and
p =€ =0, the same LMI condition as the one of Th.2 in [3]
is retrieved. The advantage of Lemma 3 is that the structure
of many LMI problems in control fits with the structure in
Lemma 3, so that no additional manipulation is required.
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Fig. 1: Estimations of the basin of attraction and of the
attractor obtained by solving the model-based optimization
problem (9) for various A and p.

V. NUMERICAL APPLICATIONS
A. Example 1

Consider the discrete-time systems (5) borrowed from [22],
[25], with the following matrices

0.8 0.5 o
A= [—0.4 1.2} » B= M , W =5

1) Model-based solution of Theorem 1: Solving the op-
timization problem (9) with oy = 1 and ay = 1073 for
A = 0.01,0.1 and 0.5 and ¢ = 0.08,0.3 and 0.6. Figure 1
shows the estimations of the basin of attraction (dashed blue
line) and of the attractor (black line) for all combinations of
(A, i). In addition, each sub-figure also depicts 40 simulations
that are initiated at the boundary of £(W~1 1), which all
converge the attractor £(W =1 ¢). For the particular case
(X, ) = (0.5,0.6), we have obtained W = [ 25905 15:35%]
and € = 5.389.

One can observe on Figure 1 that increasing the magnitude
of the noise (i.e., \), increases the size of the attractor, while
the size of approximation of the basin of attraction remains
almost the same. Interestingly, Figure 1 shows that the tuning
parameter p has an important effect on the solution. Indeed, for
small values of p, the approximation of the basin of attraction
is larger, but the approximation of the attractor is rather poor,
since the black ellipsoids are very large compared to the
chattering around the origin. Reversely, when p is large, the
optimization process provides a more accurate approximation
of the attractor but at the price of drastically reducing the size
of the approximation of the basin of attraction. This shows that
the tuning parameter . plays the role of the balance between
the optimization of estimations of the basin of attraction and
of the attractor, which cannot be performed simultaneously.
This compromise can be expected from the LMI condition,
since having (1 — p) small, implies that W has to be large
(block (1,1) of ®(G)) and having ;1 small implies that We~!
has to be large (block (3,3) of ®(G)).

(25)
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(b) Simulations obtained with a collection of p = 20 data.

Fig. 2: Estimations of the basin of attraction and of the attractor obtained by solving the data-based optimization problem (9)

for various A and p.

2) Data-driven local stabilization: This section illustrates
the impact of the data-driven approach compared to the model-
driven one. Let us first present the construction of the data.
Following the dynamics of the system, we have selected
p = 10 and p = 20 random values of z; and wu; in (17)
where each component of x; and u; lies in [—10, 10]. Then, we
have created the random noise signal w;, each vector satisfying
Assumption 1, and we have built matrix X" using equation
(1) with matrices A and B given in (25). The resulting values
of X*TPX*T obtained for the particular case A\ = 0.5 are

+my+T _ [ 0.9051 —0.3857 2.9838 —0.8361
XTPAT = [—0.3857 1.9002 ] and [—0.8361 2.1481 ]

for p = 10 and 20, respectively.

More precisely, Figures 2a and 2b illustrate the results
obtained by solving the data-driven stabilization conditions of
Theorem 2 with p = 10 and p = 20 experiments, respectively
with o = 1.1. As for the model-based condition of Theorem 1,
increasing the magnitude of the noise leads to a reduction
of the size of the estimated basin of attraction (dashed blue
ellipsoids), and also an increase of the size of the estimated
attractor (black ellipsoids).

Compared to the model-driven results in Figure 1, it occurs
a notable reduction of both ellipsoids for each case. This is due
to the fact that the model-based solution has no uncertainties in
the matrices A and B, while the data-driven condition includes
the inherent uncertainties due to the noise affecting the data.

Comparing now both data-driven result, one can see that
each estimation of the basin of attraction obtained for p = 10
are smaller than the one derived with p = 20. This can be
interpreted by the fact that increasing the number of data
experiments give more information on the system so that the
uncertainties due to the noise are reduced. In other words
the set of allowable matrices in C, becomes “smaller” as the
number of data increases.

B. Example 2: Spacecraft Rendezvous problem

To illustrate our theoretical contributions to a more complex
and more practical example, consider the problem of space-
crafts rendezvous and more particularly the case of a target
evolving in a circular Keplerian orbit and the approaching
vehicle (chaser) is close to the target. This problem can be effi-
ciently modelled by the linear Hill-Clohessy-Wiltshire (HCW)
equations, introduced in [13] and [7], which describes the
relative position of the spacecraft. Following [20], the planar
dynamics in the relative plan (z,y) is driven by the discrete-
time system (1), where « = [r, v, Ty Uy]T is the state vector,
which gathers the relative positions (rs,7,) and velocities
(vz,vy), and the impulsive control inputs u = [u, u,] and
with matrices A = e40T0 and B = e4070 By, where T = 1s
represents the period of the impulses. The matrices defining
the impulsive motion are given by

0 1 00 00

Ap = |30 0 02n By= |10
0=10 o0 o01]>*P0=]oo0]"

0 —2n0 0 01

The HCW model assumes that the target vehicle is passive and
moving along a circular orbit of radius R. For a typical orbit at
an altitude of R = 500km, we would get n = 0.0011. In this
context, reducing the consumption of the control action is a
crucial issue for safety mission. In addition, the impulses are of
limited amplitude. Moreover, due to the possible impression
on the sampling period, or assuming that the target is not
following a perfect circular orbit at 500km, the model may
suffer from disturbance and uncertainties. Altogether, this
motivates the application of a data-driven control design. To
compensate for these uncertainties, we collect N = 50 data
presented as in (17) with random matrices of X and U/ such
that some columns of ¢ includes saturated values and arbitrary
values of w verifying Assumption 1 for A = 0.005, which is
of the same range as n. Here, we consider that Assumption 3
is fulfilled with 0 = 1.1. The optimization problem (23) with
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control inputs u,, u,, and the Lyapunov function.

a1 =10 and as =1, A = 0.005 and g = 0.1 yields
K — [—0.0771 —1.4047 0.0012 70.00186]

b

—0.0007 0.0028 —0.0779 —1.4057

250.8938 —13.7299 9.2323 —0.6880

W = —13.7299 1.8397 —0.2889 0.0254
- 9.2323  —0.2889 239.4707 —13.2245 |

—0.6880 0.0254 —13.2245 1.8176

The simulation results are depicted in Figure 3, which
shows the trajectories of the system with disturbances w
verifying Assumption 1, and with the initial condition zg =
[5.2813 —0.1126 —9.4150 1.2316]T, at the boundary of the ellip-
soid £(W =1 1). Figure 3 shows that the resulting trajectory
converges asymptotically to £(W 1, 3.051), despite the sat-
uration of both control inputs, demonstrating the efficiency of
our method even for systems with multiple input.

VI. CONCLUSION

This paper addressed the problem of providing a data-driven
solution to the local stabilization of linear systems subject
to input saturation. Using model-based solution to this well-
studied problem, a systematic method to transform model-
driven into data-driven LMI conditions is presented thanks
to some adequate rewriting of the conditions. Although this
technical solution is shown to be equivalent to some recent
advanced results, its main advantage relies on its simplicity
and its potential to be applicable to a broad class of problems
of stabilization of (non)linear discrete-time systems.

The proposed results pave the way for future work, as in
particular the possibility to consider more complex dynamics
or isolated non-linearities.
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