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Towards a system that allows robots to use commitments in joint action
with humans

Ely Repiso1 Guillaume Sarthou1 Aurélie Clodic1

Abstract— In collaborative tasks, expectations for achieving
shared goals arise at all hierarchical plan levels, including
plans, tasks, subtasks, and actions. However, these expecta-
tions also generate uncertainties for individuals executing the
joint plan. If left unresolved, these uncertainties can impede
successful task completion. Uncertainties may relate to the
agents’ motivation to initiate, continue, or complete their plan
(motivational uncertainty), the best way to execute their shared
plan (instrumental uncertainty), and their knowledge of other
agents and the environment (common ground uncertainty).
These expectations can be either normative or descriptive, but
only normative expectations trigger reactions from agents to
resolve the aforementioned types of uncertainties. Thus, this
paper introduces a theoretical model that enables a robot to
consider all agents’ expectations and take actions that reduce
the uncertainties associated with their shared plan. By doing
so, we aim to enhance the likelihood of success in joint plans
between robots and humans. To demonstrate the effectiveness
of our theoretical commitment model, we have implemented a
proof of concept for a client service use case in a food shop.

I. INTRODUCTION

To enable the effective use of robots by the general public,
incorporating philosophical and psychological insights from
human-human joint actions into the robot’s behavior is cru-
cial. As human actions are influenced by experience, human
interactions serve as the closest model for humanoid-social
robots. Consequently, social behaviors, such as those related
to commitment theories in shared plans, must be developed
by robots. Commitments play a vital role in establishing
and reinforcing expectations regarding beliefs, intentions, or
behaviors among agents, thereby reducing various sources
of uncertainty in joint action (Michael et al., 2015; Castro et
al., 2019). By addressing the uncertainties underlying agents’
expectations, smoother and more efficient collaboration can
be fostered, enhancing agents’ predictability and increasing
the likelihood of achieving their shared goal.

To address these concerns, we propose the integration
of a Commitment Manager into the robot’s behavior. By
applying the commitment theory, we can directly influence
human behavior towards achieving shared goals. This ap-
proach has several advantages, including maintaining hu-
man motivation, reducing instrumental uncertainties related
to task performance, and enhancing understanding of the
robot’s behavior. These benefits are particularly important
for the general population, as interacting with robots can be
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challenging due to unfamiliarity with their behaviors. Also,
incorporating commitments into the robot’s behavior serves a
dual purpose. Firstly, it helps bridge the gap between people’s
expectations and the robot’s perceived capabilities by reduc-
ing uncertainties regarding the robot’s abilities. Secondly, it
reduces uncertainties for the robot concerning unexpected
human behaviors or knowledge about the human’s abilities
to accomplish the shared plan.

Incorporating psychological and philosophical insights
from human behavior into robotic behaviors is challenging,
as these tasks must be adapted to the robot’s capabilities. For
instance, the robot needs to determine the responsible agent
for each part of the plan, identifying the task performer,
and anticipating potential uncertainties for the other agent
during task execution. Furthermore, the robot must take
actions that are understandable to humans and capable of
resolving uncertainties for all agents involved, whether they
are humans or robots.

This paper presents a robot behavior framework incorpo-
rating commitments to address uncertainties that arise among
agents during collaborative tasks due to their expectations.
Firstly, we define the expectations that can emerge for any
shared plan involving both agents. Secondly, we outline how
the robot can detect each type of expectation related to
the plan, task, or actions to be performed jointly. Thirdly,
we propose the robot’s actions to resolve uncertainties for
both agents. Lastly, we provide a proof of concept imple-
mentation within the context of a client service in a food
shop. This implementation serves as a demonstration of how
our theoretical commitment manager can effectively mitigate
uncertainties for agents during the execution of a shared plan.

In the remainder of the paper, Sec. II presents the related
work. In Sec. III, we introduce our theoretical commitment
manager, which connects commitment theories with their
implementation in a robotic agent. Next, in Sec. IV, we
showcase a proof of concept to demonstrate that this theoret-
ical model can be implemented in a robot. It illustrates how
a robot can take actions to address both agents’ uncertainties
in a collaborative plan. Finally, we include a discussion of
the method’s limitation and generalization in Sec. V, as well
as discussed conclusions and future work in Sec. VI.

II. STATE OF THE ART

A. Related works

In early works of HRI, we can found researchers that focus
on the engagement as Sidner et al. [1] that found that people’s
engagement was higher when the robot used social gestures
during their interaction compared with the case without. In



addition, Huang and Mutlu [2] presented an approach to
enable robots to incorporate social behaviors that humans
use in joint action tasks. They evaluate that the robot social
behaviors increase their participants’ engagement, and this
engagement was highly dependent on gender. Furthermore,
Garrell et al. [3] used the robot’s social behaviors to engage
people in a collaborative task that allows the robot to
recognize human faces for future interactions.

Some works took inspiration from the joint intention
theory of Bratman [4] and Cohen [5] to allow a robot to learn
and perform a task collaboratively with a human partner.
For example, Breazeal et al. [6], [7] include mechanisms
to ensure both partners’ commitment to fulfill the goals of
their collaborative task. Strabala et al. [8] used the theories
of Clark [9] to include social cues during handovers to
maintain both partners committed to their joint task. Mioch et
al. [10] is based on Singh’s commitment model [11] to allow
their participants to agree on which agent is committed to
do a task for their joint plan. Vignolo et al. [12] explored
the commitment of the agents to achieve a task related to
high or low space-temporal coordination, where they found
that high coordination was related to a higher degree of
commitment. Finally, Chang et al. [13] presented an algo-
rithm for Shared Cooperation that facilitates collaboration by
promoting mutual responsiveness through three mechanisms:
understanding the agents’ intent, aligning their sub-plans, and
providing assistants to the partner as needed.

B. Theoretical Foundation

The almost exclusive emphasis on agents’ motivation in
Human-Robot interaction research has resulted in a loss of
critical information required for the success of shared plans.
To address this issue, we turn our attention to the studies of
Castro et al. [14] and Michael et al. [15], which offer a com-
prehensive perspective on all the expectations that may arise
during collaborative interactions between agents. In addition
to the theoretical ideas presented by Castro et al. [16], [17]
and Belhassein et al. [18] on applying an extended theory
of commitments in HRI, our work takes a further step by
providing comprehensive and general definitions of how to
implement a commitment manager in the robot’s behavior to
address all types of agents’ expectations.

Commitments can be understood as ”a triadic relation
among two agents and an action, where one of the agents is
obligated to perform the action as a result of having given
an assurance to the other agent that she would do so, and of
the other agent’s having acknowledged that assurance under
conditions of common knowledge” [19].

Two major theories co-exist regarding commitments in
joint action.

1) The Functionnal Approach [15]: This approach em-
phasizes the major importance of using commitments in joint
action because of its ability to produce reliable expectations.
These expectations facilitate predictions and help reduce
uncertainties that can have different causes.

• Motivation (are the participants still motivated/engaged
to do the task?)

• Instrumentation (are the participants still able to handle
the task, or does it exist an instrumental issue that
prevent the execution?)

• Common ground (do the participants have all the nec-
essary information to handle the task?)

2) The Normative Approach [14]: This approach also
emphasizes the importance of expectations and describes two
types.

• Descriptive expectations: expectations whose violation
or frustration does not necessary triggers reactive atti-
tudes;

• Normative expectations: expectations whose violation
or frustration triggers reactive attitudes.

Our framework is build using jointly these two theoretical
contributions.

C. Our contribution

Our contributions regarding the state-of-the-art are three-
fold. First, we have analyzed all the expectations that can
arise in a shared plan regarding both agents’ points of
view (the robot and the human). Second, we give ways
for a robot to detect these expectations in any part of
their shared plan. Third, we have developed ways for a
robot to act to reduce the agents’ uncertainties generated by
these expectations. Finally, we have implemented a proof of
concept to demonstrate that these theories can be applied in
a real-life human-robot shared plan to reduce all the agents’
uncertainties regarding their collaboration.

III. THEORETICAL COMMITMENT MANAGER

In this section, we propose a general description of a
commitment manager who enables the robot to perform
actions aimed at reducing uncertainties between agents dur-
ing their collaborative efforts towards achieving a common
goal. By reducing uncertainties, we enhance the likelihood
of successfully accomplishing the shared plan. We consider
the perspectives of both partners, the human and the robot.
However, we can only control the robot and modify its
behavior to consider the expectations of both partners dur-
ing their interaction. This can be challenging, especially
given the context or the general population’s familiarity
with robots. On one hand, the robot needs to manage the
execution of its actions while also considering and managing
human expectations about its behavior. On the other hand,
the robot needs to monitor human actions and signal when
its expectations regarding human actions are not met.

This theoretical model assumes that we have knowledge
of the agents’ shared plan and common goal. This required
information includes the agents’ roles, which determine
the part of the plan to be performed by each agent; the
hierarchy of tasks and actions of their shared plan, which
specify their behavior; and the location and timing of plan
execution, which constrains the possible shared plans to
perform and when they collaborate. Next, our method as-
sociates the shared plans/tasks/actions of the agents with
their expectations. Where these expectations give rise to
three types of uncertainties: motivational, instrumental, and



common ground, as described in Sec. III-A. Finally, the
method considers these uncertainties to perform concrete
robot’s actions that help to solve them, in Sec. III-B. An
overview of the theoretical commitment manager is provided
in Fig. 1.

A. Redefine the expectations to use them in a Robot

To enable the robot to effectively manage these expecta-
tions, we need a definition of those expectations that links
the theory with how the robot can detect each type of
expectation.

• Motivational uncertainty appears when there is an un-
certainty about the other agent’s level of engagement
in the task. Then, this can be related to not knowing if
the other agent started her action or to spend more time
than expected to execute one action. In such situations,
doubts may arise concerning the other agent’s motiva-
tion to initiate, continue, or complete the joint task.
Then, the robot considers that there is an uncertainty
about the agent motivation in two situations: when the
start of that action is not easily recognizable by the other
agent, for example, an action of thinking; and when
there is a noticeable discrepancy between the expected
and actual execution times of an action.

• Instrumental uncertainty arises when there are discrep-
ancies in the plans, tasks, or actions that the agents
can choose or the objects they can utilize to achieve
their shared goal. One approach to detect this type of
uncertainty is by identifying multiple parallel plans or
tasks that can be pursued, or different objects that can
be utilized to accomplish the same objective. Whenever
the robot encounters such a situation, it recognizes it as
an instance of instrumental uncertainty.

• Common ground uncertainty arises when there are dif-
ferences in the agent’s knowledge about other agents
and their environment. For example, in the case of
the general population, people are not used to interact
with robots. Therefore, they need to know the time
that the robot dedicates to do an action or if the robot
understands that it needs to start the following action
of the plan. Furthermore, the robot should have mental
models of people to reduce its uncertainties about them.
Finally, the agents can have uncertainties about their
environment, such as the objects they can find inside.
Then, the robot can detect this type of uncertainty by
identifying missing information in an agent’s knowledge
about others or their environment.

These definitions may evolve in the future to include
subtypes within each type of uncertainty.

B. Robot actions to solve the agents’ uncertainties about
their expectations

To develop a comprehensive robot behavior capable of
resolving agents’ uncertainties, it is necessary to define
general types of robot actions to address each specific type
of uncertainty. As with the previous section, these definitions

can be redefined in the future to include additional actions
for resolving subtypes of uncertainties.

1) Motivational Uncertainties: In this initial theoretical
model, we simplify the robot’s behavior to recognize the
person’s motivation. The assumption is made that the robot
lacks a perception system to detect the person’s presence or
social cues. Instead, the robot relies on the person’s response
to its questions as an indication of motivation to continue.
Then, the robot expects that the person is always there but
can take more than the expected time to interact with it. If
the person exceeds the expected time to answer a question,
the robot may interpret it as a lack of motivation to continue
with their shared plan. In such cases, it can only ask the
person if she wants to continue with the joint action to solve
the robot’s uncertainty about the person’s motivation. Then,
the robot should finish their interaction if the person does
not answer in a reasonable amount of time.

Currently, we have implemented robots that are always
motivated to interact with people, as it is their primary
purpose. However, people may still experience uncertainty
if the robot temporarily pauses their interaction to attend to
a more urgent task. In such cases, the robot needs to inform
the person about the situation while simultaneously inquiring
if they would like to cancel the interaction or proceed with
their shared plan afterward.

2) Instrumental Uncertainties: We associate these uncer-
tainties with the possibility of having parallel plans or tasks,
where different actions can be taken to achieve the same goal.
In such cases, the robot can autonomously select and execute
a particular plan. However, if the person disagrees with the
chosen plan, she has the option to leave the interaction
or attempt to correct the robot during the middle of its
execution. These actions may cause errors. Then, the robot
might handle this uncertainty differently. A better way to
handle this uncertainty from the starting point is to ask the
person’s preference regarding the available parallel plans.
Humans also sometimes ask their partner how she prefers
to perform a task to avoid this type of uncertainty.

3) Common Ground Uncertainties: The robot must be
prepared to interact with a general population with limited
knowledge about its behavior. To solve common ground un-
certainties regarding the robot’s behavior, the robot’s actions
need to be as transparent as possible to the person. The robot
needs to inform when it starts any action and also about the
expected time it will take to complete the action. This helps
avoid uncertainty regarding the progress of the joint task
because humans only know how long it takes a person to
do that action, but that time can be different for the robot.
By providing information about the execution time, the robot
ensures that the person comprehends the time required for the
action, which helps maintain their engagement in the joint
task. In parallel with the robot’s action execution, it should
control the time it is using to do its action for two reasons.
On the one hand, it should notify the person if the action is
progressing well but exceeding the expected execution time.
On the other hand, it should inform the person if the action
is not going well to restart or abort the action.



Fig. 1: Overview of the Theoretical Commitment Manager. Left: How the robot can recognize the uncertainties that can
appear in any plan/task/action. Right: How the robot can act to reduce these types of uncertainties.

People may have uncertainties about the objects available
in their environment, among other things. The robot can de-
tect this uncertainty when it identifies a discrepancy between
the information requested by the person and its database. To
address these common ground uncertainties related to the
agents’ knowledge of their environment, the robot should
inform the person about the mismatch in information be-
tween their respective databases and work towards resolving
it (detailed examples can be found in Sec. IV).

IV. ROBOTIC SYSTEM TO DEAL WITH COMMITMENTS

Once we have developed the general theoretical com-
mitment model for managing and resolving the agents’
uncertainties, we have implemented our system that includes
the commitment manager (Sec. IV-A) and a proof of concept
to demonstrate that the theoretical model can be applied in
practice in social robots (Sec. IV-C). These two are included
in a concrete framework (Sec. IV-B), which determines the
agents’ roles, possible shared plans, the interaction location,
and collaboration time. System available in LAAS-GitLab1.

A. System implementation

We have implemented the system of Fig. 2 to enable the
robot to perform Human-Customer support tasks within a
shop setting. Such a system consists of several blocks:

• The planner and execution software allows the robot to
perform all physical tasks and actions, such as navi-
gating around the environment or pointing at products

1https://gitlab.laas.fr/ai4hri4laas/pepperdemo/
Lisp_commitment_manager/. This is the first version with many
limitations, please, ask the main author to know if there are better versions
in c++ or if there is any problem with the link.

Fig. 2: System Structure that enables the robot to utilize
commitments during the employee-client task.

on a shelf. For this purpose, we have used the CRAM2

planning software [20].
• The verbal communication manager is responsible for

all communications between the human and the robot
to agree on what to do and to be informed of the status
of the joint tasks, included in images of Sec. IV with
the name Interaction Prompt.

• The commitment manager is the core of our system,
responsible for handling all the robot actions related
to resolve uncertainties of both agents during their
collaborative interaction. This allows both agents to
remain involved in their shared plan until they finish
it. To solve the uncertainties concerning the agents’
actions, we extract from each action the concrete types

2https://cram-system.org/tutorials/intermediate/
pepper_shopping



of expectations that have important uncertainties to be
solved for the good development of their shared plan,
see Fig. 3, 4, 5, 6, 7 of Sec. IV.

• The interruption manager is in charge of building a
queue of Human-Clients to be served by all employees.
In this case, only our simulated robot. Then, this man-
ager allows dealing with multiple client interactions.
Then, if a client arrives at the shop when the robot is
serving another client (busy), she can wait until it will
be her turn to be served by the robot. Its behavior can
be seen in Fig. 8 of Sec. IV, labeled as ”prompt to serve
people interruptions.”

Notice that the blocks of verbal communication manager,
commitment manager, and interruption manager are entirely
developed for the current paper.

B. Framework

The use case involves a client-employee scenario within a
simulated food shop. The client, a human using a computer,
interacts with the system, while the employee is represented
by a robot. In this environment and with these roles, we
delimit their interactions to shared plans for client shopping
services. It is a turn-take interaction where each agent needs
the other agent’s action to continue with their actions. If
one agent does not continue with their shared plan, the
other agent can only cancel their shared plan. However, the
commitment manager implementation will be the same in
the case of parallel tasks when the agents have uncertain-
ties concerning the other agents’ actions. Also, we solely
address uncertainties related to normative expectations, as
these trigger the robot’s corrective actions to ensure both
agents complete the joint plan. It is important to note
that we simplify the agents’ interaction to concentrate on
implementing the Commitment Manager.

In this use case, the robot takes on the role of the employee
and is responsible for executing the portion of the shared
plan that pertains to client service. Specifically, there are two
possible shared plans: Greetings and assisting human clients
in locating products within the shop. These shared plans
involve several sub-tasks, including recognizing the client,
greeting the client, retrieving or searching in a database
for product’s location within the shop, providing verbal
instructions or physical guidance to arrive to the product’s
location, inquiring if the customer requires further assistance,
and expressing gratitude and bidding farewell if no additional
help is needed.

In our use case, the person does the part of the shared plan
expected for customers, where the client can freely select
different options related to her role. Concretely, she can greet
the robot-employee, decide which product type among all the
available ones is looking for, decide if she wants verbal or
physical guidance to locate the product, decide whether to
search for more products or not, and decide to say goodbye
to the robot to close their interaction.

Fig. 3: Implementation of the steps of greeting and ask about
what type of help the person needs.

C. Proof of concept: Help multiple clients to find products

In our proof of concept, we have already implemented
robotic actions to solve three types of uncertainties, specif-
ically targeting the uncertainties that need to be resolved
for the successful completion of the shared plan.Our shared
plan is divided into X shared actions. First, the Robot and
person greet and recognize each other (step 1 in Fig. 3-left).
Second, they agree on a shared plan (step 2 in Fig. 3-right).
Third, they agree on the product to search for (step 3 in
Fig. 4). Fourth, the Robot should search for the product
location (step 4 in Fig. 5). Five, they should agree on the
way to perform the guidance task (step 5 in Fig. 6). Six,
they should return to agree if they make another shared
plan of the possible ones (step 6 and Fig. 7-left). Seven,
they close their interaction if the client does not want to
perform more shared plans, and the Robot continues to serve
the next client in the shop’s queue if needed (step 7 and
Fig. 7-right). This last action is related to our Interruption
Manager (Fig. 8) that allows to serve customers who arrive
while the Robot is busy. If we did not have this manager,
we would lose interactions with those other clients because
they could not wait to be served by the Robot if they wanted
it. In all interaction steps, the client is allowed to finish her
shared plan with the Robot. In the figures of this example,
we have three types of actions for the commitments. First,
the actions that only get information or inform the other
agent are included in the interaction prompt to allow a
more fluent agent interaction. Second, when the agents must



Fig. 4: Implementation of the step to ask about products to
be found in shop.

agree on something due to an instrumental uncertainty, we
also include these questions in the interaction prompt for
a smoother interaction. Third, when the uncertainties need a
reaction, for example, a person’s answer, we include them in
another thread executed by the Commitment Manager Action
Execution. In addition, the client’s answers are remarked in
bold and/or red text.

Next, we relate the agents’ plans with the actions executed
by our commitment manager to allow the robot to solve each
type of uncertainty.

1) Solve the robot’s uncertainty about the client’s moti-
vation: In actions that require a human answer, we have
included a robot’s action that triggers after 30 seconds of
waiting for the client’s answer, see Fig 4. This action involves
asking the client if she wants to continue with the current
task/action in their shared plan. We have considered that the
average time for a client to respond is 30 seconds. This time
should be customized for each type of client’s action. In
addition, this action includes the extreme case that the person
can leave their interaction. Suppose the commitment manager
does not get twice times the response that the person wants
to continue the interaction (60 seconds). In that case, the
robot will finish their interaction like in Fig 7-right.

2) Solve the instrumental uncertainties of both agents
about plan/task to develop, and objects to use: In actions
involving multiple shared plans or different approaches to
do a task, we have incorporated a robot’s action to establish
an agreement on how they will collaborate. For instance,
this robot action presents a menu displaying the available
collaborative plans, as depicted in Step 2 of Fig. 3-right. In
this example, the possible parallel plans can be: greetings
or finding a product inside the shop. If the person selects
greetings, they will only greet each other and close their
interaction (go to Fig 7-right to finish). On the other hand,

Fig. 5: Implementation of the step search for product physical
location in shop.

if the person selects to find a product, the first action solves
another instrumental uncertainty about which object to search
for. Then, the robot shows another menu to select one of the
available products to search for them, see Fig. 4. In addition,
a similar decision needs to be done in step 6 of Fig. 7, where
the robot needs to ensure that this person does not want to
continue finding other types of products.

One of the actions in our example involves guiding the
person to the product position. This guidance can be provided
either verbally or physically, so this action includes another
type of instrumental uncertainty related to how to perform
the task. Then, the robot presents a menu once again to agree
on which way they perform this task, see Fig. 6. Inside
each of the two guidance options, we can find additional
commitments of the agents, but we left these commitments
to future implementations.

3) Solve the agents uncertainties of common ground
knowledge about the agents, environment and shared action-
status: The initial action addressing knowledge uncertainty
involves the robot recognizing the client. To achieve this,
the robot asks the client for her name, as shown in Step
1 of Fig. 3-left. This action enables the robot to reduce its
uncertainties about its client identity. In our example, this
action allows the robot to keep track of the actions previously
performed with this person, thereby avoiding repetition, such
as the greeting action. Also, the person’s name can be an
ID or nickname that does not have personal information.
Furthermore, in the future, this fact can allow the robot to
load/create a mental model of this person to be able to know
her product preferences.

As we stated before, the population may have uncertainties
regarding the robot’s behavior or the status of the tasks



Fig. 6: Implementation of the step for the guide to the product
physical location in shop.

assigned to the robot. Then, the duration required for the
robot to execute a task is not commonly known by people.
To address this, the robot needs to inform the person about
the average execution time for actions that may take longer
than an instant. In our example, this is relevant for the
action of the robot searching for an object’s position in its
knowledge database, See the Interaction prompt in Fig. 5.
This initial notification about the robot’s execution time is
purely informative and is included in the interaction prompt
to ensure smoother agent interaction without requiring a
response from the person. However, if the robot action takes
longer than the initially informed time but is progressing
as expected, the robot should provide a response to address
any uncertainty the person may have about the task’s per-
formance. This response would reassure the person that the
task is progressing well and only requires additional time. In
this case, the robot may need a response from the person to
agree to continue waiting or to conclude their shared plan.
This response is executed by the Commitment Manager,
as shown in the center of Fig. 5). Notice that to be able
to do these types of actions, the robot should know the
average time of execution for all the actions it can perform.
Finally, as part of the interaction prompt for this common
ground uncertainty, the robot should explicitly acknowledge
its comprehension of the search item and initiate the search

Fig. 7: Implementation of the step to find more products,
finish their interaction and starts an interaction with the next
client.

Fig. 8: The image shows the implementation of the prompt
to have a queue of clients waiting until the robot can help
them. When the robot finishes the interaction with the current
person, it looks at this queue. Then, if clients are waiting for
its help, it starts the interaction with the next client in the
queue until no clients are waiting for the robot’s help, in
Fig. 7.

process. This will alleviate any person’s uncertainty about
the robot’s task status, who may not be able to perceive the
robot’s progress due to the non-physical nature of the task.

In addition, clients can have uncertainties about the shop,
for example, which products can be found there. Therefore,
if the person asks for a product that is not inside the
robot’s product-database, it should do an action to correct
this person’s uncertainty (see the bottom Common Ground
Commitment Manager of Fig. 5). In our example, if the
person requests the product car wheel, that is not available
in our food shop, the robot’s actions involve informing the
person about the non-existence of this product and allowing
the person to ask for another product if needed.



V. DISCUSSION

The general theory of this method, Sec. III, can be used
in Human-Robot Shared Plans that can be performed in
other type of services (hotels, airports, malls), or in the
medical sector (hospitals, elderly, and children care), in the
education sector (teachers’ assistants or children’s tutors),
and industrial or agricultural settings.

A. Limitations

The method is general and the only limitation, maybe, are
missing of some subcategories inside each uncertainty type.
The limitations of our implementation are due to that it is
only a proof of concept and the first implemented version:
We only want to demonstrate the theoretical effectiveness of
this approach in addressing uncertainties for robots. Then,
it is not a fluent real-life HRI interaction, also it uses
several text-prompts and not speech that will be more natural.
Additionally, the method is embedded within the CRAM
planner, which is implemented using Lisp, a programming
language that is not widely used by researchers and the
authors are not expert on it (due to the AI4HRI project).
Consequently, the method is currently applicable only to
the specific use case of the shop, also includes messages
of CRAM planner in the information inside the interaction-
prompt that it will be better to remove. Then, in the future,
the method will be coded in a ROS-node using C++ to be
able to obtain a general and fluent HRI, Sec. V-B.

B. Potential for Generalization

This method has significant potential for generalization.
By separating the commitment manager from the planning
process, it can be applied to any system that involves similar
shared plans. The method will subscribe to the input infor-
mation and create general behaviors to address uncertainties,
outlined in Sec. III. It also will allow for customization
through scripting, enabling adaptation to specific interaction
scenarios that require tailored speech or actions for users who
may not be experts in robotics. For example, the motivational
uncertainty can refer to actions that the robot/human does not
detect the start of the action, said in sec III. To solve human’s
uncertainties, the robot should always advertise verbally
when it starts actions. To solve robot’s uncertainties, it should
recognize the start of a human action. If it can not recognize
it. It should ask the human to obtain a confirmation. For
further details about inputs and output actions for other
uncertainties, we refer the reader to Sec. III.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a theoretical model and a proof of
concept system that applies commitment theories to address
uncertainties experienced by both agents in a joint action.
Our robot performs actions to effectively resolve uncertain-
ties related to motivation, instrumentation, common ground.
Using our proof of concept, we have demonstrated that this
theoretical model can be used in a robotic system to solve
the agents’ uncertainties. Additionally, we have implemented
an Interruption Manager to handle interruptions from other

shop clients, enabling multiple interactions with the same
robot in our system.

Our future work will include enlarging the theoretical
commitment manager and its implementation with new ways
to solve agents’ uncertainties, as well as translating it to C++
and ROS to be able to implement a more realistic HRI.
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