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Models and Algorithms for Human-Aware Task Planning
with Integrated Theory of Mind

Anthony Favier1,2, Shashank Shekhar1 and Rachid Alami1,2,∗

Abstract— It is essential for a collaborative robot to consider
the Theory of Mind (ToM) when interacting with humans.
Indeed, performing an action in the absence of another agent
may create false beliefs like in the well-known Sally & Anne
Task [1]. The robot should be able to detect, react to, and
even anticipate false beliefs of other agents with a detrimental
impact on the task to achieve. Currently, ToM is mainly used
to control the task execution and resolve in a reactive way the
detrimental false beliefs. Some works introduce ToM at the
planning level by considering distinct beliefs, and we are in
this context. This work proposes an extension of an existing
human-aware task planner and effectively allows the robot to
anticipate a false human belief ensuring a smooth collaboration
through an implicitly coordinated plan. First, we propose to
capture the observability properties of the environment in the
state description using two observability types and the notion
of co-presence. They allow us to maintain distinct agent beliefs
by reasoning directly on what agents can observe through
specifically modeled Situation Assessment processes, instead of
reasoning of action effects. Then, thanks to the better estimated
human beliefs, we can predict if a false belief with adverse
impact will occur. If that is the case then, first, the robot’s
plan can be to communicate minimally and proactively. Second,
if this false belief is due to a non-observed robot action, the
robot’s plan can be to postpone this action until it can be
observed by the human, avoiding the creation of the false
belief. We implemented our new conceptual approach, discuss
its effectiveness qualitatively, and show experimental results on
three novel domains.

I. INTRODUCTION

Human-Robot Collaboration (HRC) is a current research
focus due to the growing number of robot-assisted appli-
cations [2]. Collaborative robots add clear value to real-
world domains like household [3], workshops [4], or medical
facilities [5].

Consider a shared task scenario where a robot and a human
need to cook pasta together, without any prior negotiation
about the exact sequence of actions to execute. This scenario
is depicted in Fig. 1. In the kitchen, there is already a pot
filled with water placed on a stove, but the pasta bag is stored
in an adjacent room. This cooking task consists of pouring
the pasta into the pot, but only after turning on the stove
(stoveOn) and after adding salt in the water (saltIn). The
robot is in charge of turning on the stove, the human has to
fetch the pasta and pour it into the pot, while both agents
can add salt to the pot. In addition, the robot has to clean
the counter (counterClean) but it is not part of the shared
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Fig. 1. Let us consider cooking pasta as a human-robot shared task.
The robot has to turn on the stove (stoveOn) and clean the counter
(counterClean), but the latter is not a part of the shared task. The human
takes care of fetching the pasta while both agents can add salt into the water
(saltIn). Before pouring the pasta into the pot the human must know the
facts, stoveOn and saltIn. Unlike stoveOn, the facts saltIn and counterClean
are not directly observable. Hence, by acting while the human is away to
fetch the pasta, the robot may induce false beliefs which may be detrimental
to the shared task (e.g., human adding salt again).

task. The human is free to either first add salt or first fetch
the pasta. Depending on these uncontrollable human choices,
the robot will perform different actions, which will create
different false beliefs. Indeed, consider that the fact stoveOn
is observable, while the facts saltIn and counterClean are not
directly observable. Their exact value can only be inferred
by either performing a dedicated sensing action (e.g., tasting
the water and inspecting the counter); or by observing or
attending the specific action execution (e.g., salt being added
and counter being cleaned).

While the human is fetching the pasta in the other room,
the robot can perform several actions. Once back in the
kitchen, the human will be able to observe whether the
robot successfully turned on the stove since it is observable.
However, since saltIn is not observable, the human agent
is likely to believe that no salt has been added, or at least
will be uncertain about this fact. Instead of questioning the
robot or tasting the water, it would be appreciated to have a
proactive, collaborative robot avoiding this predictable “un-
comfortable” situation to happen. For the robot to anticipate
this situation while planning, it should consider Theory of
Mind (ToM) to maintain distinct human beliefs.

Some work (e.g., in [6]) already considers ToM when
interacting with humans, but only during the task execution.
Thus, the robot can only be reactive to human’s absence or
inattention, even if they are predictable. We propose to bring
such ToM considerations at the planning time. This makes
the robot proactive and able to act differently to avoid the
human missing necessary information, or to communicate
when needed or in advance.

For seamless human-robot collaboration, we believe that



it is essential not to restrict human behaviors, and hence,
we consider the human as an uncontrollable agent. Recent
offline planning frameworks [7], [8] use human task mod-
els to estimate and handle uncontrollable human behaviors
congruent to the shared task. Doing so allows for planning
robot’s actions accordingly and generating robot plans that
are implicitly coordinated and compliant with every possible
human action.

In this work, we propose to extend our prior work
HATP/EHDA [7] which stands for Human-Aware Task
Planner Emulating Human Decisions and Actions. We first
enriched its task specifications to explicitly capture the
observability properties of the environment. We rely on the
notion of co-presence, and on two types of facts: First,
those that can be observed directly in the environment,
second, those that can only be inferred while attending the
execution of an action. We then model so-called “Situation
Assessment” (SA) processes to estimate offline the agents’
sensing and reasoning run-time capabilities about their sur-
roundings. These processes are inserted into the existing
planning workflow to manage the evolution of distinct human
beliefs and better estimate the actions they are likely to
perform. Finally, we can detect if a false human belief will
occur, and if it concerns information essential to the human
w.r.t. the shared task. If so, the robot’s plan is updated to
proactively and minimally communicate to correct the false
belief before it has an impact. Moreover, if the false belief
is due to a non-observed action, we also try to postpone its
execution until the human is anticipated to attend it. Such
implicit communication avoids the false belief to arise.

The paper is structured as follows: A comprehensive
amount of related work is provided in the next section, which
is followed by some background about the HATP/EHDA
framework — briefly described in Section III. Section IV
describes the formalism used in our planning scheme and
how it captures the observability properties of the environ-
ment. Section V presents two situation assessment processes
and how they are used to maintain the estimated human
beliefs. Section VI explains how to detect relevant false
human beliefs and how they are corrected. It is followed
by Section VII discussing empirical evaluation, and showing
both qualitative and quantitative results. The paper ends with
discussion and conclusion sections.

II. RELATED WORK

a) Theory of Mind in HRC: The literature in Human-
Robot Collaboration (HRC) uses different variants of ToM
in the execution of shared global plans. However, the focus
shown is on perspective taking — a robot reasons about what
humans can perceive followed by constructing a world from
their frame of reference, and hence managing the agents’
beliefs accordingly on the fly [9]. The framework given
by [6] allows the robot to estimate at execution time, the
mental state of the human, containing not only their beliefs
but also their actions, goals, and plans. It manages the
execution of shared plans in an object manipulation context

and shows how a robot can adapt to human decisions and
actions and communicates if needed.

The framework proposed in [10] uses agents’ ToM. Here,
an agent reasons over the nested beliefs of other agents to
handle misconceptions about the validity of their plans and
achieves it by communicating with them or by acting in
the real world. To realize their idea, the authors relate it
to epistemic planning that combines reasoning and planning
based on the beliefs and knowledge of agents [11]. However,
they assume that the agents’ plans and (nested) beliefs are
given and that the agents are controllable. Certainly, their
framework is rich and extendable to cases where agents have
possible plans or include a plan recognition technique as
in [12], and resolving discrepancy based on, for example,
the most probable agents’ plans.

Work on human-robot cohabitation with the interest of
human-aware planning is explored in [13], [14], however,
unlike ours, they do not support planning for explicit shared
goals/tasks such that humans and robots achieve it while
collaborating and cooperating. Moreover, their frameworks
allow robots to proactively assist, but only if they improve
the human’s current plan (and sometimes when humans do
not expect such assistance).

b) Planning Approaches, Solution Plans, and Models:
Various task models have been realized in the Human-
Robot (HR) collaborative planning context, e.g., hierarchi-
cal task networks (HTNs) [15], [16], POMDPs [8], [16],
[3], AND/OR graphs [17], etc. A hierarchical network is
created using HTNs (abstract and non-abstract tasks) and
AND/OR graphs to represent the inner coupling links of
the subtasks [18], and the plan search occurs in a depth-
first manner. In [19], the authors show how uncertainty can
be dealt with in the evolution of the environment and agent
behavior. The challenge lies with, especially in POMDPs for
HRC, the hidden and implied state of the human agent [3].

The HATP frameworks extending HTNs consider agents
controllable [20], [15], while in [16], the framework con-
siders planning at multiple abstraction levels (with a single
HTN) with humans. But these frameworks assume that a joint
task is established prior to planning. Moreover, generally,
they produce explicitly coordinated, shared HR plans that
are legible and acceptable by humans — they are assumed
to be controllable in some sense, such that the techniques rely
more on the replanning aspect. In [12], [21], the objectives
of the humans around robots define robots’ existence and
contingent tasks, e.g., do not use the vacuum cleaner when
humans go to sleep. However, more importantly, they do not
have an explicitly shared task to achieve as a team.

The literature investigated how to create a reasonable
model of humans and how to obtain task knowledge,
e.g., [22]. Hierarchical models consist of layered abstractions
and are considered suitable or close to human intuitions.
They help predict humans’ actions, and like ours, they
also help emulate human’s predictable behaviors and shape
robots’ decisions. Such models can be learned using con-
jugate task graphs, and to identify the task structure an
aggregation algorithm can be used [23].



c) Communication in HR Collaboration: There is a line
of work dealing with an explicit usage of communication ac-
tions in planning [24], [25], [16], [26], [3]. E.g., in [16], [3],
the authors represent and plan with explicit communication
actions, considering them as regular POMDP actions, such
that execution policies contain them.

d) Epistemic Planning: Our notion of the “observable-
fact” classified into, observable from action and observable
from the state, can roughly be seen as a part of the restricted
epistemic logic presented and applied in planning applica-
tions [27]. Our high-level idea of SA (by the robot taking
the human’s perspective) aligns with the concept of perspec-
tive shifts in epistemic multi-agent planning – that extends
Dynamic Epistemic Logic (DEL) [28]. However, unlike our
first-order representation, which is used to maintain agents’
distinct beliefs, DEL-based is rich and can model scenarios
involving nested perspective-taking. In [29], the concept of
perspective shifts is expanded to provide a foundation for
producing implicitly coordinated human-robot plans that do
not require the agents to negotiate and commit to a joint
policy at plan time. In specific scenarios, it produces HR
policies that are not socially awkward, which is essentially
the aim of HRI research. However, the work does not
consider humans as uncontrollable agents like ours, so, from
what we understand, extending their framework to handle
the uncontrollability of human operators is not so clear.

e) A Quick Summary: Considering the inherent advan-
tages of specifications based on HTNs, we choose it for
specifying the HR collaborative problem compactly. The
framework to be extended based on our problem specification
choice is HATP/EHDA, which extends the HATP line of
work. To the best of our knowledge, existing approaches
like HATP/EHDA and epistemic planners, despite modeling
distinct agents’ beliefs, do not provide a formal way to
manage their evolution during planning while collaborating
on an explicitly shared task. Moreover, these existing ap-
proaches rely on cumbersome and domain-specific modeling
techniques, especially conditional action effect, to update the
agent’s belief and to also align relevant belief divergences.
Our new approach proposes to both maintain agents’ beliefs
and handle relevant divergences in a principled way within
the scheme of the planner, not in the actions’ description.

III. BACKGROUND

To better introduce our approach, we provide a brief back-
ground on the underlying framework called HATP/EHDA,
but first, let us discuss some relevant assumptions.

A. Important Assumptions

• Humans and robots are not equal. Still, they may
collaborate to achieve a (shared) task.

• Humans are naturally uncontrollable agents and prefer
their actions not to be imposed. So, their behavior can
only be estimated and emulated. They are assumed
to be cooperative, rational, and congruent but their
involvement, computational capabilities, and tolerance
regarding the shared task can vary.

• We have access to the human task/action model describ-
ing their capabilities, world dynamics, and their under-
standing of common ground. This model is available to
the robot, which influences its decision-making.

B. The HATP/EHDA Framework

The HATP/EHDA framework [7] comprises a dual HTN-
based task specification model. For more details about HTN
refer to [30]. The framework plans the robot’s actions while
estimating the possible human behaviors thanks to a given
human model. This way, the generated plan is implicitly
coordinated with all uncontrollable human actions.

This framework tackles problems where a human-robot
team has to achieve a task together.

Definition 1: (Human-Aware Task Planning
Problem.) The HATP problem is a 3-tuple Prh =
(⟨sr0, sh0 ⟩, ⟨tnr

0, tn
h
0 ⟩, ⟨Dr, Dh⟩) where sr0 (i.e., s0) is the

initial belief state of the robot (also the ground truth), while
sh0 is the initial human belief state, which can contain facts
that do not hold in s0. Here, tnr

0 is the initial task network
that the robot has to solve, respectively tnh

0 for the human.
The two task networks are fully ordered and can contain
similar tasks, hence considered as shared tasks. And Dr

represents the domain available for the robot containing its
operators and methods, and similarly, Dh represents the
domain available for the human.

Each agent has its own belief state, action model, task
network (agenda), plan, and triggers. The framework uses
agents’ action models and beliefs to decompose agents’
task networks into primitive tasks (actions). The planning
scheme assumes that a single agent decides to act at a
time and which action it performs, and uses specific actions
to synchronize the agent’s plans. IDLE is inserted in the
agent’s plan when its task network is empty, and WAIT
when it does not have any regular applicable action. First,
it builds the whole search space by considering all possible,
feasible decompositions. Then, considering plan evaluation
with action and social costs, it can adapt off-the-shelf search
algorithms to determine the best robot policy.

Definition 2: ((Implicitly Coordinated) Joint Solution.)
The solution for Prh, is represented as a tree, i.e. G =
(V,E). Each vertex (v ∈ V ) represents the robot’s belief
state, starting from the initial belief. Each edge (e ∈ E)
represents a primitive task that is either a robot’s action
or, or a human’s estimated and emulated action oh. G gets
branched on the possible choices (oh1 , oh2 , ..., ohm).

Each branch in the solution tree is a sequence of primitive
actions, say π = (or1, o

h
2 , o

r
3, ..., o

h
k−1, o

r
k), that must satisfy

all the solution conditions of Prh. Here, each ohi represents
a choice, often out of several, the human could make. This
factor is crucial and decides the robot’s execution policy.

In this work, we realize our contributions on top of
HATP/EHDA. So, in principle, we tackle the same high-
level problem as in Definition 1, and generate a solution
similar to that in Definition 2. However, we have enriched the
problem description to capture the observability properties of
the environment. Moreover, to make the exposition easier,



we have adapted the agents’ state representation and the
definition of the (implicitly coordinated) joint solution. We
describe each of them in the coming sections.

IV. AUGMENTED PROBLEM SPECIFICATIONS

We consider a classical planning domain (state-transition
system) Σ = (S,A, γ), s.t., S is a finite set of states in which
the system may be, A is a finite set of actions that the actors
may perform, γ : S × A → S is a state-transition function.
Each state s ∈ S is a description of the properties of various
objects in the planner’s environment [30].

To represent the objects and their properties, we will use
two sets B and X: B is a set of names for all the objects, plus
any mathematical constants representing properties of those
objects. X is a set of syntactic terms called state variables,
s.t. the value of each x ∈ X depends solely on the state s.

A state-variable over B is a syntactic term x =
sv(b1, ..., bk), where sv is a symbol called the state variable’s
name, and each bi is a member of B and a parameter of x.
Each state variable x has a range, Range(x) ⊆ B, which is
the set of all possible values for x.

Here is the description of the sets B and X for the
collaborative cooking example:

B = Entities ∪ Places ∪Booleans ∪ {nil}
Entities = Agents ∪Objects

Agents = {R,H} \\ R : robot, H : human

Objects = {salt, pasta, counter}
Places = {kitchen, room}
Booleans = {true, false}

X = {at(e), saltIn, stoveOn, counterClean | e ∈ Entities}
Range(saltIn | stoveOn | counterClean) = Booleans

Range(at(R | H | pasta)) = Places

Range(at(salt | counter)) = {kitchen}

A variable value assignment function over X is a function
val that maps each xi ∈ X into a value zi ∈ Range(xi). With
X = {x1, ..., xn}, we will often write this function as a set
of assertions: val = {x1 = z1, . . . , xn = zn}.

A variable observability assignment function over X is a
function obs that maps each xi ∈ X into an observability
type ti ∈ {OBS,INF}: obs = {(x1, t1), . . . , (xn, tn)}.
Respectively, when obs(xi) = OBS|INF then xi is said to
be observable | inferable in the state si.

A variable location assignment function over X is a func-
tion loc that maps each xi ∈ X into a li ∈ Places∪{nil}:
loc = {(x1, l1), ..., (xn, ln)}. Places ⊆ B captures a group
of constant symbols such that each member is a predefined
area in the environment. Agents are always either “situated”
in a place or moving between two places. We consider xi

to be located in every place ∈ Places if loc(xi) = nil.
More details about how the environment should be divided
into places will be given shortly.

A state si ∈ S is a 6-tuple composed of 4 func-
tions over X and 2 task networks (agendas) s.t. si =
(vali, val

H
i , obsi, loci, tn

R
i , tn

H
i ). The state of the world

from the perspective of the robot is captured by the variable

value assignment function vali, sometimes noted as valRi .
Similarly, valHi represents the estimation of vali in the
perspective of the human, also referred to as the estimated
human beliefs. Hence, ∀si ∈ S, each xj ∈ X is mapped
to two values (robot perspective and estimation of human’s
beliefs), an observability type, and a place. We say that a
state si ∈ S contains false beliefs, or belief divergences, if
∃xj ∈ X, valHi (xj) ̸= valRi (xj).

For our example, the initial state s0 would be as follow:

s0 = {val0, valH0 , obs0, loc0, tnR
0 , tnH

0 }
val0 = valH0 = {at(R) = kitchen, at(H) = kitchen,

at(pasta) = room, saltIn = false, stoveOn = false}
obs0 = {(at(e),OBS), (saltIn,INF), (stoveOn,OBS)

(counterClean,INF), | e ∈ Entities}
loc0 = {(at(e), val0(e)), (counterClean, kitchen),
(saltIn, kitchen), (stoveOn, kitchen), | e ∈ Entities}

tnR
0 = {CookPasta, CleanCounter}

tnH
0 = {CookPasta}

An action is a tuple α = (head(α), pre(α), eff(α)) where
head(α) is a syntactic expression of the form act(z1, ..., zk)
where act is a symbol called the action name and z1, ..., zk
are variables called parameters. pre(α) = {p1, ..., pm} is a
set of preconditions, each of which is a literal. And eff(α) =
{e1, ..., en} is a set of effects, each of which is an expression
of the form: sv(t1, ..., tj) ← t0 with t0 being either the
value to assign to the state variable sv(t1, ..., tj) or a new
location/place for the state variable. We note agt(α) the agent
performing the action α.

To estimate the next possible actions that an agent φ ∈
Agents is likely to perform in a state si ∈ S, we proceed
in the same way as in [7]. We refine the agent’s agenda
tnφ based on its belief valφi and obtain a refinement as
follows ref(tnφ

i , val
φ
i ) = {(a1, tn1), ..., (aj , tnj)}. A refine-

ment contains a tuple for each estimated possible action aj
and the associated new agenda tnj after being refined.

In our cooking example, we obtain the following refine-
ment if the starting agent is the human:
ref(tnH

0 , valH0 ) = {(add salt(), tn1), (move to(kitchen), tn2)}

V. STATE TRANSITIONS AND BELIEF UPDATES

We now describe how a new state is generated and more
precisely how the estimated human beliefs are updated ac-
cording to our observability models. A transition occurs only
if an action a is applicable in a state si, i.e. γ(si, a) = si+1.

Our new formalism provides support only for agents who
either know the truth or have a false belief. Moreover, we do
not consider cases where the robot’s beliefs can diverge, too.
Hence, regardless of being co-present, the robot’s beliefs are
always updated with the action’s effects assuming the human
only makes deterministic moves when not being observed.
Thus, ∀x ∈ X , we always have,

vali+1(x) =

{
w, if x← w ∈ eff(a)
vali(x), otherwise

The place associated with a state variable can be mod-
ified by the action’s effect but, here, we assume that the



observability type of each fact is constant during the task.
So, ∀x ∈ X ,

obsi+1(x) = obsi(x)

loci+1(x) =

{
l, if x← l ∈ eff(a)
loci(x), otherwise

The new agenda of each agent (tnR
i+1, tn

H
i+1) are created

by the HTN refinement algorithm, and thus, they are directly
retrieved from the obtained refinement. This refinement de-
composes abstract tasks in the task network until the first
task is a primitive action. To do so, every applicable method
is applied leading to a set of possible actions (and refined
task networks).

The new estimated human belief valHi+1 is the two-step
result of our Situation Assessment processes that models the
human’s real-time sensing and reasoning capabilities about
their surroundings.

First, let us define the notions of co-presence and co-
location which will be key to maintaining the evolution of
agents’ beliefs as planning progresses.

Definition 3: (Co-presence & Co-location.) In a state
si ∈ S, two agents, φ1 and φ2, are considered to be co-
present if vali(at(φ1)) = vali(at(φ2)). This relation is
noted φ1 ⋏i φ2 in the rest of the paper. Similarly, we say
that an agent φ1 is co-located with a state variable x ∈ X
if vali(at(φ1)) = loci(x), noted φ1 ⋏i x.

Now we can define two SA processes that will maintain
the estimated human beliefs.

Definition 4: (Inference Process.) An agent observes the
execution of an action by being either co-present with the
acting agent, or by being the acting agent. If so, the agent
infers the new values of every state variable present in the
action’s effects.

Based on the above definition, the human’s beliefs are
updated as follows when action a is executed in state si,

val′Hi+1(x) =


w, if x← w ∈ eff(a) and

(H = agt(a) or H ⋏i agt(a)
or H ⋏i+1 agt(a))

valHi (x), otherwise
To change its place in the environment, agents would use

a dedicated “move” action, such that its effect only updates
the agent’s location.

Definition 5: (Observation Process.) An agent observes
its surroundings and assesses the exact value of each state
variable located in the same place (i.e., each state variable
the agent is co-located with).

After applying the effects of an action to obtain vali+1

and the human beliefs val′Hi+1 (using the inference process),
the observation process is executed. It updates again the
estimated human beliefs with the facts currently observable
by the human and provides fully updated human beliefs to
store in the state si+1, ∀x ∈ X:

valHi+1(x) =

 vali+1(x), if H ⋏i+1 x and
obsi+1(x) = OBS

val′Hi+1(x), otherwise
Note that before starting the planning process, the obser-

vation process is executed once on the initial state s0. This

allows us to potentially correct the estimated human beliefs
with the facts the human should initially be able to observe.

The definition of the set Places, i.e. how the environment
is divided into different places, is guided by the shape of
our state transition function. Hence, a place ∈ Places is an
area in the environment such that, when situated in it, agents
are aware of each other’s activity and they can assess every
observable fact located in it.

Note that unlike in DEL [29], our knowledge representa-
tion is simple and prevents us from expressing agents being
uncertain about a fact. In line with the classical closed-world
assumptions, agents either know the truth or have a false
belief w.r.t. the ground truth. We consider a straightforward
scenario in which the human is “unaware” of non-observed
changes in the environment. This results in estimated false
human beliefs, helping to detect whether a non-observed
robot action can disrupt a seamless collaboration.

VI. RELEVANT FALSE BELIEF: DETECTION & SOLUTION

In this section, we explain our procedure to detect when
a false human belief should be corrected and how.

A. Definition and Detection
The human and the robot carry individual distinct beliefs,

while the two can be aligned, or diverging when the human
has a false belief. To produce a legal solution plan the robot
is fine with such false human beliefs unless they are qualified
as relevant (Definition 6). In such cases, the relevant false
belief needs to be tackled.

Definition 6: A relevant false belief is a false belief that
influences the next action(s) the human is likely to perform,
either in terms of number, name, parameters, or effects. This
can be written as follows: A state si contains a relevant false
belief if either (1) or (2) is true:

ref(tnH
i , valHi ) ̸= ref(tnH

i , valRi ) (1)

{γ(si, a) | ∀a ∈ ref(tnH
i , valHi )}

̸= {γ(si, a) | ∀a ∈ ref(tnH
i , valRi )} (2)

We consider that as soon as a false belief has an effect on
human actions it should be tackled. An interesting future
work could be to check in a principled way the overall
positive and detrimental impacts of this false belief on
collaboration. But it is out of the scope of this work.

B. Solved with communication
A state containing a false human belief marked as relevant

must be handled. The first way to do it is by planning
communication actions such that the robot communicates
only the required facts to the human. This allows to correct
false human beliefs that are relevant, but false beliefs that
are “non-relevant” will remain.

1) Modeling Communication Actions: We propose a
generic communication action schema (ca) in this context.
An agent φi can communicate an assertion x = z (with
x ∈ X and z ∈ Range(x)) via the action caφi,φj

(x, z) if
valφi(x) = z and valφj (x) ̸= z. The effect of caφi,φj

(x, z)
corresponds to valφj (x) ← z. Such actions are considered
equally costly and instantaneous.



2) Communicate Only the Required Facts: Definition 6
indicates if there is at least one diverging state variable
in the human beliefs causing adverse effects, but without
identifying which one(s). Hence, we explain a subroutine
below with the three steps, describing how we first identify
the pertinent state variables to align, and then how the cor-
responding communication actions are created and inserted
into the robot’s plan.

1) Store each state variable whose value differs in the hu-
man beliefs from the robot beliefs: Xdiff = {x | x ∈
X, valHi (x) ̸= valRi (x)}.

2) Build, for each stored state variable x ∈ Xdiff , a
communication action caR,H(x, valRi (x)), all stored in
a set CAdiff .

3) (Breadth-First Search.) The source is si. Applying
each ca ∈ CAdiff generates a new state by aligning
exactly one state variable in the human beliefs s.t.
s′i = γ(si, ca). The search continues until the first state
s′i selected to expand doesn’t contain a relevant false
belief. The communication actions used from the root
until this selected state are retrieved in a set CA.

Once the above subroutine finishes, the
retrieved communication actions in the set CA =
{caR,H(x1, val

R
i (x1)), ..., caR,H(xj , val

R
i (xj))} must be

inserted in the plan for belief alignment. Thus, Definition 2
is redefined to be sound w.r.t. our approach. An edge can
now either be a human action oh or a robot action or

with a set of communication action CA. At each step,
humans perform Observation, while the robot executes each
communication action ca ∈ CA, making the human’s belief
to update instantaneously.

The set CA is inserted before the diverging human actions
and after the closest state where agents are co-present. But
it could be interesting to reason with a better plan evaluation
system to find the best place to insert this set.

C. Solved by delaying action

So far we relied on communication, but depending on the
environment (e.g. noisy), communication can be cognitively
demanding. Thus, when the relevant false belief is due to
a non-observed robot action, we propose to also consider
implicit communication by postponing the pertinent robot
action until the human is estimated to be observing its
execution. This prevents false beliefs from even occurring.

First, a branch using communication is explored and the
state variables concerned by the relevant false beliefs are
retrieved (through all ca ∈ CA). Then we check if the
divergence is produced by a non-observed action. For now,
it is done by checking if the relevant divergence concerns
only one inferable state variable and if it was not present in
the initial state. After, we identify which action creates the
divergence by sequential regressing the current branch/trace.
Hence, we can identify when the relevant divergence appears
and which action should be delayed. Once identified, we
create another branch in the plan just before the identified
action. In this new branch, DELAY actions are inserted in
the robot’s plan until the human is co-present. When the

human is co-present again, the identified action is inserted
and observed by the human. Then the nominal planning
process is resumed.

VII. EVALUATION

Referring to the related work section, we are not aware of
an implemented planning system that can be used as a base-
line. Hence, we use the HATP/EHDA solver to help present
our approach’s results on three novel planning domains.

1) Cooking Pasta Domain: The running example corre-
sponds to a specific problem in this domain. In fact, agents
and pasta can initially either be in the kitchen or in the
adjacent room, the stove might be on or off and there might
be salt or not in the water. In the results, we will focus on
the following three state variables from X . Both stoveOn
(OBS) and saltIn (INF) are relevant to the human, unlike
Clean (INF) which only concerns the robot.

2) Preparing Box Domain: A box with a sticker on it and
filled with a fixed number of balls is considered prepared and
needs to be sent. Both agents can fill the box with balls from
a bucket, while only the robot can paste a sticker and only
the human can send the box. The bucket can run out of balls,
so when one ball is left, the human moves to another room
to grab more balls and refill it. The number of balls in the
box is inferable, while all other variables are observable. In
the following, three boxes have been considered.

3) Car Maintenance Domain: The washer fluid (OBS) and
engine oil (INF) levels have to be full before storing the oil
gallon in the cabinet (INF). Only the robot can refill both
the tanks and store the gallon while situated at Front of the
car. Front-left and Front-right headlights have to be checked
and a light-bulb has to be replaced at Rear. Only the human
can check and replace lights, and they can start with either
of these two tasks. Both agents start at Front. The car’s hood
needs to be closed by the human at last.

A. Qualitative Analysis

Considering the cooking domain, we discuss in detail the
plans obtained with our approach to a problem corresponding
to the description given in the introduction. I.e., there is no
initial human false belief, agents both start in the kitchen, the
pasta is in the adjacent room, the stove is off, and there is no
salt in the water. The resulting plans are shown in Fig. 2 and
their detailed presentation explains how the approach works
in practice. Since human is uncontrollable and has different
possible actions, the plan branches and the robot’s actions
are different in each case.

In (left) the human first adds salt and then the robot turns
on the stove. In both cases, thanks to the inference process,
we estimate that the human will be aware of both facts
about the salt (acting) and the stove (co-present). Then while
the human is away to fetch the pasta, the robot cleans the
counter and since the human isn’t co-present their beliefs
aren’t updated, containing now a false belief. Once back,
since counterClean is not observable the observation process
does nothing and the false belief remains. However, this false
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Fig. 2. Plan obtained for the cooking scenario. 3 branches. Left: The human
starts by adding salt. The only false belief is about “counterClean” which is
not relevant for the human agent, hence no comm is added. Middle: While
the human is away the robot turns on the stove and adds salt, creating 2
false beliefs. Once back, we estimate that the human agent will be able
to assess the observable fact “stoveOn” but not “saltIn”. Since the human
agent might add salt again due to this false belief, it is relevant and fixed
with a communication action. Right: The relevant false belief about “saltIn”
is avoided by delaying the robot’s action until the human is co-present.

belief doesn’t affect human actions (non-relevant), hence,
there is no need to align human beliefs.

In (middle and right) the human first fetches the pasta by
leaving the kitchen. Let’s first focus on the (middle) trace.
The robot turns on the stove and adds salt while the human
is away, creating two false beliefs. When returning to the
kitchen, the observation process updates the human beliefs
with the observable facts located in the kitchen. This fixes the
false belief about stoveOn. The robot then cleans the counter,
observed by the human. However, without communication,
the human’s next action will be either “add salt” or “ask the
robot”, but considering the ground truth the human could
directly pour the pasta. Hence, the false belief on saltIn is
relevant and has to be corrected. To do so a communication is
inserted in the robot’s plan and a “delay” branch is created
(right). In this delaying branch, the robot delays the add
salt action until the human is co-present in order to make it
observed (inference process) by the agent. In addition to this
implicit communication, like in (middle), the human assesses
that the stove is on and hence can directly pour the pasta.

B. Experimental Results and Analysis

In each domain, the actions and tasks remain the same.
So here, a problem is defined by a starting agent (R or H)

TABLE I
SUCCESS AND COMMUNICATION RATIO OF DIFFERENT APPROACHES.

Domain HATP/EHDA Only Comm With Delay
S S I.Div.B. Comm Comm

Cooking 18.6% 6.9% 69.5% 65.2%
Box 25.0% 14.3% 79.7% 75.0%
Car 12.5% 0.0% 68.8% 64.1%

Average 18.7% 7.1% 72.6% 68.1%

and a pair of initial beliefs (valR0 , val
H
0 ). Initial ground truth

(val0 ⇔ valR0 ) is defined by setting each state variable to
an initial value. But, 5 selected state variables can be set to
2 possible values instead of 1. Among these selected ones,
3 can diverge in human belief. This generates 256 pairs of
initial beliefs where 12.5% of them include initially aligned
beliefs. Then, considering the starting agent, we obtain 512
problems for each domain. Each of the 1536 generated
problems has been solved by HATP/EHDA, by our approach
using first only communication and then using also delay.
The obtained quantitative results appear in TABLE I.

The overall success rate (S) and the one for initially di-
verging beliefs (SI.Div.B.) are shown for the HATP/EHDA
solver. As expected, this solver always finds legal plans when
dealing with initially aligned beliefs, but the low value of
SI.Div.B. reflects how poorly it handles belief divergences
without specifically designed action models. Our approach
always finds legal plans so we omitted its success rates in
the last two columns, and we can say that it solves a broader
class of problems.

Furthermore, considering the initially diverging beliefs and
the divergences created along the planning process, more
than 87.5% of all problems involve belief divergences. How-
ever, when using only verbal communication, only 72.6%
of the generated plans include communication actions. This
means that our approach communicates only when neces-
sary, and not systematically. The amount of communication
is even reduced to 68.1% when delaying actions. In the latter
case, only delayed branches that do not imply the human to
wait are kept.

VIII. DISCUSSION

The underlying scheme allows just a single agent to
execute a “real” action at a time. However, a post-process
can allow the execution of actions concurrently [31], how-
ever, note that the domain modeler has modeled Prh as a
sequential joint task. Parallelism is not considered in the
current modeling and planning process, which limits the
potential for concurrent executions. However, we are working
on extending the framework to enable systematic planning
with concurrent actions, aligning with [32].

We believe our modeling-level SA proposals could fit in
any other planning approach framing multi-party systems
having one controllable agent while can only hypothesize
remaining agents’ behaviors (e.g., human-centered AI).

Agents’ SA models cannot simply refute a false belief,
they can only assess new true facts to correct them. E.g.,



assume the human wrongly believes that the pasta is in
kitchen. The SA does not help refute this when the agent
is in kitchen because appropriate knowledge reasoning w.r.t.
NotAt(Pasta) in kitchen is not taken into account. However,
such issues do not affect the completeness and, if necessary,
our approach tackles such cases as relevant false beliefs.

We have planned a user study for the future to conform
our framework with reality and validate the approach.

We discussed earlier that DEL knowledge representation
is more expressive and flexible, and can handle uncertainty.
However, it requires an augmented action schema to accu-
rately maintain each agent’s beliefs. Think of a specification
for “move” action manually listing all the environmental
facts to be observed by an agent for managing their beliefs.
In our case, it is implicitly maintained within a state.

We can consider running a set of rules (e.g., graph-based
ontology) to bring new interesting facts in the state based
on a set of known facts. We believe that this aspect opens
up new possibilities in the future to integrate human-aware
collaborative planning and ontology.

IX. CONCLUSION

We propose an extension to a Human-Aware Task Planner
called HATP/EHDA. The planner plans and implicitly coor-
dinates the robot’s actions with all estimated possible human
(uncontrollable) behaviors that are then emulated to generate
a new state. Our extension and contribution are, first, to in-
tegrate a Situation Assessment based reasoning system in the
planner. This allows for maintaining distinct agents’ beliefs
based on what they can/should observe. Compared to existing
epistemic planners, this simplifies the action descriptions by
focusing on their effects on the world, and not how they
influence each agent’s beliefs. In addition, we propose to
detect false human beliefs and tackle only the necessary ones
in a principled way. First, we propose minimal and proactive
explicit communication. Second, when pertinent, we propose
an implicit communication by postponing the non-observed
robot action until the human is co-present to observe it.

The relevance of false belief, when to optimally commu-
nicate and parallelization are interesting future works, and
we aim at conducting a user study to validate the benefits of
the proactive robot behavior that our approach permits.
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