
HAL Id: hal-04211919
https://laas.hal.science/hal-04211919v2

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Challenging Human-Aware Robot Navigation with an
Intelligent Human Simulation System

Anthony Favier, Phani Teja Singamaneni, Rachid Alami

To cite this version:
Anthony Favier, Phani Teja Singamaneni, Rachid Alami. Challenging Human-Aware Robot Naviga-
tion with an Intelligent Human Simulation System. Social Simulation Conference (SSC), Sep 2023,
Glasgow, United Kingdom. �hal-04211919v2�

https://laas.hal.science/hal-04211919v2
https://hal.archives-ouvertes.fr


Challenging Human-Aware Robot Navigation
with an Intelligent Human Simulation System

Anthony Favier 1,2, Phani Teja Singamaneni 1, and Rachid Alami 1,2 ⋆

1 LAAS-CNRS, Université de Toulouse, CNRS, INSA, UPS, Toulouse, France
2 Artificial and Natural Intelligence Toulouse Institute (ANITI)

{anthony.favier, ptsingaman, rachid.alami}@laas.fr

Abstract. The final validation of human-aware social robot navigation
schemes requires testing and evaluation with real-life humans. During
the prototyping and developmental phase, however, experiments with
real humans for debugging and testing may not be a feasible option.
Simulators can help overcome this issue, but the lack of available in-
telligent human avatars with rational behaviors restricts the testing to
simple scenarios. In this regard, we propose a system for simulating an
autonomous intelligent human agent specifically designed to act and in-
teract with the robot navigating in a simulated environment. Further,
the proposed system provides interactive GUI modules to run repeat-
able scenarios and visualize the interaction data. We conduct a series of
experiments that show how the proposed Intelligent Human Simulation
(InHuS) system can help tune and debug social navigation better.

Keywords: Human Simulation · Intelligent Human Avatar · Human-
aware robot navigation

1 Introduction

Significant efforts are being dedicated today toward the development of robots
that interact, assist or work side-by-side with humans. However, people work-
ing in the field of human-robot interactions (HRI) face constraining issues while
testing and evaluating their systems. Apart from being mandatory to validate
mature systems, experimenting using real humans and robots is burdensome:
they are slow, hardly repeatable, expensive, etc. Moreover, the system needs
to be run extensively for debugging and tuning before it reaches maturity. Do-
ing so with real-life experiments is generally a long and tiresome process where
colleagues in the lab and volunteers spend unproductive hours, if not days, inter-
acting with a robot running a system under debugging. Moreover, such methods
require exclusive physical access to the robot, a place to run the tests, and cannot
run faster than real-time or be parallelized.
⋆ This work has been partially funded by the Agence Nationale de la Recherche

through the ANITI ANR-19-PI3A-0004 grant and by the Horizon Europe Frame-
work Programme through the euROBIN Grant 101070596.
ORCiDs: 0009-0009-1200-319X, 0000-0003-4513-8954, 0000-0002-9558-8163.

https://orcid.org/0009-0009-1200-319X
https://orcid.org/0000-0003-4513-8954
https://orcid.org/0000-0002-9558-8163


2 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

Simulations are well suited for such tasks as they allow working without a
real robot or a physical space. Further, they allow multiple tests to run simul-
taneously and faster than in real life. The simulated environment for the tests
can be changed very easily in contrast to real-life tests. However, simulating re-
alistic human behaviors and interactions is tough, which could make simulations
unreliable. Consequently, HRI researchers face some difficulties such as: “How to
test repeatedly and intensively their systems even when they are not sufficiently
robust?” and “How to challenge their systems in a large variety of environments
and situations?”. Therefore, there is a need for an “intelligent artificial human”
that would help challenge the robot’s interactive and decisional abilities.

1.1 Human simulations in human-aware robot navigation

Being a part of HRI, the field of human-aware social robot navigation inherits
all these limitations. One way that is employed for simulating an intelligent
avatar in this field is to manually control the human avatar, in real-time [2].
This can be done using a variety of devices like a gaming controller, keyboard,
or motion capture. Such approaches require a real human operator only focused
on controlling the avatar, which brings back some of the mentioned limitations
like human fatigue. Autonomous human avatars on the other hand seem to offer
an adequate solution to this, but they often lack intelligence and rationality.

Most of the current autonomous avatars available are either scripted or re-
active. A scripted avatar executes a series of predefined actions, like following a
fixed path, without being reactive to its environment which makes interactions
very limited. Reactive agents use models like social force [4] or optimal reciprocal
collision avoidance (ORCA) [16]. These systems are highly scalable and can sim-
ulate groups or even crowds composed of a large number of agents. MengeROS
[1] and PedSim_ROS3 are some examples. Despite their number, the generated
agents usually fail in intricate social scenarios. Some recent works like Virtu-
alHome [10] and SEAN [14,15] discuss simulating human agents to challenge
robot systems, but the navigation of the agents in these systems is still based
on reactive-only models. The work presented in [18] proposes a learning-based
method to generate more realistic pedestrian navigation. This ongoing work
shows an interesting navigation behavior like waiting and letting the other agent
pass embedded in iGibson [12] simulator. However, this work is more focused on
motion generation than decision-making to solve conflicts.

We propose the InHuS System to contribute to the lack of intelligent and ra-
tional human agents with conflict-resolution skills to challenge the human-aware
robot navigation systems. Our contribution includes 1) an intelligent human
agent controller, 2) a high-level interface to control the simulated agents, and 3)
a GUI to plot execution data and metrics for evaluating the interaction. Such
a system could help people working in the field of human-aware robot naviga-
tion to test and debug their schemes. Our system is designed to run, analyze
and evaluate repeatable and long navigation scenarios involving a robot and an
3 https://github.com/srl-freiburg/pedsim_ros



Human Simulation to Challenge Human-Aware Robot Navigation 3

autonomous reactive and rational avatar. This work focuses on intricate and
narrow scenarios where, in addition to being reactive, rational decisions should
be taken in order to solve the conflicts occurring. Note that our contribution
is focused on navigation decision-making and not the motion generation part.
Throughout this paper, we use the term ‘rational’ in a meaning close to Goal
Reasoning [17,5], i.e., the ability of autonomous agents which can dynamically
reason about and adjust their goals. It enables the agents to adapt intelligently
to changing conditions and unexpected events, allowing them to address a wide
variety of complex situations.

2 InHuS System

The InHuS System4 works along with a human operator, a chosen simulator,
and the challenged robot controller as depicted in Fig. 1. The system is mainly
implemented using ROS [11]. The InHuS System is three-sided. First, the system
comes with a high-level interface called Boss that helps manage the simulated
agents. Secondly, there is the main part which is the intelligent human avatar
controller itself, called InHuS. Finally, a GUI provides an interactive visualization
of the data and metrics computed by InHuS during execution that can help to
evaluate interactions. We present below some details for each component.

InHuS System

Inputs Human Operator

Robot Velocity 
CommandsRobot Controller

Simulation Data

Simulation Data
Simulator

Logs 
& 

Metrics

Human Velocity 
Commands

InHuS 
Human Controller 

Goals, 
Attitudes, 
Manual 

commands

Goals

Boss 

Plots

GUI 

Fig. 1. The InHuS System interacts with three external systems: the simulator, the
robot controller, and a human operator. Our system is separated into three parts: the
Boss high-level interface gathering inputs from the human operator, InHuS which is
the actual human controller, and a GUI to plot the metrics and other data produced.

2.1 Boss

For the human operator to easily control the simulated agents and run repeatable
scenarios, we provide a simple graphical user interface component called Boss.
Predefined or manually entered goals can be sent to the human, the robot, or
both. Goals are by default considered as “Pose goals” that only require one
4 https://github.com/AnthonyFavier/InHuS_Social_Navigation



4 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

navigation action to be achieved. However, the human agent (only) can handle
“Compound goals” that need a specified sequence of navigation and waiting for
actions to be achieved. This type of compound goal is useful to emulate more
complex activities. For example, “Make coffee” could be described as a sequence
of three actions: nav(coffeeMachine), wait(15s), nav(myOffice).

The Boss allows defining scenarios with start positions and goals for each
agent to repeatedly generate the same situation. Running a scenario consists of
first sending each agent to their respective starting position. Then, the corre-
sponding goals are sent to the human and the robot. A delay can be specified
while starting the scenario to delay either the robot’s or the human’s goal. This
is very useful to adjust the timing of a specific situation or conflict. The Boss
can also put an agent in “endless” mode where the agent continuously gets a new
goal from a given list after completing one.

Each navigation action can specify a radius for the “Pose goal”, within which
a new “Pose goal” is randomly sampled. This mechanism adds randomness to the
execution and diversifies the situations encountered, especially in the “endless”
mode. Setting the radius to zero disables the randomization and selects the given
goal.

All the goals, scenarios, and endless goal sequences are defined using an XML
format. Hence, defining new goals or scenarios is straightforward. There is an
XML goal file associated with each map/environment. Thus, it is easy to switch
between environments since the corresponding goal file is automatically loaded.

2.2 InHuS

The macro component InHuS is mainly in charge of controlling the avatar and
generating rational behaviors. InHuS itself is made of several components as
depicted in Fig. 2. However, three components, namely HumanBehaviorModel,
Supervisor, and GeometricPlanner, constitute the major functional part of In-
HuS. We discuss each of these major components in detail.

HumanBehaviorModel: The HumanBehaviorModel is responsible for most of
the rational behavior of the agent. The first role of this component is to manage
the goals. Goals can either be received from the Boss component or generated

Nav ActionGoal

Progress

Supervisor
Plan

Task Planner
Progress

Geometric
Planner

Goal

Metrics

Velocity Commands

Human Behavior Model

Simulator Interface 
In / Out

Final Velocity 
Commands

Low Level Controller

Log ManagerGoal, 
Attitude

Manual
Commands

Logs 
& 

Metrics

Simulation Data

Human Velocity CommandsSimulation Data

Velocity Commands

Fig. 2. The human controller InHuS with its components and subsystems.



Human Simulation to Challenge Human-Aware Robot Navigation 5

by the HumanBehaviorModel using the same XML file as the Boss. When a goal
is selected, it is sent to the Supervisor for execution.

This component is also responsible for detecting and handling navigation
conflicts. Currently, the kind of navigation conflict handled by InHuS is path
blockage (e.g. another agent standing in a doorway). While the human agent is
navigating, a path to the goal is calculated at regular intervals using Dijkstra’s
algorithm, and its length is tracked to detect such conflicts. If the tracked path
length increases significantly or the path ceases to exist, it could mean that
another agent is blocking either the only possible way or the shortest way. When
such situations are detected, the plan execution is temporarily suspended, and
the agent performs an approach action to get close to the blocking location. This
shows the agent’s intention to move in a specific direction and might induce the
blocking agent to react and clear the way. Eventually, once the avatar is at a
specified distance of the blocking location, here set to 1.5m, the agent stops its
approach and actively waits for the path to be cleared.

To generate a lot of different and specific situations, we created what we call
Attitudes. They are operating modes affecting both goal decisions and reactions
toward the other agents. One can activate them through the Boss to generate
diversified behaviors of the agent. Some of the Attitudes currently implemented
in InHuS consist of: 1) randomly picking a new goal, like someone suddenly
changing their mind, 2) harassing the robot by constantly going in front of it,
like a child would do [8], and 3) stopping close to the robot and looking at it for
a few seconds before resuming its goal which emulates a curious behavior.

The final purpose of this component is to build the perception of the hu-
man agent based on the map and information about the other agents from the
simulator. We build the perception by directly accessing the simulation data
rather than adding simulated sensors to the human avatar. Using this percep-
tion, we compute the visibility of the human agent and then update the human’s
knowledge about the robot’s position and speed.

Supervisor: The Supervisor is a central component as it coordinates differ-
ent components to execute the plan and achieve the current goal. When the
Supervisor receives a goal from the HumanBehaviorModel, it requests the Task-
Planner component a plan to achieve the goal. For now, the plan generation is
quite simplistic. For a “Pose goal”, a plan filled with a single navigation action is
generated. For a “Compound goal”, the sequence of navigation and waiting ac-
tions is extracted from the XML goal file and the plan is populated. Despite the
simplistic plan generation, this architecture handles complex goals that require
several steps to be achieved and emulate human activities.

The execution of each action of the plan is then supervised by the Supervisor
by sending requests to other components. When a navigation action needs to
be performed, the Supervisor starts by sampling a random position if the given
action radius is not zero. Then, it requests the GeometricPlanner to plan for the
target position without considering other agents initially. This way, the avatar
starts following the shortest path, and we initialize the conflict detection. After



6 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

this, the system starts to consider the other agents, and the Supervisor peri-
odically requests the HumanBehaviorModel component to check for potential
navigation conflicts. The Supervisor can suspend and resume the plan execution
at any time, which can be used to resolve the detected conflicts or to generate
specific reactions like the Attitudes.

GeometricPlanner: The last major component is the GeometricPlanner. This
motion planner component receives a target position to reach from the Supervi-
sor and generates velocity commands to make the avatar move. This component
defines how the agent moves around and adapts its velocity to the other agents
in the scene. Since the system is implemented in ROS, we use the standard ROS
navigation stack for the GeometricPlanner.

The planner used in InHuS is a publicly available human-aware navigation
planner called CoHAN [13]. It is built over the ROS navigation stack and uses a
local planner based on a modified version of the timed elastic band with human-
aware properties. We benefit from the high-level decision-making of InHuS and
the enhanced local navigation of CoHAN with trajectory predictions. Moreover,
CoHAN is highly tunable which helps to generate different agent behaviors.

2.3 Logs, metrics and GUI

The InHuS system logs the execution data like the positions and speeds of the
agents along with some computed metrics. All the logged data is sent to the GUI
component, which generates interactive plots. These plots can help evaluate the
interaction and thus the performance of the given robot controller. The snapshot
of the GUI shown in Fig. 3 shows two kinds of visualizations. On the right side,

Fig. 3. Overview of the GUI interface which is organized as follows. On the right
side are shown the paths taken by the agents and colored over time. On the left side,
several metrics and data produced by InHuS are plotted over time on graphs. Additional
widgets help to configure the plots.



Human Simulation to Challenge Human-Aware Robot Navigation 7

there is a colored visualization of the paths taken by each agent. These paths
are colored over time according to a corresponding legend that helps estimate
an agent’s position at a specific moment. The left side is composed of several
plots showing some computed metrics over time. The first plot is about conflict
detection and solving. It shows the length of the path to the goal computed when
checking for conflicts. Without any conflict, the path length should decrease
linearly over time. If it’s not the case, the avatar has been disturbed during
the navigation. This plot also shows the conflict state of the agent: Nominal
(no conflict), Approach (conflict detected), Blocked (stopped and waiting). The
subsequent plots show over time the speeds of each agent, their relative speed,
the distance separating them, and a metric called time to collision (TTC). This
metric estimates the time remaining before the agents collide with their current
velocities. We can argue that TTC corresponds to a “threat feeling” since a
low TTC value corresponds to a high threat of collision. Hence, social robots
should be tuned to not exceed a minimum TTC value to make humans more
comfortable.

3 Experiments

In this section, we show some results through a set of experiments to high-
light how our system can help challenge human-aware robot navigation systems.
First, we discuss the limits of reactive-only systems to strengthen the need for
rational avatars. Then, we present how our system effectively challenges robot
navigation systems and we interpret the corresponding plots. Next, we show how
the InHuS System can compare the human-aware performances of two different
robot controllers. Finally, we present additional experiments showing the diverse
behaviors that can be produced using the Attitudes, and how “long runs” can
benefit the development of a robot controller.

3.1 Limits of reactive-only agents

Most of the current human agent simulations used by the social navigation com-
munity rely either on the social force model or ORCA. In order to highlight the
limitations of such approaches, we present results obtained with a PedSim_ROS
(or simply PedSim) agent. PedSim is a pedestrian simulator that uses the social
force model. It is very efficient for generating crowds to test robot navigation.
However, at the individual level, the simulated agents are purely reactive and
have no decisional abilities like most pedestrian simulators.

Consider the doorway scene shown in the left part of Fig. 4. Both agents
have to cross a narrow opening. Here, the robot is blocking the way that the
human agent intends to cross. The PedSim agent approaches the robot and tries
to push itself through, but it fails due to a very high value of social force. The
agent never stops moving and tends to go right or left along the wall before
wiggling again just in front of the robot. This confusing behavior can make the
agent’s intentions unclear to the robot planner. The narrow corridor scenario,



8 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

Fig. 4. In the doorway scenario (left), the reactive-only (Pedsim) agent never stops
moving while trying to go through the robot even though its path is blocked. In the
narrow corridor scenario (right), the agent squeezes itself between the wall and the
robot colliding with both.

shown in the right part of Fig. 4, also exposes some limits. In this scene, there is
not enough space for the agents to cross each other, and the only solution is for
one of them to back off. Here the path is blocked by the static robot. The PedSim
agent slowly gets closer and closer to the robot before squeezing itself between
the wall and the robot. For some reason here the social forces allowed the agent
to pass, unlike the previous example. It highlights that the PedSim agent doesn’t
use a defined hitbox or footprint for the agent and relies only on repulsive social
forces to prevent collisions. This lack of defined collision shapes makes the agent
temporarily pass through the walls and other agents. As a consequence, it breaks
many intricate scenarios where a rational decision should be taken and results in
unrealistic situations. Despite being efficient for large spaces or crowds, based on
the above observation, we can state that in intricate scenarios such approaches
can lead to confusing and even unrealistic behaviors.

3.2 Interpretation of plots with human-aware planner

The InHuS System is able to generate challenging situations and associated logs
to allow further evaluation. Here, we present one such conflict and a detailed
interpretation of the corresponding plots. The plots were produced while chal-
lenging the CoHAN system in the doorway scenario.

The robot starts closer to the opening and enters the doorway first. The
execution can be analyzed with the metric plots and the time-colored paths
of the agents in Fig. 5. We notice that the robot’s speed (red line on the sec-
ond graph) goes down around 50 s as it is entering the doorway and creating a
conflict. The conflict is detected by InHuS (zero path length = no path), and
the agent switches to the approach state (green to the yellow line on the first
graph). The non-zero path length in the approach state corresponds to how the
approach is performed. In order to keep moving despite the blocked path, the
GeometricPlanner is requested at a defined frequency to plan without consid-
ering the robot (all non-zero path length). In between these requests, to check
if the path is still blocked, the conflict detection plans while considering the
robot (zero path length). When the avatar is at a predefined distance from the
blocking robot around 53 s, it switches to the blocked state (red line) to stop
and wait for the path to be cleared. Further, the time-colored paths show that
the GeometricPlanner made the avatar move aside while approaching to avoid



Human Simulation to Challenge Human-Aware Robot Navigation 9

H

R

Start H
Goal R

Goal H

Start R

45

50

55

60

65

Time (s)

Fig. 5. A condensed view of the InHuS GUI and MORSE simulator for the doorway
scenario with a robot running the CoHAN planner. Several plots depict the detection
and resolution of the conflict created.

blocking the robot. As a result, the agents were no longer moving towards each
other, and thus, there was no longer any collision threat (no TTC values). When
there is no more collision threat, around 51 s, the robot’s speed starts to in-
crease again. Such behavior is a good sign of human-aware properties and might
increase human comfort.

From the plots produced by our system, a lot of useful information can be
extracted for improving or evaluating the social robot planner’s performance like
a) finding ways to decrease the blocked state time for the human, b) maintaining
a particular threshold for TTC, c) slowing down near the human, or waiting for
the human to cross the door without blocking.

3.3 Quantitative comparison between two robot controllers

Our system can be used to run similar scenarios repetitively to produce robust
metric values. These values can help to evaluate the human-aware performances
of a given robot controller. To show this, we present a comparison between two
different robot controllers. The first one is again the CoHAN system, and the
second one is the Simple Move Base (or SMB). It uses the teb_local_planner and
the ROS navigation stack with default parameters. We just add an additional
process to consider the human agent as a static obstacle to avoid it, so it is not
human-aware. Therefore, we should be able to notice a clear difference through
the metrics computed by our system. For this comparison, we used three different
scenarios: 1) The doorway scenario where the agents have to cross a narrow
opening, 2) the corridor scenario where the agents cross each other with just
enough space, and 3) the open space where they cross each other without any
environmental constraints. We performed 10 repetitions of each scenario for each
robot controller. For each set of 10 repetitions, we extracted the mean values
of three different metrics and presented them in Table 1. The metrics are the
following. First, the time to goal (TTG) is the time taken by the avatar to reach
its goal. Second, the minimum distance between the robot and the human (Min



10 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

HRDist). And, the minimum time to collision (TTC). Intuitively, we want the
TTG to be as small as possible, the minimum HRDist to be as high as possible,
and since a low TTC value represents a collision threat, we want the min TTC
to be as high as possible.

Table 1. Mean values of three InHuS metrics over 10 repetitions in three different
scenarios and with two different robot controllers. Bold values indicate when the cor-
responding robot controller has better performance than the other.

CoHAN SMB
Experiment TTG(s) Min Dist(m) Min TTC (s) TTG(s) Min Dist(m) Min TTC (s)

Doorway 18.38 2.32 1.33 18.26 2.23 1.16
Corridor 16.34 2.06 1.03 17.05 1.59 0.81

Open space 9.55 2.52 1.61 11.01 2.34 1.18

At first glance, we see in Table 1 that almost all CoHAN values are better
than SMB values. Due to the nature of the doorway environment, the execution
of the scenario is quite constrained which explains why the values are not too
different between the two controllers. However, we notice anyway that, compared
to SMB, the CoHAN planner tends to keep a greater distance between the agents
and a greater TTC (lower threat of collision). The time to goal of CoHAN is
slightly higher because the robot slows down when crossing and moving in the
direction of the human. Thus, it is the price to pay in this scenario to maintain
adequate TTC values.

In the corridor scenario, The SMB robot tends to wait until the last moment
to move aside, which is threatening. On the other hand, the CoHAN robot
proactively moves to one side of the corridor. As a consequence, it leaves more
space for humans and reduces the threat of collision, which is visible in the
obtained values. Also, this pro-activity has the effect of smoothing the trajectory
of the avatar, which makes this last one reach its goal faster.

Finally, the open space scenario is a bit similar to the previous one. The SMB
robot waits until the last moment to avoid the human, which puts the load of
the avoidance maneuver on the human. As a result, the human has to move aside
which extends the duration to reach the goal. Also, due to the same behavior,
the SMB robot is on average closer to the avatar and more threatening. Since the
CoHAN robot moved again aside early, its metric values are noticeably better
than SMB.

In summary, the human-aware behavior of the CoHAN controller was cap-
tured through significant value differences in the computed metrics compared
to a non-human-aware robot controller. This implies that our system can help
evaluate and compare human-aware robot controllers.

3.4 Generating different behaviors with Attitudes

By activating Attitudes, InHuS is capable of producing more complex behaviors
to diversify the conflicts and challenges imposed on the robot. We present the



Human Simulation to Challenge Human-Aware Robot Navigation 11

Fig. 6. Behaviors obtained by activating the Harass and StopAndLook Attitudes. With
Harass, the human is always in front of the robot. With StopAndLook, when close to
the robot, the human stops to look at it for a few seconds.

time-colored paths for the execution of two Attitudes : Harass and StopAndLook
in Fig. 6. Concerning the Harass Attitude, by paying attention to the colors, we
see that the human is always in front of the robot that continuously tries to
avoid the harassing agent causing erratic movements. The robot should be able
to detect such non-cooperative behavior from humans and act accordingly. On
the same figure we see the execution of the StopAndLook Attitude. The color
discontinuity behind the human marker shows how the human suspended its
goal to stop and briefly stare at the robot before moving again. A robot not
pro-active enough could be disturbed by the sudden stop of the human, which
could be a situation of interest to handle.

3.5 Long run scenarios

Fig. 7. Execution of the long run scenario using the TDP robot planner and InHuS.
We see the complete set of time-colored paths on the left. On the right, the same path
is cut, around the moment when the robot got stuck in the wall.

The proposed system can help test the stability and robustness of the robot
planner by conducting long randomized runs. Indeed, thanks to the Boss com-
ponent, possibly randomized goals can be sent autonomously to the agents. This
can generate unexpected situations and conflicts that can be of interest. Fig. 7
depicts such test conducted with InHuS and a human-aware robot planner from
Kollmitz et. al. [7] here referred to as TDP. The agents were made to endlessly
loop over four goal-positions (each with a 1m radius) in reverse order to cre-
ate as many conflicts as possible. After 3 minutes, the robot got stuck in the
wall of the doorway, indefinitely blocking the path for the human. In addition
to highlighting problematic situations where the robot doesn’t act as expected,
long runs can expose low-level issues like unexpected crashes or memory leaks.



12 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

4 Discussion

Although InHuS provides an autonomous human agent, if needed, the agent can
be controlled manually. We do not yet provide a handy controller, but veloc-
ity commands generated by any means can be sent to the Boss component to
control the human. This extends the usability of InHuS as one can use scripted
trajectories or motion capture to control the human agent in the simulator.

The proposed system interacts with an external simulator and robot con-
troller. Since the system is mainly implemented using ROS, switching from one
simulator to another is straightforward if it has a ROS interface. InHuS has spe-
cific components to abstract the simulation data format. Thus, just by slightly
editing these components we were already able to run InHuS on three different
simulators: MORSE [3], Stage5 and Gazebo [6]. Furthermore, any robot con-
troller using the ROS Navigation Stack can be directly used with InHuS.

Simulating intelligent human avatars is a novel field and only few works apart
from ours try to address this limitation. A similar work in ROS2 was recently
presented in [9]. It is clear that the idea of intelligent human agents is of interest
to the community, and it is a necessity to test social navigation effectively. Like
any other system, InHuS has limitations too. We claim to generate only reactive
and somewhat rational behavior, which is still far from natural or realistic human
behavior. We currently handle scenarios with two agents only, the human and the
robot. We can run scenarios with other human agents, but they will be treated
like robots.

5 Conclusion and Future work

Human-aware social robot navigation is rapidly growing, but the community
lacks good human agent simulations to test and debug their systems. The exist-
ing reactive approaches offer only limited testing. Through the InHuS system,
we proposed a pertinent approach to address this issue. We showed that our sys-
tem could generate conflicting situations that need resolution by making rational
choices. Moreover, all the metrics and data recorded during execution and their
visual plots allow us to evaluate the interaction and behavior of the robot. With
such evaluation, we showed that we could compare different robot controllers.
InHuS can also generate various tunable behaviors that can diversify the situa-
tions and conflicts imposed on the robot, and thus, it helps to debug and tune
the system. Long runs provide additional potential ways to improve the system.

We already use this system to test our human-aware motion planners and
refine them over time using the tests conducted. In the future, we plan to inte-
grate situation detection and diagnosis in the long run to catch the problematic
situations that need to be analyzed afterward to tune, refine or extend a given
planner. We also plan to handle scenarios with more human agents, like groups
and crowds, using a combination of intelligent and reactive agents.

5 https://github.com/ros-simulation/stage_ros



Human Simulation to Challenge Human-Aware Robot Navigation 13

References

1. Aroor, A., Epstein, S.L., Korpan, R.: MengeROS: a Crowd Simulation Tool for
Autonomous Robot Navigation. arXiv:1801.08823 [cs] (Jan 2018)

2. Echeverria, G., Lemaignan, S., Degroote, A.e.A.: Simulating Complex Robotic Sce-
narios with MORSE. In: Simulation, Modeling, and Programming for Autonomous
Robots, vol. 7628, pp. 197–208. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-34327-8_20

3. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular open robots
simulation engine: Morse. In: 2011 ieee international conference on robotics and
automation. pp. 46–51. IEEE (2011)

4. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Physical re-
view E 51(5) (1995)

5. Johnson, B., Floyd, M.W., Coman, A., Wilson, M.A., Aha, D.W.: Goal Reasoning
and Trusted Autonomy. In: Foundations of Trusted Autonomy, vol. 117. Springer
(2018)

6. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS)(IEEE Cat. No. 04CH37566). vol. 3, pp. 2149–2154.
IEEE (2004)

7. Kollmitz, M., Hsiao, K., Gaa, J., Burgard, W.: Time dependent planning on a
layered social cost map for human-aware robot navigation. In: 2015 European
Conference on Mobile Robots (ECMR). pp. 1–6. IEEE, Lincoln, United Kingdom
(Sep 2015). https://doi.org/10.1109/ECMR.2015.7324184

8. Nomura, T., Kanda, T., Kidokoro, H., Suehiro, Y., Yamada, S.: Why do children
abuse robots? Interaction Studies 17(3), 347–369 (2016)

9. Pérez-Higueras, N., Otero, R., Caballero, F., Merino, L.: Hunavsim: A ros2 hu-
man navigation simulator for benchmarking human-aware robot navigation. arXiv
preprint (2023)

10. Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., Torralba, A.: VirtualHome:
Simulating Household Activities Via Programs. In: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 8494–8502. IEEE, Salt Lake
City, UT (Jun 2018). https://doi.org/10.1109/CVPR.2018.00886

11. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source Robot Operating System

12. Shen, B., Xia, F., Li, C., Martın-Martın, R., Fan, L., Wang, G., Buch, S., D’Arpino,
C., Srivastava, S., Tchapmi, L.P., Vainio, K., Fei-Fei, L., Savarese, S.: igibson 1.0: a
simulation environment for interactive tasks in large realistic scenes. arXiv preprint
(2020)

13. Singamaneni, P.T., Favier, A., Alami, R.: Human-aware navigation planner for
diverse human-robot ineraction contexts. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (2021)

14. Tsoi, N., Hussein, M., Espinoza, J., Ruiz, X., Vázquez, M.: Sean: Social environ-
ment for autonomous navigation. In: Proceedings of the 8th International Confer-
ence on Human-Agent Interaction (HAI) (November 2020)

15. Tsoi, N., Xiang, A., Yu, P., Sohn, S.S., Schwartz, G., Ramesh, S., Hussein, M.,
Gupta, A.W., Kapadia, M., Vázquez, M.: Sean 2.0: Formalizing and generating
social situations for robot navigation. IEEE Robotics and Automation Letters 7,
11047–11054 (2022)

https://doi.org/10.1007/978-3-642-34327-8_20
https://doi.org/10.1007/978-3-642-34327-8_20
https://doi.org/10.1109/ECMR.2015.7324184
https://doi.org/10.1109/ECMR.2015.7324184
https://doi.org/10.1109/CVPR.2018.00886
https://doi.org/10.1109/CVPR.2018.00886


14 Anthony Favier, Phani Teja Singamaneni, Rachid Alami

16. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Robotics research, pp. 3–19. Springer (2011)

17. Vattam, S., Klenk, M.E., Molineaux, M., Aha, D.W.: Breadth of approaches to
goal reasoning: A research survey. In: Annual Conference on Advances in Cognitive
Systems: Workshop on Goal Reasoning (2013)

18. Yige, L., Siyun, L., Chengshu, L., Claudia, P.D., Silvio, S.: Interactive pedestrian
simulation in igibson. RSS Workshop on Social Robot Navigation (2021)


	Challenging Human-Aware Robot Navigation with an Intelligent Human Simulation System

