
HAL Id: hal-04217223
https://laas.hal.science/hal-04217223

Submitted on 25 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Partially Preemptive Multi Skill/Mode
Resource-Constrained Project Scheduling with

Generalized Precedence Relations and Calendars
Guillaume Povéda, Nahum Alvarez, Christian Artigues

To cite this version:
Guillaume Povéda, Nahum Alvarez, Christian Artigues. Partially Preemptive Multi Skill/Mode
Resource-Constrained Project Scheduling with Generalized Precedence Relations and Calendars. 29th
International Conference on Principles and Practice of Constraint Programming (CP 2023), Aug 2023,
Toronto, Canada. �10.4230/LIPIcs.CP.2023.31�. �hal-04217223�

https://laas.hal.science/hal-04217223
https://hal.archives-ouvertes.fr

Partially Preemptive Multi Skill/Mode
Resource-Constrained Project Scheduling with
Generalized Precedence Relations and Calendars
Guillaume Povéda #

Airbus (AI Research), Toulouse, France

Nahum Alvarez #

Airbus (AI Research), Toulouse, France

Christian Artigues #

LAAS-CNRS, Universite de Toulouse, CNRS, Toulouse, France

Abstract
Multi skill resource-constrained project scheduling Problems (MS-RCPSP) have been object of
studies from many years. Also, preemption is an important feature of real-life scheduling models.
However, very little research has been investigated concerning MS-RCPSPs including preemption,
and even less research moving out from academic benchmarks to real problem solving. In this
paper we present a solution to those problems based on a hybrid method derived from large
neighborhood search incorporating constraint programming components tailored to deal with
complex scheduling constraints. We also present a constraint programming model adapted to
preemption. The methods are implemented in a new open source python library allowing to easily
reuse existing modeling languages and solvers. We evaluate the methods on an industrial case
study from aircraft manufacturing including additional complicating constraints such as generalized
precedence relations, resource calendars and partial preemption on which the standard CP Optimizer
solver, even with the preemption-specific model, is unable to provide solutions in reasonable times.
The large neighborhood search method is also able to find new best solutions on standard multi-skill
project scheduling instances, performing better than a reference method from the literature.

2012 ACM Subject Classification Computing methodologies → Planning and scheduling; Applied
computing → Industry and manufacturing; Theory of computation → Optimization with randomized
search heuristics; Theory of computation → Constraint and logic programming

Keywords and phrases Large-scale scheduling problem, partial preemption, multi-skill, multi-mode,
resource calendars, constraint programming, large neighborhood search

Digital Object Identifier 10.4230/LIPIcs.CP.2023.31

Funding This work received the support of the Support from the French ANR-3IA Artificial and
Natural Intelligence Toulouse Institute (ANITI).
Guillaume Povéda: ANITI
Nahum Alvarez: ANITI
Christian Artigues: ANITI

Acknowledgements The authors are grateful to the anonymous reviewers for their constructive
comments. In particular, we thank the anonymous reviewer that pointed out the issue linked
to preemption in the CP-Base model and made inspiring suggestions that leaded to the CP-
SmartPreemption model.

1 Introduction

Multi skill resource-constrained project scheduling problems (from hereon MS-RCPSP) are
critical in business applications like automotive, human resources, aerospace or nuclear
industry [3]; managing efficiently the workforce assigned to perform required tasks directly

© Guillaume Povéda, Nahum Alvarez, and Christian Artigues;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guillaume.poveda@airbus.com
https://orcid.org/0000-0001-9175-3240
mailto:nahum.alvarez@airbus.com
https://orcid.org/0000-0003-1717-2506
mailto:artigues@laas.fr
https://orcid.org/0000-0002-9766-9864
https://doi.org/10.4230/LIPIcs.CP.2023.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

impacts the performance and progress of such businesses. This type of problems have
been widely studied in academia from long, as well as the more general yet less compact
multi-mode model involving non renewable resources [36]. Also, preemption in scheduling
is found in many works due to the flexibility it brings to improve the performance of a
practical application. However, the scheduling literature including both multi skill and task
preemption, all the more grounded in a real business application, is rather sparse [1, 34].

The presence of multiple skilled resources adds more complexity to the problem, and
new types of goals aside the usual makespan and cost optimization, like assignment score
and worker performance [35]. Task preemption adds another layer of complexity, and in
real scenarios usually is tied to resource availability, with special focus in worker shifts and
calendars. Also, it is important to note that whilst a task can be preempted, pausing its
progress, maybe only part of the resources can be freed to make them available for other tasks,
with others being locked in place. This has been already referred to as partial preemption
[25]. Finally, practical problems also contain generalized precedence constraints and resource
calendars, which have been well known from long ago. These constraints extend simple tasks
precedence to detail concrete temporal conditions between tasks. Calendars on the other
hand, define resource unavailability periods, hence both features make the problem harder to
solve [17].

In this paper, we present a method oriented towards a real assembly line use case,
requiring to include all these five features: multi skilled resources, multiple modes, (partially)
preemptive tasks, calendars and generalized precedence constraints. Hence, we call our model
the partially preemptive- multi-skill/mode resource-constrained project scheduling problem
with generalized precedence relations and resource calendars (PP-MS-MM-RCPSP/max-cal).
Our solution is aimed for industrial domains, but can solve generic problems in the scope of
the model as well. We propose an extended version of the large neighborhood search (LNS)
method [21, 11], softening constraints initially to find a base solution that will be improved
on each iteration. We observed this approach to be faster than other more direct constraint
programming approaches. We evaluated our method against different benchmarks, including
one using real data from aerospace manufacturing plants, real instances from an hazardous
material examination facility [25] and standard multi-skill scheduling instances [38].

The rest of the paper is structured as follows: in Section 2, literature about multi skill
scheduling and preemption in scheduling is discussed, along with previous scheduling works
oriented towards industrial applications. Section 3 describes the domain of our problem
and contains the formulation of our model, including a new CP formulation tailored to
preemption. In Section 4 we detail our approach explaining the algorithm we developed
to solve PP-MS-RCPSP/max-cal. Following this, Section 5 contains the experiments and
benchmarks conducted to evaluate the performance of our solution. Lastly, our conclusions
can be seen in Section 6.

2 Multi-skill/mode, preemption, calendars and generalized precedence
in the literature

The multi-mode RCPSP (MM-RCPSP) allows reaching a compromise between resource usage
and task duration as it frequently occurs in practice. It also includes non renewable resources
to model budget constraints that may prevent from using the fastest modes for all tasks.
Many solution methods have been proposed over the years from local search, to sat-based
methods using hyperheuristics. [6, 9, 15, 37]. CP approaches are currently highly popular
and efficient tools to solve RCPSP variants [18] and in particular the MM-RCPSP [36].

G. Povéda, N. Alvarez, and C. Artigues 31:3

MS-RCPSPs are a particular MM-RCPSP based on the concept of skills enabling the
compact representation of a possibly large set of modes corresponding to combination of
resources managing a set of skills required by a task. There is a variety in the methods and
models to solve the problem: tree search [29], genetic algorithms [20], mixed-integer linear
programming [3, 10, 19, 31]. On the standard MS-RCPSP, we will compare our method with
two state-of-the-art methods: the CP approach using no-good learning proposed in [38] and
the greedy randomized adaptive search procedure (GRASP) presented in [25].

Preemption can be defined as the capability of stopping the execution of a task in the
generated schedule, releasing the resources it was using in order to allow for the execution
of a different one, and being able to be continued later. In some cases preemption makes
the problem easier to solve when an NP-hard non preemptive scheduling problem has a
polynomial preemptive counterpart [5] but in the case of job-shop or resource-constrained
project scheduling the problem may become harder to solve due to a much larger search space
[7, 22]. Only a handful of studies have combined multi-skilled resources and preemption
in the same work. We can cite [12, 24, 25, 26], where mixed-integer linear programming,
constraint programming and metaheuristics methods were proposed. Prominent preemption
can cause trouble to CP approaches: in [25] an experiment revealed that MILP obtained
better results on a set of highly preemptive MS-RCPSP than the default search of IBM
CP Optimizer. For preemptive MS-RCPSP, we will compare our method with the hybrid
GRASP-LNS heuristics proposed in [26]. For their application, the authors also considered
partially preemptive tasks, where only part of the resources are released during preemption.
Due to industrial relevance, we also include partial preemption in our model.

Resource calendars are often unavoidable characteristics in industrial contexts. They
can be linked to a basic form of preemption in the sense that an on-going task has to be
preempted when one of its resource becomes unavailable due to an off-time in the calendar.
In [13], calendars were used in a MS-RCPSP context without including task preemption.
Our model considers both situations and tasks can be preempted or not by calendars as
frequently observed [17].

Generalized precedence constraints, also considered in our model specify more complex
temporal relations between tasks than standard precedence constraints. They make the
problem more complex in all RCPSP variants as even finding a feasible solution becomes
NP-hard in the presence of generalized precedence constraints. Many works have considered
such constraints in the standard RCPSP [4, 32] and also for multi-mode preemptive RCPSP
[27]. The RCPSP/max-cal problem involving both generalized precedence and calendar
constraints was again successfully solved by CP in [17].

A difference between the performance of generic solvers on academic RCPSP models and
on their adaptation to domain problems with very specific requirements is observed in other
works and we also could experience it in our benchmark experiments: usually the more special
characteristics the problem has, the worse is the performance of generic solvers. Our model
falls into this category as it includes all the above-mentioned complicating characteristics.
The LNS approach appears as a technique of choice to find the right compromise between
genericity and performance.

3 PP-MS-MM-RCPSP/max-cal: definition and formulation

The PP-MS-MM-RCPSP/max-cal generalizes the partially preemptive MS-RCPSP introduced
in [26]. An additional feature is the possibility to execute the task in different modes, in the
same way it is done in multi-mode RCPSP [15]. Generalized precedence constraints and

CP 2023

31:4 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

calendars are also added. Formally a PP-MS-MM-RCPSP/max-cal is defined by:
1. A a set of activities to schedule, A = {1, ..., n}, two special activities are created by

convention: the source task 1 (predecessor of all other tasks) and sink task n (successor
of all other tasks);

2. Each activity i ∈ A can be performed in mi different modes, mi ∈Mi = {1, ..., |Mi|}; (as
defined in [28])

3. Rρ a set of renewable resource types, Rρ = {Rρ
1, ..., Rρ

mρ}. ∀k ∈ Rρ, t ∈ N, Bkt is the
discrete amount of available resource k at discrete time t (available between time t and
t + 1);

4. Rν a set of non-renewable resource types, Rν = {Rν
1 , ..., Rν

mν} ; ∀k ∈ Rν , Bk is the total
capacity of the non-renewable resource;

5. O the set of disjunctive resources representing individual skilled workers (from now on,
we will refer to them as Operators);

6. L = {1, ..., L} the set of skills;
7. ∀o ∈ O, t ∈ N, Aot ∈ {0, 1} indicates if the Operator o is present or not at time t (hence

we treat the temporal availability of Operators as fixed from the problem definition);
8. ∀o ∈ O, l ∈ L, yol ∈ {0, 1} indicates if Operator o masters skill l;
9. ∀i ∈ A, ri is the release time of task i;

10. ∀i ∈ A, di is the deadline time of task i;
11. ∀i ∈ A, pi,mi is the processing time under mode mi ∈Mi;
12. ∀i ∈ A, k ∈ Rρ ∪ Rν , bi,mi,k is a natural number representing the resource demand of

activity i for resource k, under mode mi;
13. ∀i ∈ A, l ∈ L, si,mi,l is a natural number representing the skill requirement of activity i

under mode mi;
14. P is the set of precedence constraints A ×A specifying which activity should precede

another one;
15. Psync−start is the set of activity pairs that must start at the same time;
16. Pstartlag is the set of ordered pairs (i, j) specifying ∆s(i,j), the minimum time lag between

start of i and start of j;
17. Psync−end is the set of activity pairs that must end at the same time;
18. Pendlag is the set of ordered pairs (i, j) specifying ∆e(i,j), the minimum time lag between

end of i and start of j;
19. The set A is split in three different subsets :

A = AP ∪ ANP ∪ AP P ;
AP is the set of fully preemptive activities (activities can be preempted and all the
resources are released);
ANP is the set of non-preemptive activities;
AP P is the set of partially preemptive activities (where at least one resource is not
releasable);

20. ∀i ∈ A, mi ∈Mi, k ∈ Rρ, ρi,mi,k ∈ {0, 1} indicates if resource k is releasable for activity i

under mode mi.

3.1 Known variants in the literature
Our generic formulation encompasses more classical scheduling problems, that can be therefore
solved using the proposed solution, such as:

the classical RCPSP (L = ∅, Rν = ∅, ∀k ∈ Rρ,∀t, t′ ∈ N, Bkt = Bkt′ , O = ∅, AP = ∅,
AP P = ∅, ∀i ∈ A, Mi = {1});

G. Povéda, N. Alvarez, and C. Artigues 31:5

the classical multi-mode RCPSP (L = ∅, ∀k ∈ Rρ,∀t, t′ ∈ N, Bkt = Bkt′ , O = ∅, AP = ∅,
AP P = ∅, ∀i ∈ A, Mi = {1, ...|Mi|});
the classical multi-skill RCPSP (L = {1, ..., L}, O ≠ ∅, AP = ∅, AP P = ∅, ∀i ∈ A, Mi =
{1, ...|Mi|}).

3.2 Constraint Programming formulation
We developed a combinatorial optimisation library containing the CP model for PP-MS-
MM-RCPSP/max-cal. It can be found as part of an open source framework to solve discrete
optimization problems 1.

A big focus of the library is on the RCPSP’s class of problems described in this paper.
All solver approaches, from Local search, rule based heuristics, CP, LP and LNS methods
are either coded using the discrete-optimisation library or wrapped into it, allowing the user
to easily benchmark methods and hybridize different approaches.

The following sections detail the decision variables and constraints of our formulation for
PP-MS-MM-RCPSP/max-cal.

3.2.1 Decision variables
We assume that each task can be preempted at regular discretized time points, resulting
in a sequence of small non-preemptive chunks for each activity. A subpart of an activity is
thus defined as a subset of adjacent chunks of this activity. Let’s define maxpreemption as an
arbitrary input of our problem which represents an upper bound on the number of preemption
breaking times allowed for all our activities. We will note J = {1, .., maxpreemption} the set
of preemption breaking time indexes and J− = {2, .., maxpreemption}
1. Starting time decision : starts is a |A| × maxpreemption matrix, which contains the

starting time of subparts of all the tasks in increasing order.
2. Duration decision : durations is a |A|×maxpreemption matrix, which contains the duration

of subparts of all the tasks.
3. Mode decision : modes is a |A| vector specifying in which mode a task is executed.
∀i ∈ A, modes[i] ∈Mi.

4. Resource allocation : allocation is a |O| × |A| ×maxpreemption 3D binary matrix which
indicates which worker o is allocated to each subpart of an activity.

3.2.2 Constraints
We will use the notation [:] in matrix indexing to ease the readability of constraints. For
e.g starts[i, :] is the vector of starting times for the task i and allocations[o, :, :] is the
|A| ×maxpreemption matrix allocation of resource o to all activity subparts.
1. Resource consumption constraint :

∀k ∈ Rρ, cumulative(starts, durations, bmodes,k, Bk:)
where bmodes,k is an array of dimension |A| ×maxpreemption defined by:
∀i ∈ A, j ∈ J , bmodes,k[i, j] = bi,modes[i],k, being bmodes,k[i, j] the resource demand of
activity i on the j-th subpart of its execution, which doesn’t depend on j in our problem.
We use the global cumulative constraint implemented in most CP language to model the
cumulative resource consumption in RCPSPs [30].

1 https://github.com/airbus/discrete-optimization

CP 2023

https://github.com/airbus/discrete-optimization

31:6 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

To take into account variable resource availability, we use a discrete stepped function
maxt(Bkt)−Bktstep

at each tstep that includes an artificial fixed task consuming it. This
way, whenever availability changes, that task removes the resources from the pool during
a period defined by the step function. In our domain, variable resource availability
translates into worker’s shifts and calendars, also indirectly defining points where a task
needs to be preempted. For simplicity we didn’t include it in the description of the
constraint.

2. Non-renewable resources:
∀k ∈ Rν ,

∑
i∈A bi,modes[i],k ≤ Bk. This non-renewable resource constraint is only mean-

ingful when there are several possible modes. In multi-mode settings, some modes value
wouldn’t satisfy the constraint.

3. Skills requirement:
∀i ∈ A, j ∈ J , l ∈ L,

durations[i, j] > 0→
∑

o∈O allocation[o, i, j] · yol ≥ si,modes[i],l
Contrary to other multi-skill variants, we consider that Operators assigned to a task
contribute to the task skill requirements with all of their skills, similar to what it is seen
in [26].

4. Operator availability:
∀o ∈ O, cumulative(starts, durations, allocation[o, :, :], Ao:)

Variable availability of an Operator is dealt with in the same way as Constraint 1 above.
5. Precedence relation: ∀(i, j) ∈ P ,

starts[j, 1] ≥ starts[i, maxpreemption] + durations[i, maxpreemption]
6. Psync−start relations:
∀(i, j) ∈ P, starts[i, 1] = starts[j, 1]

7. Pstartlag relations:
∀(i, j) ∈ Pstartlag, starts[j, 1] ≥ starts[i, 1] + ∆s(i,j)

8. Psync−end relations: ∀(i, j) ∈ Psync−end,
starts[j, 1] = starts[i, maxpreemption] + durations[i, maxpreemption]

9. Pendlag relations:
∀(i, j) ∈ Pendlag,

starts[j, 1] ≥ starts[i, maxpreemption] + durations[i, maxpreemption] + ∆e(i,j)
10. Tasks duration :

a. ∀i ∈ ANP , durations[i, 1] = pi,modes[i] ∧ (∀j ∈ [2, maxpreemption], durations[i, j] = 0)
b. ∀i ∈ A \ ANP ,

∑
j∈J durations[i, j] = pi,modes[i]

11. Release time:
∀i ∈ A, starts[i, 1] ≥ ri

12. Deadline time:
∀i ∈ A, starts[i, maxpreemption] + durations[i, maxpreemption] ≤ di

13. Conventions constraints for starts and durations:
The following constraints are modeling choices aiming to help the solver to explore the
search space.
a. ∀i ∈ A, j ∈ J−, starts[i, j] ≥ starts[i, j − 1] + durations[i, j] : precedence constraints

between each subparts of the task.
b. ∀i ∈ A, j ∈ [1, maxpreemption − 1], durations[i, j] = 0 → durations[i, j + 1] = 0: As

soon as there is a 0 duration subtask, all the following ones are 0 too.
c. ∀i ∈ A, j ∈ [1, maxpreemption], durations[i, j] = 0 → starts[i, j] = starts[i, j − 1] +

durations[i, j − 1]: Whenever there is a 0 duration, the remaining starts values are
uniquely determined by previous values, pruning redundant solutions.

G. Povéda, N. Alvarez, and C. Artigues 31:7

14. Partially preemptive and non releasable resources :
We introduce variable blockedduration[i, j, k], ∀i ∈ A, j ∈ J , k ∈ Rρ as the usage
duration of resource k for task i and activity subpart j. It is regulated by the following
constraint: ∀j ∈ J ,
ρi,modes[i],k = 1→ blockedduration[i, j, k] = durations[i, j]
This means if the resource is releasable then the duration of the usage is the same as the
duration of the subtask.
On the other hand, to describe the consumption of a resource over the total span of the
activity for not releasable resources, we have:
ρi,modes[i],k = 0 → (blockedduration[i, 1, k] = starts[i, maxpreemption] − starts[i, 1])∧
(blockedduration[i, j, k] = 0, ∀j ∈ J −)
This will set blockedduration[i, 1, k] to the total span of the activity, including preempted
time, and ignore the other subparts.
Then, when indicating the cumulative constraint, instead of the normal duration, this
resource uses blockedduration:

∀k ∈ Rρ, cumulative(starts, blockeduration, bmodes,k, Bk:)

We note that Constraint (13) implementing preemption won’t always lead to a feasible
solution without backtracking even if there are no time windows or maximum time lags when
using CP-Optimizer solver.

Let us take a simple example of a single preemptive activity A1 of duration 5 task
decomposed in 3 subtasks A1,1, A1,2 and A1,3. Suppose the solver sets the start time of A1,1
to 0 and the end time of A1,1 to 3 (and consequently its duration to 3). Suppose now that
the solver sets the start time and the end time of A1,2 to 3 (duration 0). Then according to
constraint (13b) the duration of A1,3 is set to 0 and a failure occurs due to the impossibility
to satisfy constraint (10b).

To deal with this issue, we took advantage of the expressiveness of CP-Optimizer to
add an alternative variant in our model: using the concept of interval instead of using
variables starts and durations. An interval is defined as follows: ∀i ∈ A, interval[i] is a
|maxpreemption| array of optional intervals variable. Each interval has the attributes present

(boolean), duration, start, end (all integers). We also create one unique interval for each
task, called spantask. New constraints are applied to this interval variable :

15. ∀i ∈ A, s.t pi,modes[i] >= 1,∀j ∈ J , interval[i, j].duration ≥ 1 : We don’t consider 0
duration for task intervals, which avoids the above-presented issue. This could also help
the solver to remove unnecessary solutions in its search space since otherwise there could
be multiple equivalent solutions.

16. ∀i ∈ A, j ∈ J−, interval[i, j].start ≥ interval[i, j − 1].end: precedence constraints
between sub-intervals of the same task.

17. ∀i ∈ A, j ∈ [1, maxpreemption − 1], interval[i, j].present = False → interval[i, j +
1].present = False: When one sub-interval is not present, the remaining ones are
not present either. This is equivalent to 13b constraint.

18. ∀i ∈ A,
∑

j∈J (interval[i, j].duration ∗ interval[i, j].present) = pi,modes[i] The sum of
duration of present intervals should sum to the duration of the task.

19. ∀i ∈ A, span(spantask[i], interval[i, :]): We use the native constraint span of CPOptim-
izer so that the spantask[i] spans over all present intervals in interval[i], ignoring the
non-present.

The precedence constraints are written using the spantask interval. We call this new model
specific to CPOptimizer, Model CP-SmartPreemption while Model (1–14) is called CP-Base.

CP 2023

31:8 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

3.2.3 Objective function

We will focus exclusively on the makespan, which in terms of our formulation is equal to the
ending time of the sink task n. Hence the goal is to minimize

makespan = starts[n, maxpreemption] + durations[n, maxpreemption]
However as detailed in section 4.3, due to the difficulty to obtain feasible solution, in

our solution approach we opt in a first phase for a relaxation of a set of constraints and a
penalization of their violation in the objective function. Thus the actual objective in this
phase is a lexicographic optimization of the violation penalty and the makespan (see section
4.3).

3.3 A small PP-MS-MM-RCPSP/max-cal instance and its optimal
solution

We provide an example PP-MS-MM-RCPSP/max-cal instance to illustrate its output from a
simple problem definition contained in Table 1. It contains 6 activities to schedule (including
source and sink tasks); it also includes multi-mode tasks, variable operator availability, release
and deadlines, complete and partial preemption and finally one synchronisation constraint.
This instance can be found in the toy model folder of our open source model’s repository 2.
The optimal solution is depicted in Figure 1. We can observe that the tasks A1 and A3 are
partially preemptive activities : the resource R1 is therefore still used even though the task
is paused. The calendar constraint of Operator 1 is visible in the corresponding Gantt chart
where we see no operations assigned to it during its break time. The mode allocation is the
following : modeA0 = 1, modeA1 = 2, modeA2 = 1, modeA3 = 2, modeA4 = 2, modeA5 = 1.

Table 1 An instance of PP-MS-MM-RCPSP/max-cal.

Activity Mode Duration Skills Resource Deadline Release Preemption Successors

A0 1 0 - - - - - A1, A2, A3, A4, A5

A1 1 5 l1 R1 - - AP P A5

2 3 l1 R1 5 - AP P A5

A2 1 1 l3, l4 (R1, 1) - 2 ANP A3, A5

2 2 l3 (R1, 1) - 2 ANP A5

A3 1 3 l2 (R1, 1) - - AP P A5

2 2 l3, l2 (R1, 1) - - AP P A5

A4 1 2 l3 - - 5 AP A5

2 3 - (R1, 1) - 5 AP A5

A5 1 0 - - - - - -

Operator Skills Calendar

O1 l1, l3 [1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0]

O2 l1, l2, l4 [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1]

Resource Capacity

R1 2

Psync−start [(A3, A4)]

2 https://github.com/g-poveda/do_experiments

https://github.com/g-poveda/do_experiments

G. Povéda, N. Alvarez, and C. Artigues 31:9

Figure 1 Operator and resource oriented Gantt chart for the example instance.

4 Algorithms

4.1 Generic large neighborhood search algorithm
Our approach to solve the PP-MS-MM-RCPSP/max-cal is to use a generalisation of Large
Neighborhood Search (LNS) for scheduling problems [21]. In LNS, We iteratively improve
the solution quality of a Master Problem MP by solving at each step a Reduced Master
Problem RMP , based on theMP and previously found solutions. The way RMP are built
are the core of LNS methods. The generic LNS algorithm is described in Algorithm 1, where
Xiter denotes the solution at iteration iter and Y iter its objective value.

Algorithm 1 Generic Large Neighborhood Search Algorithm.

Begin
1: Y ∗ =∞, X∗ = None

2: (X0, Y 0) = (X∗, Y ∗) = initialsolution(P)
3: iter = 0
4: repeat
5: RMP = buildsubproblem(MP, Xiter)
6: Xiter+1, Y iter+1 = solve(RMP)
7: if Y iter+1 ≤ Y ∗ then
8: X∗ ← Xiter+1

9: Y ∗ ← Y iter+1

10: iter ← iter + 1
11: until stop criterion is met
12: return X∗, Y ∗

4.2 Application to the PP-MS-MM-RCPSP/max-cal

4.2.1 Initial solution provider
We rely on a generalisation of the serial schedule generation scheme (SGS) procedure [16] to
produce an initial solution for PP-MS-MM-RCPSP/max-cal (Algorithm 1, line 2). A similar
generalisation was implemented in [26] being the closest one we found in the literature since
it includes multi-skill, preemption and partially releasable resources.

Our SGS implementation takes as input a priority ordering of activities order_act, given
as a permutation of A and, for each activity i ∈ A, another priority ordering order_resi ∈
S|O| of the workers o ∈ O to be assigned to the activity and the mode id modesi chosen to
run the activity, as defined for the CP model.

CP 2023

31:10 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

Activities are scheduled incrementally based on their priority as in classic serial SGS,
at their earliest possible start date considering resource availability. Worker allocation is
also done greedily using the order_res array. The preemptivity feature of our problem
allows us to schedule subpart of some activities. Our open source library includes an
implementation module handling all the features of PP-MS-MM-RCPSP/max-cal except
for the Psync−start/end constraints, release and deadline constraints. The greedy procedure
doesn’t ensure that the constraints are feasible for these hard constraints.

Using the SGS procedure makes possible to run simple local search algorithms to
get one initial solution of the problem. Such solver explores the vectored state space
order_act, order_res, modes, and evaluate its fitness using SGS. The output evaluation of
SGS is the same than the LNS or CP ones : makespan + potential penalty when deadlines
and other constraints are not fulfilled (see details in Section 4.3). The state space being a
permutation one, we are using moves chosen randomly from a portfolio of potential moves :
partial and total shuffling, swap 2 random activities, 2-opt moves. Only one specific mutation
has been also implemented to correct potential deadlines constraints (that put first the late
task). In this paper we are using simulated annealing (SA) [14] as a local search solver. SA
was parameterized with an initial temperature of T = 3 and exponential cooling schedule of
factor α = 0.999. A restart strategy also ensures to roll back to the current best solution
when we haven’t improved the quality after N = 300 iterations.

4.2.2 Subproblem building
To build the reduced master problem, we rely on the constraint programming formulation
and include additional constraints, which makes it simpler to solve. We decompose the
subproblem building procedure (Algorithm 1, line 5) in two main methods. The first one,
activityselector will split the set of activities A into 2 disjunctive subsets Asub and Asub .
Different methods have been implemented and tested to select Asub and Asub as described
below:
1. Random selection : given f ∈ R, 0 ≤ f ≤ 1,
Asub = sample(A, ⌊f · |A|⌋), and Asub = A \ Asub

2. Random selection and neighbors : consist in the previous selection, then add the prede-
cessors of each task in Asub. Formally, given f ∈ R, 0 ≤ f ≤ 1:
Asub,1 = sample(A, ⌊f · |A|⌋), and
Asub = Asub,1 ∪ {j ∈ A s.t∃(x, y) ∈ P, x = j ∧ y ∈ Asub,1}

3. Cut in equal parts : given c ∈ N, we sort the activities by increasing order of starting
times in the current best solution X∗, then cut this ordered list in c equal pieces. When
called, the function returns one of these c parts. A good strategy we observed consists in
returning them in increasing order.

4. Generalized precedence adapted selection : when considering the constraints of deadlines,
release dates, and the generalized precedence constraints (Psync−start, Pstartlag, Psync−end,
Pendlag) , we can reach a solution X∗ violating some of the constraints. Therefore we add
in priority the tasks responsible for constraints violation in Asub and their predecessors
in the precedence graph.

5. Mixing methods : given a pool containing the previous four methods, it will return Asub

and Asub of one of the pool members (either randomly at each iteration, or based greedily
on the effectiveness of the selected method based on previous iterations).

Once we have the activityselector function, its output (Asub and Asub) can be used in the
constraintbuilder function to add constraints to the CP model as described in Algorithm 2.
Instead of totally locking the variables corresponding to Asub and keeping free for optimisation

G. Povéda, N. Alvarez, and C. Artigues 31:11

the variables of Asub, we consider different ϵ values to constrain start and duration variables.
We typically assign high values to parameters ϵsub,∗ and small values to ϵsub,∗.

Algorithm 2 Constraint builder procedure.

1: constraintbuilder(Asub,Asub, X, modelcp, paramsconstraints) :
2: ϵsub,+, ϵsub,−, ϵsub,+, ϵsub,−,

ϵdursub,+, ϵdursub,−, ϵdursub,+, ϵdursub,−, = paramsconstraints

3: for all i ∈ A do
4: for all j ∈ [1, maxpreemption] do
5: if X.durations[i, j] > 0 then
6: if i ∈ Asub then
7: (ϵ−, ϵ+)← (ϵsub,−, ϵsub,+)
8: (ϵdur−, ϵdur+)← (ϵdursub,−, ϵdursub,+)
9: else if i ∈ Asub then

10: (ϵ−, ϵ+)← (ϵsub,−, ϵsub,+)
11: (ϵdur−, ϵdur+)← (ϵdursub,−, ϵdursub,+)

12: modelcp ← X.starts[i, j]− ϵ− ≤ modelcp.starts[i, j] ≤ X.starts[i, j] + ϵ+
13: modelcp ← max(0, X.durations[i, j] − ϵdur−) ≤ modelcp.durations[i, j] ≤

X.durations[i, j] + ϵdur+

4.2.3 Subproblem solving
To solve the subproblem we use the open source lazy clause generation solver Chuffed3 or
alternatively IBM’s CP-Optimizer4 backend. Both rely on a CP formulation done in Minizinc
language, and worked well in our experiments. At each iteration of the solver, we set an upper
time computation h. In case we want to optimize The objective function can be the final
activity n’s end or the end of the subset of activities Asub we consider the most important in
the RMP. Both strategies impact slightly the convergence of the overall algorithm but we
didn’t assessed the details in our current experiments.

After retrieving the solution of the RMP from the solver, it is post-processed by a left
shifting procedure that compresses the full schedule. It is particularly useful in the case where
the constraints introduced in constraintbuilder create idle times in the resulting schedule.

4.3 Relaxing constraints
The current SGS implementation does not return a feasible solution when certain constraints
of PP-MS-MM-RCPSP/max-cal are present. Namely, those are the deadline and generalized
precedence constraints Psync−start, Psync−end, Pstartlag, Pendlag. By relaxing constraints (6),
(7), (8), (9), (12) from Subsection 3.2.2 we include a violation penalty into the objective
function. This violation penalty for Psync−end is illustrated in Figure 2. The objective
function that LNS and underlying CP solver minimizes is makespan + M · penalty where M

is a large number.
This means that in practice, there will be 2 phases of optimisation :
Feasibility phase : In this phase the violation penalty decreases, converging to 0.
Optimisation phase : the algorithm optimises the original objective function (makespan)

3 https://github.com/chuffed/chuffed
4 https://www.ibm.com/analytics/cplex-cp-optimizer

CP 2023

https://github.com/chuffed/chuffed
https://www.ibm.com/analytics/cplex-cp-optimizer

31:12 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

A1
A2

∆t

time

Figure 2 ∆t is added to the objective function whenever (A1, A2) ∈ Psync−end.

5 Experimental results

5.1 Manufacturing domain instances
We ran a series of experiments in order to evaluate our LNS method for PP-MS-MM-
RCPSP/max-cal. All experiments have been done in a MacBook Pro with 2,7 GHz Quad-
Core Intel Core i7. In the first experiment, our goal is to assess the performance of our
method in a practical situation, so we extracted data samples from a real manufacturing use
case. The experiment relies on two scheduling problem base instances (A and B) obtained
from one of the assembly plants at Airbus, and are described in Table 2. Using these 2 base
instances, we built 32 different instances, using all the possible combinations of the following
features :

Calendar: we can use our definition for resource consumption (Constraint 1 in section
3.2) or consider complete resource availability at any moment, hence making vectors
Bk : ∀k ∈ Rρ always constant and Ao : ∀o ∈ O always 1.
Temporal Constraints: we include or not the deadline times, release times (described in
Section 3.2 as the constraints number 11 and 12) and generalized precedence constraints
(constraints number 6 to 9)
Preemptive : tasks can be preempted if needed or preemption is forbidden; in the non
preemptive use case, ANP = A
Multiskill : skilled workers are present or not; in the non multiskill use case, workers
belong to R and O = ∅

Table 2 Base instance description of the manufacturing use case.

Instance |A| |R| |L| |O| |P | |Pss| |Pse| |Psl| |Pel|

A 291 8 23 27 842 3 70 0 4
B 199 3 6 6 676 1 34 6 4

We ran our LNS algorithm with a time limit of 1800 seconds for all of the instances. As
a comparison, we also ran the simulated annealing algorithm (SA) and a direct CP solving
of Model CP-Base using Minizinc and the CP-Optimizer backend, the Chuffed backend and
the CP-SmartPreemption model for the same amount of time.

The results for each instance are detailed in Table 3. Four of those instances (number 8
to 11) are infeasible by design, because they include the calendar constraints but not the
preemption ones, so we left out those and will focus on the remaining 28 instances for our
experiments. For the sake of clarity, we only show CP-SmartPreemption results (CP-S in the
table) as it it consistenly better than the CP-Base model whether the latter is solved by
Chuffed or CP-Optimizer. A comparison between CP-SmartPreemption and CP-Base can
be found in Appendix A.1.

G. Povéda, N. Alvarez, and C. Artigues 31:13

Table 3 Makespan results obtained for the 28 testing instances (splitted in two tables) using
the three solvers: LNS, CP-SmartPreemption (abreviated as CP-S) and SA. For SA penalty values
are included when the solution is not satisfying all the constraints (solutions for LNS and CP-
SmartPreemption got no penalty). The table also includes each instance base problem (A or B) and
its features: M for Multi skill, G for Generalized precedence constraints, P for (partial) Preemption
and C for resource Calendars. In bold best results among the three algorithms.

ID Features LNS CP-S SA p-SA

0 A 1080 1080 1080 0
1 A M 1080 1080 1080 0
2 A G 6534 6534 6817 128
3 A G M 6553 6534 6543 104
4 A P 1080 1080 1080 0
5 A M P 1080 2495 1080 0
6 A G P 6534 6534 6534 0
7 A G M P 6553 6612 6537 0
12 A C P 7154 - 7154 0
13 A C M 7154 - 7154 0
14 A C G P 7866 - 7777 0
15 A C G M P 7777 - 7805 0
16 B 2340 2339 2373 0
17 B M 2350 2346 2375 0

ID Features LNS CP-S SA p-SA

18 B G 3053 3053 3275 2171
19 B G M 3109 3109 3530 2590
20 B P 2340 2340 2339 0
21 B M P 2340 2390 2340 0
22 B G P 3053 3044 3148 750
23 B G M P 3117 3180 3456 714
24 B C 3202 3196 3250 0
25 B C M 3289 3208 3263 0
26 B C G 4949 4949 5096 4727
27 B C G M 5096 4949 5096 4359
28 B C P 3205 3195 3192 0
29 B C M P 3193 3208 3192 0
30 B C G P 4580 4383 4436 1167
31 B C G M P 5010 - 4840 1132

As we can see, LNS reaches the best results on 15 out of the 28 instances, CP-
SmartPreemption on 16 and SA on 13. By comparing the different instances where each
method excels, we observe that instances with high complexity in the type of constraints, i.e a
combination of having generalized precedence constraints, calendar, multiskill or preemptive
tasks are the ones for which we would rely the most on LNS: instance 15 and 31 are indeed
the ones including all the available features. For those instances, CP-SmartPreemption is
not returning any result in the allowed time whereas SA fails to find feasible solutions.

On the other hand, SA is generally competitive as long as there is no generalized precedence
constraint involved. But if those are present it finds difficulty in yielding a solution, which was
expected since the SGS does not fulfill all the generalized precedence constraints. However,
in some of the instances SA got better results with some of those features present, thus we
theorize that the solution space heavily impacts in this method, helping to overcome the
presence of complex constraints and obtaining nonetheless an optimal solution: if we do not
take into account instances where no feasible solution was found, SA achieves best results in
13 of 20 instances.

Figures 3a and 3b show makespan and violation penalty from the solutions found using
our method for the most complex two variants (containing all the possible features). We
can confirm that our strategy of relaxing certain constraints at the cost of adding a penalty
is useful to get an initial solution that will be improved from that point, as described in
Subsection 4.3.

5.2 Experiments on instances with multiskill and partial preemption
We conducted a second experiment using instances of partial preemptive multi-skill problems
based on the schedule of operations of a nuclear facility [26]. The benchmark is divided in 4
different sets, each having different distribution combinations of AP ,ANP and AP P .

CP 2023

31:14 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

0 100 200 300 400

7,800

8,000

8,200
M

ak
es

pa
n

0 100 200 300 400

0

200

400

600

800

Pe
na

lty

(a) Instance n°15.

0 200 400 600 800 1,000 1,200 1,400

5,000

5,100

5,200

0 200 400 600 800 1,000 1,200 1,400

0

500

1,000

1,500

Pe
na

lty

(b) Instance n°31.

Figure 3 Evolution of solutions found for LNS algorithm in two of the instances. Makespan
shows in green at the left Y axis and penalty in red at the right Y axis for both of the instances.

Table 4 Average gap to lower bound for different algorithms and by set of instances. Best results
for each set are bold and second best are underlined.

Algorithm Set A Set B Set C Set D

GRASP + LNS [26] 1.56% 1.79% 6.68% 2.06%
SA (300 seconds) 1.59% 1.82% 5.65% 2.33%

SA (240 s) 1.82% 1.83% 6.57% 2.17%
SA (240 s)+LNS (60 s) 1.82% 1.83% 6.49% 2.12%

The multi-skill variant of this benchmark can be directly mapped into our formalisation,
except for the minimum number of operators required by activity constraints. To adapt our
model we introduced in the problem instances a dummy skill sall mastered by all operators.
We then set skill requirement of skill sall for each activity, to the minimum number of
operators required.

The comparison results, detailed in Table 4, are based on the average gap to lower bound,
like it was done in the original paper. We compared three of our solving methods to the
one tested previously. The first one is obtained by running simulated annealing for 300
seconds, working on the permutation of tasks and the SGS algorithm. In the second we ran
simulated annealing alone for 240 seconds as second baseline, and finally we ran LNS during
60 seconds. The SGS method combined with SA is competitive with the best dedicated
algorithm GRASP+LNS [26]. LNS only improves slightly SA results as it can be seen
when comparing SA (240 s) and SA (240 s) + LNS (60 s), which may be explained by the
performance of SA itself, which is close or even better than the baseline.

5.3 Experimental results of LNS on standard multi-skill instances from
the literature

Additionally, we did another benchmark comparison using the instances contained in [38].
The goal of running this second experiment is to have again comparative results to the work
of [26], which our method can be related with, since it also aims at handling multi-skill and
partial preemption in scheduling problems. The mentioned instances are divided in five sets,
but we decided only to tests in one of them, set 1B, since it is the set with the lowest solution
rates (only 12.5% solved) using the reference solvers.

G. Povéda, N. Alvarez, and C. Artigues 31:15

Set 1B was proposed by [2] and it contains instances with 42 activities, 4 skills and
between 20 to 60 resources. For these experiments, we relied on the CP model used in [38] 5,
which models classical multi-skill where operator perform at most 1 skill on a task. We used
this CP model in our generic Large Neighborhood Search algorithm to evaluate how well the
approach generalizes to different scheduling problem variants. Baseline solutions we compare
with are the ones found by running Chuffed solver with the best search strategy. They can
also be found in the repository.

The current implementation of SGS prevents us to test simulated annealing as a solver
or initial solution provider, because of the constraint stating that an allocated worker can at
most perform 1 skill on a task. Therefore, the initial solution used in LNS is computed by
using the Chuffed solver directly on the minizinc model from [38] for 30 seconds. Then, if the
solution is not optimal, the large neighborhood search is used with the mixing neighborhood
strategy for a maximum time of 500 s. Worker allocation is fixed only in 10% of the tasks,
which empirically showed good performance in terms of improvement rate during the LNS

algorithm. We are improving 151 out of 216 of the Set 1B instances (69.9% of the total)
whereas Young et al. results [38] are still better on 29 instances (13.4%), and equal on 36
instances (17.7%). On the 151 improved instances, the average improvement of our solution
over the baseline is 4.61%. On the 29 that Young et al. CP method [38] was better, the
makespan was worsen in average by 3.46%. In total average, our method gave a 2.76%
improvement on the makespan.

Finally, we conducted some preliminary experiments on the new MSLIB [34] benchmark.
The authors provided us some baseline best known solutions found by a genetic algorithm
(GA) approach [33] on the hardest set of instances MSLIB4. Precisely we ran experiments on
the first 404 instances of MSLIB4 using CP-Chuffed 30 seconds as initial solution followed
by LNS for 100s. Our computation time is an order of magnitude higher than the GA that
has a CPU time of around 15s.

The results indicate a strong impact of the SS (skill strength) parameter of the instances.
This ratio roughly gives the scarceness of the skills in the sense that SS = 0 means that
the number of resources that master a skill is equal to the maximum demand in operators
mastering this skills over the activities, i.e. the minimal value that ensure feasibility. LNS
systematically outperforms GA when SS > 0 (90 instances) with an a average improvement
of 2.9% but when SS = 0 (164 instances), LNS is largely outperformed by GA with an
average 19.2% gap. Additional material on these results are presented in Appendix A.3.

5.4 Implementation
We provide an open repository containing scripts to rerun the benchmarks presented in
Sections 5.2 and 5.3 to ease replication for further research6. Every multiskill variant
presented in the paper is using the same python object placeholder with different attribute
values. About the algorithm most of it is reused by all variants :
1. The SGS procedure is the same whatever for all benchmark and therefore the metaheur-

istics methods that only rely on the SGS procedure are reused identically
2. LNS algorithm 1 is the same for all benchmarks
3. Activity selectors mixing method described in 4.2 are used on all benchmarks. Experiments

that justify the choice of the mixing method are presented in Appendix A.2.

5 https://github.com/youngkd/MSPSP-InstLib/blob/master/models/mspsp.mzn
6 https://github.com/g-poveda/do_experiments

CP 2023

https://github.com/youngkd/MSPSP-InstLib/blob/master/models/mspsp.mzn
https://github.com/g-poveda/do_experiments

31:16 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

4. Specific : We are using 2 different minizinc modeling in our benchmark, one containing
the most property of PP-MS-MM-RCPSP/max-cal that is used in benchmark 5.1 and 5.2
and one another model for classical MSRCPSP for benchmark 5.3.

6 Conclusions

In this paper we have presented a large neighborhood search (LNS) method to solve par-
tially preemptive multi-skill/mode resource-constrained project scheduling problem with
generalized precedence relations and resource calendars (PP-MS-MM-RCPSP/ max-cal).
Solvers including all of those features are scarce, but are usually needed to approach real
manufacturing or assembly environments.

In order to validate our method, we performed three experiments to benchmark it against
constraint programming and simulated annealing. In the first experiment we used data from
an Airbus use case, containing a real world scenario with 32 different variations. To make a
fair comparison, we designed the CP-SmartPreemption model that handles preemption in
a clever way significantly outperforming the our baseline CP model CP-Base. Despite its
good performances, CP-SmartPreemption is unable to find a feasible solution in 6 industrial
instances, while the LNS method finds a solution on all instances. From the observations of
the samples, we conjecture that our method works better when (almost) all complex features
are present in the problem definition (i.e.: calendar, generalized precedence constraints,
multiskill and preemption). Then, we tested our method using a benchmark from research
work on partially preemptive multi-skill scheduling [26] to evaluate its performance in another
real scenario. In this experiment, the simulated annealing methods appears competitive,
slightly improved by LNS. Our method was the second best among the tested ones given
the benchmark conditions, still being competitive enough to be close to the best one of that
benchmark. In the last experiment on standard MS-RCPSP instances, we used our method
as a mean of improvement for the solutions given by the CP based method. On the instances
from [38] we improved the best known solutions in 69,9% of the instances. On the instances
from [34] the performance of our approach is highly correlated with skill scarceness, which
open a path for future research.

In conclusion, we found our LNS based method, available in a new discrete optimization
open-source library, appropriate to solve scheduling problems containing combinations of
complex features like the ones found in industrial instances, and is still reliable to be used
for more academic problems.

An interesting perspective is to be able to reuse the subproblem solving information
from one iteration the other to save computational time. Current Minizinc implementation
has a limitation w.r.t. incrementality. Nevertheless, it would be worth to investigate how
solution-based phase saving approaches [8] use nogoods and see if it is applicable in our LNS
framework for future work. Adapting propagation guided LNS[23] to our framework is also a
promising research direction.

References

1 Behrouz Afshar-Nadjafi. Multi-skilling in scheduling problems: A review on models, methods
and applications. Computers & Industrial Engineering, 151:107004, 2021.

2 Bernardo F Almeida, Isabel Correia, and Francisco Saldanha-da Gama. Priority-based
heuristics for the multi-skill resource constrained project scheduling problem. Expert Systems
with Applications, 57:91–103, 2016.

G. Povéda, N. Alvarez, and C. Artigues 31:17

3 Bernardo F Almeida, Isabel Correia, and Francisco Saldanha-da Gama. Modeling frameworks
for the multi-skill resource-constrained project scheduling problem: a theoretical and empirical
comparison. International Transactions in Operational Research, 26(3):946–967, 2019.

4 Lucio Bianco and Massimiliano Caramia. An exact algorithm to minimize the makespan
in project scheduling with scarce resources and generalized precedence relations. European
Journal of Operational Research, 219(1):73–85, 2012.

5 P. Brucker. Complex Scheduling. Springer, 1999.
6 José Coelho and Mario Vanhoucke. Multi-mode resource-constrained project scheduling using

rcpsp and sat solvers. European Journal of Operational Research, 213(1):73–82, 2011.
7 Erik L Demeulemeester and Willy S Herroelen. An efficient optimal solution procedure for the

preemptive resource-constrained project scheduling problem. European Journal of Operational
Research, 90(2):334–348, 1996.

8 Emir Demirović, Geoffrey Chu, and Peter J Stuckey. Solution-based phase saving for cp: A
value-selection heuristic to simulate local search behavior in complete solvers. In Principles
and Practice of Constraint Programming: 24th International Conference, CP 2018, Lille,
France, August 27-31, 2018, Proceedings 24, pages 99–108. Springer, 2018.

9 Andreas Drexl and Juergen Gruenewald. Nonpreemptive multi-mode resource-constrained
project scheduling. IIE transactions, 25(5):74–81, 1993.

10 Davide Giglio, Massimo Paolucci, Abdolreza Roshani, and Flavio Tonelli. Multi-manned
assembly line balancing problem with skilled workers: a new mathematical formulation.
IFAC-PapersOnLine, 50(1):1211–1216, 2017.

11 Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large neighborhood search
for cumulative scheduling. In ICAPS, volume 5, pages 81–89, 2005.

12 Shima Javanmard, Behrouz Afshar-Nadjafi, and Seyed Taghi Akhavan Niaki. Preemptive
multi-skilled resource investment project scheduling problem: Mathematical modelling and
solution approaches. Computers & Chemical Engineering, 96:55–68, 2017.

13 Ahmed Karam, El-Awady Attia, and Philippe Duquenne. A milp model for an integrated
project scheduling and multi-skilled workforce allocation with flexible working hours. IFAC-
PapersOnLine, 50(1):13964–13969, 2017.

14 S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983. doi:10.1126/science.220.4598.671.

15 RAINER KOLISCH and ANDREAS DREXL. Local search for nonpreemptive multi-mode
resource-constrained project scheduling. IIE Transactions, 29(11):987–999, 1997. doi:10.
1080/07408179708966417.

16 Rainer Kolisch and Sönke Hartmann. Heuristic algorithms for the resource-constrained project
scheduling problem: Classification and computational analysis. In Project scheduling, pages
147–178. Springer, 1999.

17 Stefan Kreter, Andreas Schutt, and Peter J Stuckey. Using constraint programming for solving
rcpsp/max-cal. Constraints, 22(3):432–462, 2017.

18 Philippe Laborie. An update on the comparison of mip, cp and hybrid approaches for mixed
resource allocation and scheduling. In Willem-Jan van Hoeve, editor, Integration of Constraint
Programming, Artificial Intelligence, and Operations Research, pages 403–411, Cham, 2018.
Springer International Publishing.

19 Haitao Li and Keith Womer. Scheduling projects with multi-skilled personnel by a hybrid
milp/cp benders decomposition algorithm. Journal of Scheduling, 12(3):281–298, 2009.

20 Paweł B. Myszkowski, Maciej Laszczyk, Ivan Nikulin, and Marek Skowronski. imopse: a library
for bicriteria optimization in multi-skill resource-constrained project scheduling problem. Soft
Computing, 23:3397–3410, 2019.

21 Mireille Palpant, Christian Artigues, and Philippe Michelon. Lssper: Solving the resource-
constrained project scheduling problem with large neighbourhood search. Annals of Operations
Research, 131(1):237–257, 2004.

CP 2023

https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1080/07408179708966417
https://doi.org/10.1080/07408179708966417

31:18 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

22 Claude Le Pape and Philippe Baptiste. Heuristic control of a constraint-based algorithm for
the preemptive job-shop scheduling problem. Journal of Heuristics, 5(3):305–325, 1999.

23 Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided large neighborhood
search. In International Conference on Principles and Practice of Constraint Programming,
pages 468–481. Springer, 2004.

24 Oliver Polo-Mejía, Marie-Christine Anselmet, Christian Artigues, and Pierre Lopez. Mixed-
integer and constraint programming formulations for a multi-skill project scheduling problem
with partial preemption. In 12th International Conference on Modelling, Optimization and
Simulation (MOSIM 2018), pages 367–374, 2018.

25 Oliver Polo-Mejía, Christian Artigues, Pierre Lopez, and Virginie Basini. Mixed-integer/linear
and constraint programming approaches for activity scheduling in a nuclear research facility.
International Journal of Production Research, 58(23):7149–7166, 2020.

26 Oliver Polo-Mejía, Christian Artigues, Pierre Lopez, Lars Mönch, and Virginie Basini. Heur-
istic and metaheuristic methods for the multi-skill project scheduling problem with partial
preemption. International Transactions in Operational Research, 2021.

27 Sacramento Quintanilla, Ángeles Pérez, Pilar Lino, and Vicente Valls. Time and work
generalised precedence relationships in project scheduling with pre-emption: An application to
the management of service centres. European Journal of Operational Research, 219(1):59–72,
2012.

28 Jerzy Rosłon. The multi-mode, resource-constrained project scheduling problem in construction:
state of art review and research challenges problem. Technical Transactions, 2017. doi:
10.4467/2353737XCT.17.070.6427.

29 Mónica A Santos and Anabela P Tereso. On the multi-mode, multi-skill resource constrained
project scheduling problem–a software application. In Soft computing in industrial applications,
pages 239–248. Springer, 2011.

30 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Explaining the
cumulative propagator. Constraints, 16(3):250–282, 2011.

31 Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark G. Wallace. Solving rcpsp/max
by lazy clause generation. J. Sched., 16(3):273–289, 2013. doi:10.1007/s10951-012-0285-x.

32 Andreas Schutt, Thibaut Feydy, Peter J Stuckey, and Mark G Wallace. Solving rcpsp/max by
lazy clause generation. Journal of scheduling, 16(3):273–289, 2013.

33 Jakob Snauwaert and Mario Vanhoucke. A new algorithm for resource-constrained project
scheduling with breadth and depth of skills. European Journal of Operational Research,
292(1):43–59, 2021. doi:10.1016/j.ejor.2020.10.032.

34 Jakob Snauwaert and Mario Vanhoucke. A classification and new benchmark instances for the
multi-skilled resource-constrained project scheduling problem. European Journal of Operational
Research, 2022. doi:10.1016/j.ejor.2022.05.049.

35 Tianshu Song, Ke Xu, Jiangneng Li, Yiming Li, and Yongxin Tong. Multi-skill aware task
assignment in real-time spatial crowdsourcing. GeoInformatica, 24(1):153–173, 2020.

36 Ria Szeredi and Andreas Schutt. Modelling and solving multi-mode resource-constrained
project scheduling. In International Conference on Principles and Practice of Constraint
Programming, pages 483–492. Springer, 2016.

37 Tony Wauters, Joris Kinable, Pieter Smet, Wim Vancroonenburg, Greet Vanden Berghe, and
Jannes Verstichel. The multi-mode resource-constrained multi-project scheduling problem.
Journal of Scheduling, 19(3):271–283, 2016.

38 Kenneth Young, Thibaut Feydy, and Andreas Schutt. Constraint programming applied to the
multi-skill project scheduling problem. In Principles and Practice of Constraint Programming
- 23rd International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September
1, 2017, Proceedings, pages 308–317, August 2017. doi:10.1007/978-3-319-66158-2_20.

https://doi.org/10.4467/2353737XCT.17.070.6427
https://doi.org/10.4467/2353737XCT.17.070.6427
https://doi.org/10.1007/s10951-012-0285-x
https://doi.org/10.1016/j.ejor.2020.10.032
https://doi.org/10.1016/j.ejor.2022.05.049
https://doi.org/10.1007/978-3-319-66158-2_20

G. Povéda, N. Alvarez, and C. Artigues 31:19

A Appendix

A.1 CP modeling comparisons

We ran new experiments in comparing the two different CP modeling we propose : the
default one presented in section 3.2.2 and its upgrade that we called CP-SmartPreemption.
Computation time are still 1800 s each like in experiments of section 5.1. Results are shown
in 4. We interestingly note that CP-SmartPreemption is both faster and more efficient than

Table 5 Best solution and time to best solution for CP-Base and CP-SmartPreemption.

ID Features CP-B CP-B (s) CPSmart CPSmart (s)

0 A 1080 1.09 1080 0.78
1 A M - - 1080 8.20
2 A G 6534 0.99 6534 0.23
3 A G M - - 6534 3.90
4 A P 1104 2.21 1080 64.9
5 A M P - - 2495 24.4
6 A G P 6534 2.40 6534 62.3
7 A G M P - - 6612 141
12 A C P - - - -
13 A C M - - - -
14 A C G P - - - -
15 A C G M P - - - -
16 B 2339 106 2339 22.9
17 B M 2359 193 2346 158

ID Features CP-B CP-B (s) CPSmart CPSmart (s)

18 B G 3053 0.59 3053 0.20
19 B G M 3109 81 3109 3.20
20 B P 2342 133 2340 178
21 B M P - - 2390 196
22 B G P 3063 106 3044 30.0
23 B G M P - - 3180 198
24 B C 3196 154 3196 170
25 B C M 3272 127 3208 88
26 B C G 4949 0.52 4949 0.17
27 B C G M 4949 2.2 4949 0.80
28 B C P 3252 1.32 3195 217
29 B C M P - - 3208 203
30 B C G P 4949 1.35 4383 59.0
31 B C G M P - - - -

the default version. Notably, it manages to find feasible solution to 7 additional instances
compared to basic CP formulation. It also succeeds in solving instance ID 30 way more
efficiently than CP-Base or even the LNS that was presented in Table 3. As of today, the
current modeling of CP-SmartPreemption still fails at the most complicated instances on the
instance A that have the most operators/workers and number of task.

A.2 Subproblem methods benchmark

We give more hindsight on the general choice done in the paper to use the mixing methods
described in section 4.2.2. Naturally we expect that such a portfolio approach that picks a
method from a pool of N neighborhood methods can be better in average than using only
one method. To confirm this intuition, we run LNS methods using different parameters:

1. “Random selection” methods with parameter f taking values in [0.1, 0.2, 0.3, 0.4]

2. “Cut in equal parts” methods with parameter c taking values in [2, 3, 4, 5, 6]

3. “Mixing method” : portfolio of the previous 9 methods, chosen randomly at each iteration
of LNS.

As a starting experiment, we are testing this methods on 5 classical RCPSP instances with
120 tasks, and run the solver 10 times per neighborhood methods and instances to get a
better statistical confidence. We limited to 100 the number of iteration of LNS. Detailed
results are in Table 6. It shows empirical confidence in using a mixing method, that achieved
best performance. We also ran the same experiment on the instances ID=16,17 in Table 7
and got similar behaviour. Deeper hyper-parameters optimisation could be done for the
more complex problems as PP-MS-MM-RCPSP/max-cal in a further research.

CP 2023

31:20 Partially Preemptive Multi Skill/Mode Resource-Constrained Project Scheduling

Table 6 Neighborhood methods performance on a few instances.

Method j1201_1 j1201_2 j1201_3 j1201_4 j1201_5

RS(0.1) 116.6 131.3 138.6 106.5 131.3
RS(0.2) 112.2 129.8 136.8 106.0 128.3
RS(0.3) 110.4 128.4 134.3 105.4 120.4
RS(0.4) 108.9 118.0 132.6 103.3 116.7
Cut(2) 105 118.0 130 102.0 113.0
Cut(3) 107 118.0 135 101.0 118.0
Cut(4) 108 126.0 131 106.0 132.0
Cut(5) 111 128.0 136 106.0 130.0
Cut(6) 111 129.0 137 106.0 130.0
Mixing 106.5 115.0 128.3 102.0 113.0

Table 7 Neighborhood methods performance on an industrial use case (ID=16).

Method ID 16 (B) ID 17 (BM)

RS(0.1) 2698.0 2745.0
RS(0.2) 2659.0 2675.0
RS(0.3) 2534.0 2635.0
RS(0.4) 2489.0 2662.0
Cut(2) 2344.0 2628.0
Cut(3) 2343.0 2436.0
Cut(4) 2346.0 2480.0
Cut(5) 2346.0 2486.0
Cut(6) 2349.0 2776.0
Mixing 2342 2460.0

A.3 MSLIB Experiments
To better understand the results we plot the overcost of the LNS method as a function
of different parameters used to generate MSLIB4 instances in Figure 4. We theorize that
increasing #R (number of resources) has a negative impact on LNS performance. It also
highlights that LNS is underperforming only on instances where SS = 0 and SSα = 0,
defined as skill strength and skill strength variability. As future work we want to continue
testing on MSLIB benchmark to possibly improve the LNS method. Detailed results
comparing the GA and LNS approach over the tested instances are depicted in Tables 8
and 9.

Table 8 Best results over subset of MSLIB4 instances (404 instance).

Algorithms LNS (ours) GA 2021 Equal
#Best Results 90 164 150
Mean Improvement when better solution than GA 2.9% - -
Mean Degradation when worse solution than GA 19.2% - -

G. Povéda, N. Alvarez, and C. Artigues 31:21

Figure 4 Relative overcost to GA of LNS method, function on different features of MSLIB4
instances.

Table 9 Detailed results comparing GA (from [33]) and our methods, function on instance
parameters. The GA, Equal, LNS columns counts the number of instance of some given parameters
where each of the algorithms got the best results. (LNS-GA)/GA column store the average overcost
of LNS method oven the subset of instances described by SP, SS, RA.

SP SS RA NbRun GA Equal LNS Mean (LNS-GA)/GA (%)

0.1 0.0 0.0 79 41 34 4 12.4
- - 0.2 40 5 17 18 1.89
- - 0.3 33 33 0 0 18.6
- - 0.4 25 9 9 7 5.59
- - 0.5 66 44 11 11 12.4
- - 0.6 15 5 7 3 2.86
- - 0.7 18 11 5 2 9.21
- - 0.8 22 13 7 2 8.04
- - 0.9 3 3 0 0 6.78
- - 1.0 28 0 18 10 -1.01
- 0.1 0.0 24 0 14 10 -1.06
- - 0.2 6 0 2 4 -2.71
- - 0.3 3 0 1 2 -3.60
- - 0.4 1 0 0 1 -4.88
- - 0.5 1 0 0 1 -1.67
- - 0.6 1 0 1 0 0.0
- - 0.7 2 0 1 1 -0.76
- 0.2 0.0 18 0 12 6 -1.00
- - 0.2 6 0 2 4 -2.67
- - 0.3 1 0 1 0 0.0
- - 0.4 2 0 1 1 -2.38
- 0.3 0.0 5 0 3 2 -1.61
- - 0.2 1 0 0 1 -2.63
- 0.4 0.0 2 0 2 0 0.0
- 0.5 - 2 0 2 0 0.0

CP 2023

	1 Introduction
	2 Multi-skill/mode, preemption, calendars and generalized precedence in the literature
	3 PP-MS-MM-RCPSP/max-cal: definition and formulation
	3.1 Known variants in the literature
	3.2 Constraint Programming formulation
	3.2.1 Decision variables
	3.2.2 Constraints
	3.2.3 Objective function

	3.3 A small PP-MS-MM-RCPSP/max-cal instance and its optimal solution

	4 Algorithms
	4.1 Generic large neighborhood search algorithm
	4.2 Application to the PP-MS-MM-RCPSP/max-cal
	4.2.1 Initial solution provider
	4.2.2 Subproblem building
	4.2.3 Subproblem solving

	4.3 Relaxing constraints

	5 Experimental results
	5.1 Manufacturing domain instances
	5.2 Experiments on instances with multiskill and partial preemption
	5.3 Experimental results of LNS on standard multi-skill instances from the literature
	5.4 Implementation

	6 Conclusions
	A Appendix
	A.1 CP modeling comparisons
	A.2 Subproblem methods benchmark
	A.3 MSLIB Experiments

