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Highlights

Monitoring of Sow Postural Activity from 3D Millimeter-Wave
Radar Imaging

Dominique Henry, Jean Bailly, Tiphaine Pasquereau, Jean-François Bompa,
Hervé Aubert, Laurianne Canario

• Postural activity of sows is monitored by using a millimeter-wave radar
imaging system

• Sows are detected inside farrowing pens in presence of their piglets

• Millimeter-wave radar imaging system records heatmaps of the sow
locomotor activity

• Millimeter-wave radar imaging system detects standing and lying pos-
tures
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Abstract

This paper presents a novel approach to monitor the postural activity of
sows in farrowing pen using a millimeter-wave radar imaging system. Three-
dimensional images of the scene are obtained from a 77GHz Multiple-Input
Multiple Output radar and the mechanical scanning of the radar beam. We
show that the processing of radar images based on the Cell-Averaging Con-
stant False Alarm Rate allows detecting the standing and lying postures of
sows despite the electromagnetic clutter. The experimental study reported
here is performed from the monitoring of 16 sows from the Large White breed
for a total of 46 hours. 3D positions of the sow are recorded and heatmaps
of the sow locomotor activity are proposed. With few training radar data,
we perform a classification of standing and laying postures with a mean bal-
anced accuracy greater than 90%. The radar-based technique applied here in
a cluttered environment inside farrowing pens may be extended to monitor
pigs under other housing condition.

Keywords: animal behavior monitoring, millimeter-wave, precision
livestock farming, sow activity, radar imaging, remote sensing.

1. Introduction

Animal behavior in livestock farming is a major concern for animal ethol-
ogists and biologists. This is particularly the case for pig farming in the
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European Community where new regulations for animal welfare are gradu-
ally being implemented. However, the well-being of pigs in livestock farming
is difficult to define, but its measure requires usually the permanent moni-
toring and processing of behavioral data to correlate with physiological and
environmental factors. In this context, the analysis of social interactions of
sow with their piglets is particularly interesting. While most of them are
very maternal with their piglets and move with caution and attention, some
sows may crush piglets when they lie down, and the risk is higher in farrow-
ing pens Edwards (2002). To limit the occurrence of these life-threatening
events, a solution may consist of monitoring the behavior of many individual
sows with their piglets inside the pens to detect the early warning signs of
piglet crushing. The monitoring can be performed by recording data from
various sensors. For example, accelerometers attached to the back of the sow
were used to detect sitting, lying on the left or right side postures Canario
et al. (2019); Ringgenberg et al. (2010). They can also be attached to neck
collars to predict farrowing Pastell et al. (2016). However these sensors are
embedded and may alter the behavior of the animals. Moreover, batteries of
accelerometers need to be charged even if autonomy of such sensor can reach
5 days with a sampling rate of 10Hz Benaissa et al. (2019); Riaboff et al.
(2022). Non-embedded remote monitoring of sow postural activities can be
performed by using optical cameras. As an example, image processing tech-
niques based on dynamic background extraction and optical flow was used
to detect the activity changes in sows during final gestation Küster et al.
(2020). Tracking of multiple pigs from two cameras with depth sensors were
performed to detect behavioral changes Matthews et al. (2017). Different
postures of sows were also detected from the processing of video recording
based on deep learning approaches while kept in a farrowing crate Bonneau
et al. (2021), or in a pen Zheng et al. (2018) in presence of piglets or in
the days before farrowing Liu et al. (2022) and in correlation with nursing
events Yang et al. (2018). These artificial intelligence algorithms were also
applied to detect the posture of piglets Lu et al. (2022) and groups of pigs
Xu et al. (2022). The posture budget and activity patterns predicted from
convolutional neural network can then be correlated with, e.g., piglet sur-
vival and early growth, as shown in Girardie et al. (2023). These predictive
methods provide accurate classifications, at the expense of a large number of
annotated data in the training dataset. Moreover, the trained classifier must
be as insensitive as possible to environmental changes, such as variations in
brightness or observation angles.

On the other hand, remote monitoring sensors different than optical
cameras exist and may offer other advantages. In particular, a promising
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and very recent approach for livestock remote monitoring consists of using
millimeter-wave radar. This technology is non-invasive (no installation on
animals of wireless sensors or tags is needed). As it is the case in other radar
applications, the echo detection relies on the electromagnetic field backscat-
tered by the target. It may estimate the posture of animals directly from
radar image processing and finally, allow detecting the position and the speed
of animals (such as pigs or sheep) at tenth of meters from the radar. In
the livestock welfare context (as described in, e.g., Ahmadi et al. (2011))
radar technology may be advantageously applied inside crates or pens or
outside. As a proof of concept, a 24GHz Frequency-Modulated Continuous-
Wave (FM-CW) radar was recently used for the first time by some of us
to record the radar-to-sheep separation distance in a corridor Henry et al.
(2018), while the displacement of sheep during behavioral tests were derived
from the image processing obtained from a 77GHz Multiple-Input Multiple
Output (MIMO) radar Dore et al. (2021). Doppler frequencies delivered by
a 24GHz FM-CW radar were also measured to detect parturition of sows in-
side farrowing crates Manteuffel (2019) and a remote sensing solution using
122GHz FM-CW radars was investigated to detect the sow postural activity
Dore et al. (2022).

In this paper we propose to extend the radar-based technique to the
analysis of sow postural activity. Sows are with their piglets in farrowing
pens in the so-called open configuration, in which they are not confined be-
tween metal fences but can freely move within an area of around 7-8m2.
As the number of possible orientations of the sow‘s body is much higher in
open configuration as compared to close configuration, the three-dimensional
scanning of the radar beam in the farrowing pen is necessary to detect all
possible postures and positions of sows. We use in this study a 77GHz
FM-CW MIMO radar system that performs the 3D scanning of the radar
beam. Electromagnetic waves in the millimeter-waves frequency band offer
a larger modulation bandwidth than lower frequency bands, and a higher
spatial resolution. The 3D beamscanning is performed both mechanically
and electronically in order to illuminate the entire farrowing pen. In order
to identify the radar echoes associated with sows in the 3D images and miti-
gate the electromagnetic clutter, we propose a detection algorithm based on
the Cell-Averaging Constant False Alarm Rate (CA-CFAR). CA-CFAR is a
well-known radar detection algorithm that was applied recently to 3D radar
images for the environment mapping Wang et al. (2022), drone detection
Wang and Herschel (2022); Del-Rey-Maestre et al. (2021) and ship detection
Kuang et al. (2020). We apply for the first time the algorithm to 3D radar
images to detect the postures of a sow in a farrowing pen. Moreover, the
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detections derived from the processing of 3D radar echoes are segmented by
using a clustering algorithm. Clustering algorithms, such as DBSCAN which
stands for Density-Based Spatial Clustering of Applications with Noise, are
commonly applied in automotive industry Raj and Ghosh (2020) to detect
various targets for example, in 77GHz radar images Wagner et al. (2016,
2017), or in 3D range/angle/Doppler images Palffy et al. (2020), Li et al.
(2018). The novelty of the method we propose consists of applying the clus-
tering on 3D elevation/azimuth/range radar images for livestock monitoring.
Finally, the postures are classified using a conventional Quadratic Discrimi-
nant Analysis (QDA)Tharwat (2016) since only three features based on sow’s
position are used to perform the classification.

The paper is organized as follows: Section II describes the experimental
setup, the 3D radar imaging system and the measurement process. In Section
III, the 3D scanning detection algorithm is detailed, including the description
of the 3D CA-CFAR detection algorithm and the clustering technique for
processing 3D radar images. Section IV analyses the results obtained from
the monitoring of 16 sows for a total of 46 hours. The conclusion to this
study is drawn in Section V, and some perspectives for future works are
finally proposed.

2. Experimental Setup

2.1. 3D Radar Imaging System
The radar monitoring system is illustrated by the block diagram of Fig

1 (a). It includes the Frequency- Modulated Continuous-Wave (FM-CW)
Multiple Inputs - Multiple Outputs (MIMO) radar commercialized by IN-
RAS GmbH INRAS. This radar performs a 2D digital scanning of the radar
beam, and delivers images where the coordinates of one pixel are given by
the range of interrogation r and the azimuth angle φ. Another part of the
system consists of an in-house mechanical platform attached to the radar.
The platform performs the scanning in elevation of the radar beam. The ele-
vation angle is denoted by θ. Consequently, the monitoring system performs
both a mechanical and digital scanning of the radar beam (see Fig 1 (b)).

The main parameters of the radar system are listed in Table 1. The radar
operates in the millimeter-waves frequency band at the carrier frequency of
77GHz. The so-called theoretical depth resolution d is defined by c

2B , where
c is the speed of light in the vacuum and B(=2GHz) denotes the modulation
bandwidth of the chirp, that is, the bandwidth of the transmitted signal
Piper (1993). Here d=7.5cm. The MIMO front-end of the radar is composed
of 2 transmitting (TX) and 16 receiving (RX) channels, and also patch array
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Table 1: Main Parameters of the proposed radar monitoring system
parameter notation value
carrier frequency fc 77GHz
modulation bandwidth B 2GHz
depth resolution d 7.5cm
up-ramp duration tup 256µs
down-ramp duration tdo 64µs
gap duration between down and up ramps tgap 400µs
number of samples per up-ramp NS 512
repetition time trep 50ms
output power Pout 10dBm
number of TX channels NT 2
number of RX channels NR 16
TX antennas gain GT 17dBi
TX half-power elevation beamwidth θT,3dB 13.2◦

RX antennas gain GR 15dBi
RX half-power elevation beamwidth θR,3dB 12.8◦

radar x-position x0 -1.5m
radar y-position y0 ±0.2m
radar z-position z0 1.8±0.05m
maximal elevation θmax -20◦

full-scale elevation range ∆θ 60◦

angular elevation speed vθ 23.2◦/s
ideal duration of one 3D scanning tscan,lin 2.5s
measured duration of one 3D scanning tscan 3.0s
angular elevation step δθ 1.2◦

number of frames per 3D scanning Nscan 1920

antennas are used as TX - and RX -antennas to estimate the directions of
arrival of signals backscattered by the sow and piglets.

The radar system is placed in front of the farrowing pen at the posi-
tion P (x0, y0, z0) defined in the Cartesian coordinates system (O, x, y,
z), where the origin O is placed at the center of the farrowing pen (ground
level). We choose the radar position of coordinates x0=-1.5m, y0=±0.2m and
z0=1.8±0.05m in order to prevent damages of the radar setup from animals
(sow and piglets) and the easy access to human operators. The schematic of
the experimental setup with its open farrowing pen is shown in Fig 2. The
pig is located at the point M of elevation/azimuth/range coordinates (θ(t),
φ(t), r(t)) at time t in the coordinate system of origin P . The mechanical
beamscanning in elevation is performed between minimal (θmin) and maxi-
mal (θmax) angles. Assuming a constant angular speed vθ,min between θmin

and θmax, the duration tscan,lin of one mechanical beamscanning (during one
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(a)

(b)

Figure 1: (a) Block diagram of the 3D radar imaging system performing the digital beam-
scanning of the scene in range and azimuth and (b) Schematic of the system performing
the mechanical beamscanning in elevation
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upward or downward scan of radar beam) is then given by ∆θ
vθ,lin

. In our
experiments, we select θmin=-80◦ and θmax=-20◦ to minimize the number of
blind spots in the farrowing pen, and vθ,lin=24◦/s. Consequently, the dura-
tion tscan,lin of the beam scanning is of 2.5s. However, the rotational speed is
not constant in practice and consequently, as it can be observed in Fig 3, the
measured elevation angle does not vary linearly over time. This non-linearity
must be considered to accurately estimate the time tscan required to scan the
radar beam from θmin to θmax (or equivalently, from θmin to θmax). This
time (see Fig 2) is given by:

tscan =
∆θ − 2θe

vθ
+ 2te (1)

where vθ denotes the measured angular speed, θe is the measured angular
interval in which the rotational speed is not constant during the time te
We measure vθ=23.2◦/s , θe=1◦ and te=250ms. Therefore, the time tscan
required to scan the radar beam from θmin to θmax is then of 3.0s.

Moreover, the radar delivers NT ×NR signals with a full repetition time
trep=50ms≥ NT × (tup + tdo + tgap)=1.4ms. The angular elevation step
δθ=1.2◦ of a 3D radar image generated during the radar beam at the constant
rotational speed vθ from θmin to θmax (or from θmax to θmin) is then:

δθ = vθ × trep =
∆θ − 2θe
tscan,lin

× trep (2)

with trep=50ms. With such value, blind spots in elevation are prevented
by choosing a value for δθ lower than the half-power beamwidth of the TX

radar antennas θT,3dB. Moreover, the number of registered frames per scan
is defined by:

Nscan = ⌈NT ×NR × tscan
trep

⌉ (3)

where ⌈.⌉ denotes the ceil function. The number of frames per 3D scan-
ning Nscan is 1920. Values and descriptions of the scanning parameters are
summarized in Table 1.

2.2. Measurement Protocol
The measurements are performed at the experimental breeding unit of

INRAE GenESI, France. The experiment authorization number of the ex-
perimental farm GenESI (Pig phenotyping and Innovative breeding facility,
https://doi.org/10.15454/1.5572415481185847E12 ) is A-17-661. The exper-
iment was designed in compliance with Legislations of the European Union
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Figure 2: Schematic of the farrowing pen in open configuration with both Cartesian
(O, x, y, z) and radar (P , θ, φ, r) elevation / azimuth / range coordinates systems.

Figure 3: Variation of the measured elevation angle of the radar beam as a function of
slow time.
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Figure 4: Photograph of the experimental setup. The 3D beamscanning system is located
above the farrowing pen.

(Directive 86/609/EEC) and France (Decree 2001–464 29/05/01) for the care
and use of animals (Agreement For Animal Housing Number C-35-275-32).
It was approved by the ethical committee of the Nouvelle Aquitaine Regional
Council (authorization #15563-2018060113088001). A picture of the exper-
imental setup is shown in Fig 4. The 3D scanning of the radar beam is
launched during 2-3 hours for different sows of the Large White breed with
piglets aging from 7 to 15 days. All farrowing pens are quasi-identical, but
some pens are symmetrically reversed along the x-axis. In the photograph,
the device attached to the sow is an accelerometer used in another study.
It is not involved in the reported work. The setup calibration is achieved
from scanning the farrowing pen in absence of sow and piglets. The result-
ing 3D reference images are used in post-processing to remove undesirable
radar echoes called the clutter which are generated by the electromagnetic
backscattering of motionless objects placed in the sow environment, such as
the metallic fences, the ground, the sow trough and piglets’ feeding through.
For this development, 16 different sows are monitored for a total of 46 hours.
For comparison purpose, videos of the farrowing pens are recorded during
the radar scanning of the scene. Sow postures are annotated manually for
all video records and considered here as the ground-truth of sow postures.
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Table 2: Monitored Sows
sow id date duration x-axis cal.a use b

015203 08-17-2022 120 min rev. no training
015236 08-18-2022 120 min rev. no training
113911 08-18-2022 120 min rev. yes training
014648 08-19-2022 120 min - no training
011656 11-08-2022 120 min - yes test
011696 11-08-2022 180 min rev. yes test
011831 11-09-2022 180 min - yes test
011863 11-09-2022 180 min rev. yes test
012423 11-09-2022 180 min - yes test
012962 11-10-2022 180 min rev. yes test
011689 11-21-2022 180 min - yes test
011762 11-21-2022 180 min rev. yes test
011786c 11-22-2022 180 min - yes test
014794 11-22-2022 180 min rev. yes test
011796 11-23-2022 180 min - yes test
014867 11-23-2022 180 min - yes test
011786c 11-24-2022 180 min - yes test

a : calibration performed without sow and piglets.
b : use for the QDA classification (see Section 4.2)
c : sow 011786 has been monitored twice.
rev. : the farrowing crate is symmetrically reversed along the x-axis.
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3. 3D Scanning Detection Algorithm

3.1. Generation of the 3D radar images
Prior to the application of the detection algorithm, 3D images are gen-

erated from the recorded radar raw data. Raw data are 3D matrices of size
NS × NC × NL. As referred in Section 2.1, NS is the number of samples
of the fast time axis. NC=NT ×NR is the number of signals per combined
TX and RX channels of the channel axis. NL is the number of samples of
the slow time axis. Raw data are then converted into consecutive 3D radar
images in the coordinate system (P , θ, φ, r) as a function of the slow time.
Here are the following steps of the processing:

• Step 1 in Fig 5: we apply a Hanning window to reduce side lobes of
echo level, and a FFT (Fast Fourier Transform) along the fast time
axis on raw data. We keep only the first half of the resulting (sym-
metric) spectrum. We obtain beat frequency spectra of NS

2 samples of
echo level as a function of the distance r. We can choose a max-
imum distance value rlim to reduce the number of samples. This
number is then NS,lim=⌊ rlimd ⌋, where ⌊.⌋ denotes the floor function.
We choose rlim=5.0m and NS,lim=66. The 3D matrix is now of size
NS,lim ×NC ×NL;

• Step 2 in Fig 5: we multiply each row of the 3D matrix channel
axis by the corresponding calibration complex value provided by the
radar manufacturer. Next, we apply a second Hanning window and
FFT along the channel axis to perform a digital beamscanning. Zero-
padding of factor np=8 is applied and the number of samples of the
resulting azimuth axis is then Nφ=np × NC=256. Consequently, we
obtain a complex-values NS,lim × Nφ × NL matrix. Moreover, the
azimuth angle computed from the FFT beamforming is defined by
φ(k)=arcsin(−1 + k

Nφ
), with k=0..Nφ-1;

• Step 3 in Fig 5: indexes ranging from 0 to NL-1 are associated with
the timestamp of the local network recorded for each radar data ac-
quisition, as well as the elevation angle. We then split on the slow
time axis the 3D matrix into sub-matrices at indexes that correspond
to elevation angles θmin=-80◦ and θmax=-20◦. Values of sub-matrices
that are split from θmax and θmin are reversed along the slow time axis.
In order to have sub-matrices of same dimensions, we perform a spline
interpolation along the slow time axis by using the elevation vector
ranging from θmin and θmax with the angular step sθ=2.4◦. Note that
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Figure 5: Schematic of the algorithm that generate 3D radar images from raw data.

sθ must be greater than δθ. We finally obtain the elevation axis with
a number of samples given by Nθ = ⌊∆θ

sθ
⌋=25.

From the above-described steps, we obtain 3D radar images of dimensions
Nθ ×Nφ ×NS,lim with their associated timestamps.

3.2. Radar Detection Algorithm
Once the 3D radar images are generated, we apply an algorithm to detect

the sow position (x, y, z) inside the farrowing pen. The detection algorithm
is based on the Constant False Alarm Rate (CFAR) algorithm applied to
3D radar images. The algorithm is composed of several steps (see also the
schematic displayed on Fig. 6), as well as the video in supplementary data
in Appendix A:

• We compute the detection threshold of the CA-CFAR algorithm for
each voxel of a single 3D calibration image (that is, in absence of
sow and piglets in the farrowing pen). We choose here a CA-CFAR
(Cell Averaging CFAR) algorithm Richards (2014) where the detection
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threshold is given by:

T̂ =
α

Nw

Nw∑
i=1

vi (4)

where Nw designates the number of reference cells for which the aver-
aging is performed, vi denotes the echo level value of the reference cell,
and α is the threshold multiplier defined by:

α = Nw(pfa
− 1

Nw −1) (5)

pfa is the probability of false alarm. Dimensions (nθ, nφ, nr) of the 3D
averaging window around one voxel is (5,5,5) without guarding cells.
The number of reference cells is then Nw = nθ × nφ × nr − 1=124. As
the optimal PFA leading to a maximum of true detections is unknown,
the set of 3D detection thresholds with PFA ranging from 10−7 to 10−2

is generated;

• We define here detections as voxels with echo level greater than the
detection threshold T̂ . We compute detections in the 3D radar images
while increasing PFA until the minimal number of detections nmin is
reached. We choose here nmin=100 (we may also choose higher values
of nmin for display purposes, as illustrated in Fig 7 for nmin=400);

• We check the detections in order to know if they correspond to the
same pig. For this purpose, we compute the separation distances be-
tween detections and create groups of close detections from the mean-
shift clustering algorithm Comaniciu and Meer (2002) developed in
Pedregosa et al. (2011). Within a single 3D radar image, we obtain
one (or more) cluster(s) composed of voxels. Clusters for which the
number of voxels is lower than nlim=10 are discarded;

• We convert the elevation/azimuth/range coordinates of the selected
voxels into Cartesian coordinates in the (O, x, y, z) system. In this
transformation, the radar coordinates (x0, y0, z0) are involved;

• We compute the coordinates (xG, yG, zG) of the barycenter of each
cluster. The clusters for which the barycenter is outside the farrowing
pen boundaries are discarded. We also remove clusters for which zG is
greater than the maximal height of the studied sows zlim=1.1m;

• We compute the coordinates of the barycenter of remaining clusters.
We assume that a set of clusters corresponds to the same target if the
distances between constitutive clusters are smaller than dlim=1.0m;
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• If several sets of clusters remain after the above-described steps, we
consider that the set composed of the highest number of voxels corre-
sponds to the radar echoes of the sow.

For illustration purposes, two examples of cluster set with nmin=400 are
displayed in Fig 7 for sow 011863 in the farrowing pen. In the first case (a -
b), the sow is in the standing posture and the set of clusters is composed of
two clusters (blue squares). The red cross designates the coordinates of the
barycenter. In the second example, the sow is lying on the side with udder
exposed and nursing the piglets, and the set of clusters is then composed
of one cluster close to the ground level and one on the pen door. In such
posture, the value of θ must be very close to θmin=-80◦ to detect the sow.

3.3. Features of 3D Clusters
Features of 3D clusters computed in Section 3.2 are used to detect the

postural activity and trajectories of the sow. Features of the set of 3D
clusters, such as the barycenter coordinates (xG, yG, zG), the number of
voxels, and the level of radar echo, are computed as a function of the slow
time. As an example, features xG, yG and zG of sow 011863 are displayed in
Fig 8 (black crosses). We observe two time slots: between 500s and 5000s the
sow does not move, is lying and nursing, and after 5000s, an active period of
standing in motion is observed. In order to remove false detections, and to
increase the signal-to-noise ratio, we apply a mean filter to features xG, yG
and zG with a sliding window of size 10 (which corresponds to a duration of
around 30s). We obtain trajectories (blue lines) with filtered false detections
(easily visible for example for feature xG). If there is no detection at a given
time bin, we compute the position as the average between the previous and
next estimations of the position.

4. Results and Discussion

4.1. Moving and Stationary States
We apply the filtered feature zG detailed in Section 3.3 to detect moving

or motionless sow from the computation of the time derivative of zG (that
is, the speed żG). By defining a threshold ż0, the condition |żG| > ż0 cor-
responds to a motion of the sow while the condition |żG| ≤ ż0 corresponds
to a motionless state. This result is illustrated in Fig 9 with the filtered zG
that was previously computed from the threshold ż0=2.5×10−3m.s−1. Mo-
tion and motionless states are enlightened respectively in blue and orange
colors in the Figure, and we can easily observe the sow motion after 5000s.
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Figure 6: Schematic of the radar detection algorithm

15



(a) (b)

(c) (d)

Figure 7: Set of 3D clusters (nmin=400 voxels) and corresponding video frames of sow
011863 in the farrowing pen for (a - b) a "standing" posture and (c - d) a "lying on the
side with udder exposed" posture.
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Figure 8: Unfiltered (black crosses) and filtered (blue lines) features xG, yG and zG as a
function of the time (sow 011863).
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Therefore, we can define a criterion of motion along the spatial axis z as
follows:

γz(ż0) =
T (żG > ż0)

T
(6)

where T denotes the total measurement duration, and T (|żG| > ż0) desig-
nates the measurement duration when |żG| > ż0. If the sow is continuously
motionless, we obtain γz(ż0)=0. Inversely, if the sow moves continuously,
then γz(ż0)=1. The same definition may be applied for axes x and y. γx, γy
and γz are plotted respectively in green, orange and blue colors in Fig 10 for
all monitored sows (see Table 2) with the threshold of 2.5×10−3m.s−1. We
observe high variability in moving activity between sows. For instance, sow
113911 is moving frequently, whereas sow 011762 is motionless during the
experiment. Moreover, γx has mostly greater values than γy and γz, because
the sow can move more along the x-axis in the farrowing pen.

2D heatmaps of xG and yG may also be useful to detect recurrent posi-
tions of the sow inside the farrowing pen. These heatmaps are 2D histograms
representing (x,y) regions where sows are detected during the scanning of the
radar beam. In Fig 11 are displayed heatmaps of xG and yG of (a) sow 113911
and (b) sow 011762. Heatmaps are computed over cells of size 30cm×30cm
and blue to yellow colors represent the normalized values of the (x, y) his-
togram ranging from 0 to 1. Even if the estimation of the position is coarse
(we do not actually know which part of the sow is detected), we observe
heatmap differences between animals. As observed previously with the com-
putation of γx and γy, sow 011762 remains in a more constrained space than
sow 113911, with a heatmap on the specific spot (x=-1.2m, y=-0.2m) close
to the door of the farrowing pen. Inversely, the heatmap associated with sow
113911 indicates more spreading motion.

4.2. Postural Activity
In this section, we study the postural activity of the sows by using the

filtered features xG, yG, zG defined in Section 3.3. We consider three classes
of postures. The first class is called "standing" and includes the "standing"
posture (as depicted in Fig 7.b). The second class is called "transitions" and
it groups "kneeling" and "sitting" postures. The last group is called "ly-
ing", and it includes postures for which the sow is lying : "lying sternally",
"lying on left side", "lying on right side", and "lying with udder exposed"
or not. Postures are annotated manually from the video recording by a sin-
gle observer and the corresponding ethogram is reported in Girardie et al.
(2023). Feature zG is plotted as a function of xG in Fig 12 for "standing"
(green), "transitions" (orange) and "lying" (blue) postures for all sows (see
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Figure 9: Stationary (blue) and mobile (orange) states of feature zG for threshold
ż0=2.5×10−3m.s−1 (sow 011863)

Figure 10: Criteria of motion γk for k=x (green), y (orange) and z (blue) for a threshold
k̇0=2.5×10−3m.s−1
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(a) (b)

Figure 11: 2D Heatmaps of xG and yG for (a) sow 113911 and (b) sow 011762. Blue to
yellow colors are normalized (x,y) histogram values ranging from 0 to 1.

Table 2). We observe that postures depend on zG. Lying postures corre-
spond to small values of zG (i.e., lower than 0.4m) while "transition" and
"standing" postures are given for zG higher than 0.4m. However, the "tran-
sition" and "standing" postures are difficult to distinguish, because the head
or back of the animal can be at the same height when the sow is "standing",
"kneeling" or "sitting". Moreover, we note some isolated sets of data that
correspond to false detections, which might be due to the rare detection of
human operator in the scene during the experiment. If they entered the
pen, it was for a few seconds only. Finally, we observe that xG and zG are
slightly correlated (Pearson correlation coefficient of -0.40) for "standing"
and "transition" postures. This correlation is due to a bias of the elevation
angle before the conversion into Cartesian coordinates (see Section 3.2).

Next, we monitor the postural activity of the sow from the classification
based on a standard QDA classification using two classes: "standing and
transition" (class 0) and "lying" (class 1). Data used for the classification
are time filtered features xG, yG and zG at motionless state (see Section 4.1).
For training data, we use the measurement results obtained in August 2022
from the monitoring of 4 sows for a total of 8 hours. According to range val-
ues of features xG, yG and zG, a QDA should be sufficient for the proposed
classification to distinguish between "lying" and "standing and transition"
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Figure 12: Feature zG as a function of xG for all monitored sows (46 hours of recording
for 16 animals) for "standing" (orange), "transition" (green) and "lying" (blue) postures.
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Table 3: Confusion Matrices of Sows Postural Activity
predicted

0 1 0 1

observed 0 1679
(84.3%)

312
(15.7%)

6286
(88.3%)

828
(11.7%)

1 183
(3.6%)

4923
(96.4%)

556
(2.1%)

26686
(97.9%)

training data tested data
class 0 : "standing and transition"; class 1 : "lying"

postures. With such classification and considering the amount of data, the
risk of overfitting is low (in comparison with other classifications such as
RandomForest or AdaBoost). Moreover, if the radar position is correctly
estimated and the height of the sows does not vary too much, the number
of training data for the classification should be sufficiently high. Data for
the test are the remaining measurement results of Table 2 obtained from the
monitoring of 12 sows for a total of 38 hours. Results of the classification
are reported in Table 3 for training and tested data. We obtained encour-
aging results for different sows and dates of experiment, with precision and
sensitivity (recall) of respectively 88.3% and 90% for the "standing and tran-
sition" class, and 97.9% and 98% for the "lying" class. Note that precision
is defined by TP

TP+FP and sensitivity by TP
TP+FN , with TP , FP and TN the

number of True Positives, False Positives and True Negatives. The balanced
accuracy of the tested data, defined by 1

2(
TP

TP+FN + TN
TN+FP ) is equal to 95%.

Confusion matrices of postures for each sow are also displayed in Fig 13 and
variation in the precision is observed between animals. As an example, the
precision obtained for the "standing and transition" class for sow 113911 is
74%, whereas it reaches 100% for sow 011689. Such difference is explained
by the difficulty to class a number of transition postures (that is, "sitting"
and "kneeling") in the "standing and transition" class instead of the "lying"
class. For this proof of concept, there is sufficient data to show that two pos-
tures can be detected (standing and lying) with the proposed classification
method. However, more data may be required if other learning methods are
employed (such as convolutional neural networks), or if the measurements
are performed in more complex environments.
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Figure 13: Confusion matrices of postural activity for each sow; class 0 : standing and
transition; class 1 : lying; tr : training data; te : tested data.

23



4.3. Discussion
4.3.1. Postural activity monitoring and potential improvements

The proposed monitoring of sow postural activity by using 3D millimeter-
wave radar images presents very encouraging results. We obtain good classifi-
cation results with few training data to distinguish between "lying" postures
and "standing and transitions" postures for different sows and dates during
this radar experiment. And we proceed to the accurate estimation of the
averaged height zG of the sow. Moreover, the radar system also predicts
the position of the sow, and other coordinates xG and yG may offer useful
information. As an example, motionless and moving states can be extracted
and (x,y) heatmaps of the sow inside the farrowing pen can be plotted to en-
lighten different behaviours. Nevertheless, "transition" postures (i.e., "kneel-
ing" and "sitting") are difficult to detect, because the head and back of sow
are not distinguishable by the radar, and because the height zG presents high
variability for these postures. Moreover, "transition" postures are far less
used than other postures, which limited our capacity to train the algorithm
on these behavioral items. In addition, technical solutions can be proposed
to improve the radar monitoring of the postural activity, such as increasing
the bandwidth B of the radar to enhance the depth resolution and improve
the 3D grid resolution (mainly, the x and z coordinates), or else finding the
optimal radar position (x0, y0, z0) to minimize the ambiguities of postural
detection, increasing the number of radars to remove eventual blind spots,
improving the slow time resolution from higher angular speed vθ and de-
creasing the repetition time trep, and/or, replacing the mechanical scanning
of the radar beam with a full 3D digital beamscanning system. Moreover,
ethologists and pig breeders may also be interested by more specific postures,
such as "lying on left side", "lying on right side", "lying sternally" or "lying
with udder exposed". The radar resolution must be sufficiently high to distin-
guish all these postures. Moreover, signal processing based on recognition of
shapes in 3D radar images may be helpful to refine the classification and the
detection of other postures. Note that other sensors, such as accelerometers
and cameras, may be used to complete the proposed analysis of postural
activity based on radar measurements. Future works will focus on fusion
between data provided by these different sensors.

4.3.2. Static clutter and calibration method
The calibration step of the radar setup is mandatory to mitigate the elec-

tromagnetic clutter generated by metallic bars, fences, ground, sow trough
and piglets’ through in the scene. Such clutter may generate false detections.
One must note that the ground is composed of plastic grate panels that may
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generate less clutter that concrete or metal ground. In most measurement
results, a 3D reference radar image is obtained from the scanning of the
radar beam in the farrowing pen in absence of the sow and piglets. However,
this method may not be convenient in practice. A more suitable solution
may consist in generating the 3D reference image by performing the beam
scanning for a known and constant position and posture of the sow (for ex-
ample, a lying posture next to the fences). This calibration approach was
successfully applied for the monitoring of sows 015203, 015236 and 014648.
Results are reported in Table 2. We observe that it has no impact on the pos-
tural classification results (Fig 13), since the reference "lying" posture was
properly chosen without altering the detections of "standing and transition"
postures.

4.3.3. Time-varying clutter: piglets and humans
Time-varying electromagnetic clutter is a set of variable undesirable radar

echoes which cannot be mitigated by the above-described calibration tech-
nique. This clutter, which may generate false detections, can be generated
by the electromagnetic backscattering of the small-sized piglets that may
move quickly (compared to the sow) and are more difficult to detect from
the radar detection algorithm than larger animals. However, detection is
possible if piglets are gathered and at rest. In that specific case, we can
remove the undesirable 3D clusters generated by the piglets from selecting
the set of clusters having the highest number of voxels. Human operators
may also be detected by the radar during an experiment, for example dur-
ing an intervention next to or inside the farrowing pen. In that case, the
radar echoes of such targets may be easily mitigated from selecting detec-
tions that are inside the edges of the farrowing pen with the maximal height
of zlim=1.1m.

5. Conclusion

The proposed method based on a millimeter-wave radar imaging system
for monitoring the postural activity of sows provides promising results. It
allows both the detection of the 3D position of the sow and the classifica-
tion of standing and lying postures with a mean balanced accuracy greater
than 90% at cost of a few training radar data. The simultaneous predic-
tion of sow postural activity and position inside the farrowing pen by the
radar system may be used advantageously by scientists and engineers. Pre-
cision and increased number of different detected postures can be improved
in future works by the fusion of radar data and accelerometer data. The
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radar-based technique was applied here in a cluttered environment inside
farrowing pens, but it may be extended to monitor pigs under other housing
conditions. The well-documented long detection range capability of FM-CW
radars (compared, e.g., to optical cameras) may be exploited to detect and
study livestock outdoor in open and large areas.
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