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∗LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Email: mdore@laas.fr, yariba@laas.fr, garcia@laas.fr

Abstract— This paper deals with the control and observation
of DC output power electronic converters. In order to propose a
general approach, a unified modeling methodology is first intro-
duced. A switched state feedback control law using perturbed
measurements and a full-order observer are then designed
separately based on LMI conditions. The observer is used to
compute the control law while the input and output voltages
are measured, as well as perturbations. The resulting conditions
ensure the exponential convergence of the reconstruction error
towards zero. Then, showing the input-to-state stability (ISS)
property of the system, we prove that the estimated state can be
used instead to asymptotically stabilize the system. Therefore,
the control scheme satisfies the separation principle property.
Results are illustrated by simulations in PLECS with a non-
inverting Buck-Boost converter (DC-DC) and a Half-Bridge
Boost PFC converter (AC-DC).

I. INTRODUCTION

With the development of electrical applications, the use
of switched power converters has increased over the last
years. For many applications, the required level of efficiency
implies the need for appropriate control laws. This context
has led to revisit control problems of power converters with
many efforts from the automatic control community [1].

Power converters are often modeled as hybrid systems [2],
and more specifically switched affine systems (SAS). They
are characterized by a set of continuous dynamic subsystems,
and a switched control law that selects the active subsystem
(or mode) [3]. This nature comes from the fact that the
dynamic of a converter depends on the state of switches
in its circuit. The analysis and design of control laws for
these systems are difficult to handle, but fortunately, many
results have been proposed in recent years (see [1], [3], [4]
and references therein).

In the literature, most widely studied control solutions for
power converters are based on averaged linearized models.
Linearization allows to apply well-known and mastered
linear control methods, to handle model uncertainties for ex-
ample, and to avoid difficulties stemming from discontinuous
nature of the system [4], [5]. Simplified models were also
considered, with nonlinear control techniques [6]–[8].

More recently, an effort has been done to propose control
methods that take into account the discontinuous behavior of
power converters. Several results have been proposed under
bilinear systems formalism [5], [9], hybrid framework [2],
[10] or more specifically SAS [3], [11].

Regarding the observer based control problems, much
less papers have investigated this topic for power converters

[12]–[14]. This topic may be relevant when the state is
not measured or available to compute the control input, in
consistence with real implementation issues [15]. Observers
are also useful to limit the number of sensors and therefore
the production cost, or to estimate relevant information in
the circuit for maintenance. Finally, they can be used in an
adaptive control scheme, to reconstruct unmeasured pertur-
bations or model mismatches that may affect a converter in
practical problems [16]–[18].

In this paper, we first reformulate a unified modeling
methodology for power converters [19] so as to address
the observer based control problem with a generic approach
where disturbances are measured. The well-known argmin
state feedback control law [3], [18] is recalled and adapted
for the aforementioned model. It belongs to the so-called
class of direct control. The design of the observer is based
on a set of linear matrix inequalities (LMIs) built from a
Lyapunov analysis. The main contribution of this paper is
to prove that the reconstructed state can be used to compute
the control law. The proof exploits the Input-to-State Stability
(ISS) property of the system and we show that the separation
principle applies. The methodology is illustrated with two
converters: a non-inverting Buck-Boost and a Half Bridge
Boost PFC converter. The simulations, carried out with the
PLECS software, show the effectiveness of the proposed
results.

II. MODELING AND STATE FEEDBACK CONTROL

A. Modeling

The modeling approach in this paragraph intends to for-
malize the process to get a switched affine system represen-
tation, widely used in the control community, from physical
equations, for a class of converters. Power converters con-
sidered in this paper satisfy the following assumption:

Assumption 1: The framework chosen in this paper con-
siders that the input supply voltage vin, the system output y
as well as the disturbances ω are measured. Moreover, the
circuit operates only in a continuous conduction mode.
Considering Assumption 1 and applying Kirchhoff’s laws,
a physical modeling leads to the following general bilinear
model:

ẋ =
(
A0 +

∑m
i=1 uiAui

)
x+

(
B0 +

∑m
i=1 uiBui

)
vin

+
(
Bω0 +

∑m
i=1 uiBωui

)
ω

y =
(
C0 +

∑m
i=1 uiCui

)
x+

(
Dω0 +

∑m
i=1 uiDωui

)
ω
(1)



where:
• x ∈ Rn is the state vector, usually composed of inductor

currents and capacitor voltages
• y ∈ Rp is the output vector
• ω ∈ Rd is the perturbation signal
• vin is the supply voltage
• matrices A0, Aui

, B0, Bui
, Bω0, Bωui

, C0, Cui
,

Dω0 and Dωui are constant matrices of appropriate
dimensions composed of electrical component values.

Since there are m binary variables ui, there exists M =
2m possible combinations, and therefore M possible con-
figurations of the circuit. Then, M new variables can be
introduced, denoted by λi. By ordering ui’s combinations
in binary order, let us define a mode number to each
configuration. In this approach, λi equals one if and only
if the combination of ui correspond to mode i. Basically,
variables λi’s select the current circuit configuration. Table
1 summarizes the mode definitions, change of variables
and expressions of λi and associated matrices Aλi

(other
matrices expressions follow the same logic). With this change
of variable, the model can be rewritten in the following
polytopic form:

ẋ =
(
A0 +

∑M
i=1 λiAλi

)
x+

(
B0 +

∑M
i=1 λiBλi

)
vin

+
(
Bω0 +

∑M
i=1 λiBωλi

)
ω

y =
(
C0 +

∑M
i=1 λiCλi

)
x+

(
Dω0 +

∑M
i=1 λiDωλi

)
ω
(2)

Let us now gather the λi variables in a vector λ. The latter
belongs to the set:

ΛS =
{
λ ∈ {0, 1}M :

∑M
i=1 λi = 1

}
(3)

Finally, to obtain a compact matrix form, let us define the
following matrices:

B0(x) = [ Aλ1x+
(
B0 +Bλ1

)
vin . . .

. . . AλM
x+

(
B0 +BλM

)
vin ]

Bω(ω) =
[ (

Bω0 +Bωλ1

)
ω . . .

(
Bω0 +BωλM

)
ω

]
D0(x) = [ Cλ1

x . . . CλM
x ]

Dω(ω) =
[ (

Dω0 +Dωλ1

)
ω . . .

(
Dω0 +DωλM

)
ω

]
and the model is then expressed as: ẋ = A0x+

(
B0(x) +Bω(ω)

)
λ

y = C0x+
(
D0(x) +Dω(ω)

)
λ

(4)

This model belongs to the class of SAS since λ selects a
configuration of the circuit and the expression is affine in x.

B. State feedback control using measured perturbations

Considering converters with DC output voltage, the aim
of the control is to stabilize the output at a given reference,
denoted ye. First, an operating trajectory associated to the
reference needs to be defined. The notion of operating
trajectory has no meaning for a switched system, but it does
for a relaxed version of the model, where λ belongs to:

ΛR =
{
λ ∈ [0, 1]M :

∑M
i=1 λi = 1

}
(5)

It represents the so-called averaged model. An interesting
property to be emphasized is that trajectories of the switched
model are dense into trajectories of the averaged model [20].
As a consequence, trajectories of the averaged model can be
arbitrarily approximated by those of the switched system (4).
Therefore, the set of operating trajectories of the averaged
model is of great interest for our problem. Consequently,
solutions of system (4) will be next considered in the sense
of Filipov [20]. In order to maintain the output constant, the
effect of perturbations has to be taken into account with an
appropriate set of operating trajectories:

Xeω =
{
xe : R → Rn, λe : R → ΛR :

A0xe +
(
B0(xe) +Bω(w)

)
λe = ẋe

} (6)

In relation with this set, the set of reachable outputs can
also be defined as:

Yeω =
{
ye ∈ Rp, xe ∈ Xeω, λe ∈ ΛR :

ye = C0xe +
(
D0(xe) +Dω(ω)

)
λe

}
Due to the converter gain between the input voltage and

the output voltage being limited, disturbances should be
limited to ensure that output reference is always reachable:

Assumption 2: The perturbation signal ω belongs to the
following set:

D =
{
ω ∈ Rd | ye ∈ Yeω

}
The control problem to address in this section is to design

a switching state feedback control law λ : R → ΛS to
asymptotically stabilize system (4) at an operating trajectory
xe ∈ Xeω related to the desired output ye ∈ Yeω . Assuming
the state x is temporarily available, Theorem 1 is proposed
to solve this problem.

Theorem 1: Consider system (4) and an operating trajec-
tory xe : R → Xeω as defined in (6). Let e := x − xe be
the error signal. Under Assumptions 1 and 2 and assuming x
is measured, for a given symmetric positive definite matrix
QC ∈ Rn×n, if there exists a symmetric positive definite
matrix P ∈ Rn×n such that the LMI

P
(
A0 +Aλi

)
+

(
A0 +Aλi

)T
P + 2QC < 0 (7)

holds ∀i = 1, . . . ,M , then the control law

λ∗ = arg min
d∈ΛS

(
eTP

(
A0x+

(
B0(x) +Bω(ω)

)
d
))

(8)

makes the origin of e globally asymptotically stable (GAS).
Thus the state x converges to the operating trajectory xe.

Proof: Consider the Lyapunov function V (e) = 1
2e

TPe
where P = PT > 0, V (0) = 0 and V (e) > 0 ,∀e ̸= 0. Let
us calculate the time derivative:

V̇ (e) = eTP
(
A0x+

(
B0(x) +Bω(ω)

)
λ− ẋe

)
For the proposed switching control λ∗ (8), by construction:

eTP
((

B0(x) +Bω(ω)
)
λ∗

)
≤ eTP

((
B0(x) +Bω(ω)

)
λe

)
Therefore:

V̇ (e) ≤ eTP
(
A0x+

(
B0(x) +Bω(ω)

)
λe − ẋe

)
= eTP

(
A0 +

∑M
i=1 λeiAλi

)
e ≤ −eTQCe < 0



TABLE I: Modes and change of variables from the physical model (1) to the polytopic model (2).

Mode(i) u1 u2 . . . um−1 um λi Aλi

1 0 0 . . . 0 0 (1− u1) . . . (1− um) 0
2 0 0 . . . 0 1 (1− u1) . . . (1− um−1)um Aum

3 0 0 . . . 1 0 (1− u1) . . . um−1(1− um) Aum−1

4 0 0 . . . 1 1 (1− u1) . . . um−1um Aum−1 +Aum

...
...

...
...

...
...

...
...

2m − 1 1 1 . . . 1 0 u1u2 . . . um−1(1− um) Au1 + . . .+Aum−1

2m 1 1 . . . 1 1 u1u2 . . . um−1um Au1 + . . .+Aum

The last inequality is obtained from LMI condition (7).
Since V̇ (e) < 0,∀e ̸= 0 and the dynamic of e does not
jump when the control input changes, we can conclude that
the origin of e is globally asymptotically stable (GAS).

III. OBSERVER DESIGN

In this section, we want to design an observer to asymptot-
ically reconstruct the state of system (4). To do so, Theorem
2 is proposed:

Theorem 2: Under Assumption 1, for a given symmetric
positive definite matrix QO ∈ Rn×n, if there exists a
symmetric positive definite matrix S ∈ Rn×n and matrices
Wi ∈ Rn×p such that the LMI(

A0 +Aλi)
TS + S(A0 +Aλi

)
−
(
C0 + Cλi

)T
WT

i −Wi

(
C0 + Cλi

)
+ 2QO < 0

(9)

holds ∀i = 1, . . . ,M , then the observer{
˙̂x = A0x̂+

(
B0(x̂) +Bω(ω)

)
λ+

∑M
i=1 λiLλi

(
y − ŷ

)
ŷ = C0x̂+

(
D0(x̂) +Dω(ω)

)
λ

(10)
where Lλi

= S−1Wi ensures the convergence of x̂ to x.
Proof: Let ε := x−x̂ be the reconstruction error signal.

Let’s first evaluate its dynamic:

ε̇ = A0x+
(
B0(x) +Bω(ω)

)
λ−A0x̂

−
(
B0(x̂) +Bω(ω)

)
λ−

∑M
i=1 λiLλi

(
C0 + Cλi

)
ε

=
∑M

i=1 λi

(
A0 +Aλi

− Lλi

(
C0 + Cλi

))
ε

Consider the Lyapunov function V (ε) = εTSε where S =
ST > 0. V (0) = 0 and V (ε) > 0 ,∀ε ̸= 0. Then,

V̇ (ε) =
(∑M

i=1 λi

(
A0 +Aλi

− Lλi

(
C0 + Cλi

))
ε
)T

Sε

+ εTS
(∑M

i=1 λi

(
A0 +Aλi

− Lλi

(
C0 + Cλi

))
ε
)

= εT
(∑M

i=1 λi(t)
((

A0 +Aλi

)T
S + S

(
A0 +Aλi

)
− SLλi

(
C0 + Cλi

)
−
(
C0 + Cλi

)T
LT
λi
S
))

ε

< −2εTQOε < 0

The last inequality is obtained from condition (9) by defining
Wi = SLλi . Since V̇ (ε) < 0 ,∀ε ̸= 0 and the dynamics of
ε does not jump when the control input changes, we can
conclude that the origin of ε is GAS. Moreover, it decreases
exponentially with decay λmin(QO)

λmax(S) ( [21] Chapter 4.5)

IV. OBSERVER BASED CONTROL

Let us now exploit the estimated state x̂ to compute an
output feedback control law. Indeed, we want to design
a switching output feedback control law λ : R → ΛS

to asymptotically stabilize the system (4) at an operating
trajectory xe ∈ Xeω related to the desired output ye ∈
Yeω . The following theorem shows that for system (4), the
separation principle applies, and thus the observer (10) can
be designed independently from the control law.

Theorem 3: Consider system (4) and an operating trajec-
tory xe ∈ Xeω as defined in (6). Let ẽ := x̂ − xe be the
estimated error signal, where x̂ is the state estimated by
the observer (10). Under Assumption 1 and 2, for a given
symmetric positive definite matrix P ∈ Rn×n solution of
(7), the control law

λ∗ = arg min
d∈ΛS

(
ẽTP

(
A0x̂+

(
B0(x̂) +Bω(ω)

)
d
))

(11)

makes the origin of e GAS.
Proof: Consider the Lyapunov function V (ẽ) = 1

2 ẽ
TP ẽ

where P = PT > 0 is solution of (7), V (0) = 0 and V (ẽ) >
0 ,∀ẽ ̸= 0. Then,

V̇ (ẽ) = ẽTP
(
A0x̂+

(
B0(x̂) +Bω(ω)

)
λ− ẋe

+
∑M

i=1 λiLλi

(
C0 + Cλi

)
ε
)

= ẽTP
(
A0ẽ+B0(x̂)λ−B0(xe)λe

+Bω(ω)(λ− λe) +
∑M

i=1 λiLλi(C0 + Cλi)ε
)

For the proposed switching control λ∗ (11), by construction:

ẽTP
((

B0(x̂) +Bω(ω)
)
λ∗

)
≤ ẽTP

((
B0(x̂) +Bω(ω)

)
λe

)
Therefore:

V̇ (ẽ) ≤ ẽTP
(
A0ẽ+

(
B0(x̂)−B0(xe)

)
λe

)
+ ẽTP

∑M
i=1 λiLλi

(
C0 + Cλi

)
ε

= ẽTP
(
A0 +

∑M
i=1 λeiAλi

)
ẽ

+ ẽTP
∑M

i=1 λiLλi

(
C0 + Cλi

)
ε

Inequality (7) implies

V̇ (ẽ) ≤ −ẽTQC ẽ+ ẽTP
∑M

i=0 λiLλi

(
C0 + Cλi

)
ε

Consequently,

V̇ (ẽ) ≤ −(1− θ)ẽTQC ẽ < 0



Fig. 1: Scheme of the proof.

if

−θẽTQC ẽ+ ẽTP

M∑
i=1

λiLλi

(
C0 + Cλi

)
ε ≤ 0

for some scalar 0 < θ < 1. This condition holds for

θẽTQC ẽ ≥ ẽTP
∑M

i=1 λiLλi

(
C0 + Cλi

)
ε

This latter inequality is implied by the norm condition

θ∥ẽ∥2λmin(QC) ≥ ∥ẽ∥λmax(P ) max
i=1...M

(
∥Lλi

∥∥C0 + Cλi
∥
)
∥ε∥

Hence, a sufficient condition is

∥ẽ∥ ≥
λmax(P ) max

i=1...M

(
∥Lλi

∥∥C0 + Cλi
∥
)

θλmin(QC)
∥ε∥

It has been proven that the error system with state ẽ has
the ISS (Input-to-State Stability) property with respect to the
input ε (see [21] Chapter 4.9). Since the origin of ε is GAS
and the error system ẽ is ISS, it implies that the origin of ẽ
is GAS. Finally, noticing that e = ẽ + ε, we can conclude
that the origin of e is GAS too (see Figure 1 for a scheme
of the proof).

Remark 1: Papers in the literature are either specific to
a particular converter or very general in the context of
SAS or bilinear systems, with illustration on simple DC-
DC converters [14], [18]. In this paper, we aim at propos-
ing a methodology that can be directly apply to address
modeling and control design of different type of converters.
For instance, in the next section, a DC-DC converter with
two switches and a AC-DC converter are considered. In
our approach, perturbations are measured. This makes it
possible to manage non-piecewise-constant perturbations,
unlike conventional integral approaches.

V. SIMULATION EXAMPLES

To illustrate the proposed results, two examples are con-
sidered: a non-inverting Buck-Boost Converter and a Half-
Bridge Boost PFC Converter. Simulations are performed
using Simulink and PLECS software.

A. Non-inverting Buck-Boost Converter

As a first example, a Buck-Boost Non-inverting Converter
shown in Figure 2 is considered. There are 4 switches for
two control variables u1 and u2. The input voltage Vin is
affected by some perturbations ω that are measured. Let us
first establish the electrical equations via Kirchhoff’s laws:Li̇L = −rLiL − (1− u2)Vout + u1(Vin + ω)

Cv̇C = (1− u2)iL − Vout

R
Vout = vC + rCCv̇C

TABLE II: Parameters of simulations.

Buck-Boost Half-Bridge Boost PFC
Parameters Values Parameters Values

L 220 µH L 5 mH
C 22 µF C 2 mF
R 100 Ω R 200 Ω
rL 0.3 Ω rL 0.4 Ω
rC 0.02 Ω rC 20 kΩ

Vin + ω [5;11.4] V V 120 V
ω0 2π× 50 rad/s

Fig. 2: Scheme of the Buck-Boost noninverting Converter.

Taking x =
[
iL vC

]T
as a state vector, α = R

R+rC
and

Vout as the output, a state space representation of the form
(1) is obtained with matrices:

A0 =

[−rL−αrC
L −α

L
α
C − α

RC

]
Au1

= 0 Au2
=

[
αrC
L

α
L

− α
C 0

]
B0 = Bω0

= Bu2
= Bωu2

= 0 Bu1
= Bωu1

=

[
1
L
0

]
C0 =

[
αrC α

]
Cu1

= 0 Cu2
=

[
−αrC 0

]
Following the methodology presented in Section II to

obtain a model of the form (2) and then (4), the change
of variable according to Table I yields:
Aλ1 = 0 Bλ1 = Bωλ1 = 0 Cλ1 = 0 λ1 = ū1ū2

Aλ2
= Au2

Bλ2
= Bωλ2

= 0 Cλ2
= Cu2

λ2 = ū1u2

Aλ3 = 0 Bλ3 = Bωλ3 = Bu1 Cλ3 = 0 λ3 = u1ū2

Aλ4
= Au2

Bλ4
= Bωλ4

= Bu1
Cλ4

λ4 = u1u2

where ūi = 1− ui. The set of operating trajectories is:

Xeω =

{
xe =

[
(Vin+ω)(λe3+λe4)

γ
(Vin+ω)R(λe1+λe3)(λe3+λe4)

γ

]
, λe ∈ ΛR

}
where γ = rL + rCα(λe1 + λe3) + αR(λe1 + λe3)

2.
Considering ye, it can also be written as:

Xeω =

{
xe =

[
2αy2

e

β+
√

β2−4αRy2
erL

ye

]
, λe ∈ ΛR

}
where β = (Vin + ω)R(λe3 + λe4) − αrCye. Component

parameters are summarized in Table II. The output voltage
reference is ye = 24V and the initial conditions of the system
are x0 =

[
0.1 5

]T
. We set arbitrarily:

QC =

[
10 0
0 30

]
QO =

[
2 0
0 0.1

]
Using MATLAB and a SDP solver to minimize the trace of
P and S while satisfying (7), (9) and S > 10−4I, we obtain:

P =

[
6× 10−1 9.4× 10−3

9.4× 10−3 6.63× 10−2

]
Lλ1|λ2|λ3|λ4

=

[
−1.46 0 −1.44 0
5.76 5.79 5.81 5.79

]
× 103



Fig. 3: Vout, its reference ye = 24 V and perturbed Vin.

Fig. 4: System and observer states with references.

The output voltage and its reference are presented in Figure
3. As expected, it can be observed the output converges to
the reference even with the perturbation on Vin, shown in
Figure 3 too.

The evolution of the states of the system and the observers
with their references is plotted in Figure 4. We can observe
that for both state variables, the observer state x̂ reaches
the system state x as predicted. As desired, the first state
follows its operating trajectory updated with the perturbation
variations, while the second state stabilizes at its constant
reference from the prescribed reference ye.

B. Half-Bridge Boost PFC Converter

As a second example, the Half Bridge Boost PFC Con-
verter shown in Figure 5 is considered. There are two perfect
switches associated to the binary control variable u1. The
electrical equations of the circuit are:

Li̇L = Vin − rLiL + (1− u1)vC1 − u1vC2

Cv̇C1
= −(1− u1)iL − Vout

R − vC1

rC

Cv̇C2 = u1iL − Vout

R − vC2

rC
Vout = vC1 + vC2

(12)

For the sake of control, the chosen state vector is x =[
iL v+ v−

]T
where v+ = vC1

+vC2
and v− = vC1

−vC2
.

With Vout as the output and Re = RrC
R+2rc

, a state space
representation of the form (1) is obtained with matrices:

Fig. 5: Scheme of the Half Bridge Boost PFC Converter.

A0 =

−rL
L

1
2L

1
2L

− 1
C − 1

ReC
0

− 1
C 0 − 1

CrC

 Au1
=

 0 − 1
L 0

2
C 0 0
0 0 0


B0 =

 1
L
0
0

 Bu1
= 0 C0 =

[
0 1 0

]
Cu1

= 0

As previously, Table I enables to derive straightforwardly
the switch affine systems (2) and (4) with matrices:

Aλ1
= 0 Bλ1

= 0 Cλ1
= 0 λ1 = (1− u1)

Aλ2 = Au1 Bλ2 = 0 Cλ2 = 0 λ2 = u1

The computation of the operating trajectory for a AC-DC
converter is more involved. A way to deal with it, is to use
(12) to study the power balance of the system:

LiLi̇L + C
2 (v̇−v− + v̇+v+) = iL(Vin − rLiL)−

v2
+

2Re
− v2

−
2rC

The input voltage is Vin(t) = V sin(ω0t), so iL must be
in phase with it to ensure a unit power factor. Therefore, its
reference is iLe = I sin(ω0t) where I has to be determined.
Other objectives are v+ = ye and v− = 0. With those
conditions, the power balance at the reference is:

LI2ω sin(ωt) cos(ωt) = I(V − rLI) sin
2(ωt)− y2e

2Re

Integrating between 0 and T = 2π
ω0

, we obtain:

0 =
I

2
(V − rLI)−

y2e
2Re

⇔ I =
V

2rL

(
1±

√
1− 4rLy2e

ReV 2

)
The smallest solution is selected to minimize power. Com-
ponent parameters are summed up in Table II. The output
voltage reference ye is 300V and the initial conditions
of the system are x0 =

[
3 20 2

]T
. The approximated

operating trajectory is xe =
[
7.7 sin(ω0t) 300 0

]T
. We

set arbitrarily:

QC =

[
1 0 0
0 1 0
0 0 100

]
QO =

[
0.01 0 0
0 1 0
0 0 1

]
Using MATLAB and a SDP solver to minimize the trace of
P and S while satisfying (7), (9) and S > I, we obtain:

P =

85.12 0 −1.96
0 20.01 0

−1.96 0 20.27

 Lλ1|λ2
=

 −39.78 39.77
44.26 44.34
−36.17 36.16





Fig. 6: Vout and its reference ye = 300V .

Fig. 7: System and observer states with references.

The output voltage and its reference are presented in
Figure 6. As expected, it can be observed that the output
converges to reference with a remaining AC part.

The evolution of observer and system states are reported
in Figure 7. We can see that the first state follows its
reference, which means that the input current is in phase
with the input voltage as desired. The second and third states
oscillate around their references, which is normal since those
references are averaged approximations.

VI. CONCLUSION

In this paper, a unified approach for observer based
control of DC output power converters has been presented.
The proposed methodology is based on two separate LMI
conditions for the control and the observer parts, efficiently
solved with numerical tools. The stability of the system with
the proposed control is assessed with a Lyapunov analysis
and using the ISS property. The applicability of the approach
as been illustrated with two examples using PLECS. The next
step is to validate those results on an experimental setup. In
this paper, perturbations are measured, we aim at considering
unknown perturbations in a future work.
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X. Lin-Shi, “Robust relay control for buck converters : experimental
application,” in 2019 IEEE 58th Conference on Decision and Control
(CDC), Dec. 2019, pp. 8124–8129.

[7] D. Cortes, J. Alvarez, and J. Alvarez, “Robust sliding mode control
for the boost converter,” in VIII IEEE International Power Electronics
Congress, 2002. Technical Proceedings. CIEP 2002., Oct. 2002, pp.
208–212.

[8] O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, H. Valderrama-
Blavi, and T. Sierra-Polanco, “Robust Sliding-Mode Control Design
for a Voltage Regulated Quadratic Boost Converter,” IEEE Transac-
tions on Power Electronics, vol. 30, no. 4, pp. 2313–2327, Apr. 2015.

[9] V. Spinu, N. Athanasopoulos, M. Lazar, and G. Bitsoris, “Stabilization
of Bilinear Power Converters by Affine State Feedback Under Input
and State Constraints,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 59, no. 8, pp. 520–524, Aug. 2012.

[10] T. A. F. Theunisse, J. Chai, R. G. Sanfelice, and W. P. M. H.
Heemels, “Robust Global Stabilization of the DC-DC Boost Converter
via Hybrid Control,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 62, no. 4, pp. 1052–1061, Apr. 2015.

[11] M. Serieye, C. Albea-Sanchez, and A. Seuret, “Free-matrices min-
projection control for high frequency DC-DC converters,” in 2019
IEEE 58th Conference on Decision and Control (CDC), Dec. 2019.

[12] N. Gonzalez-Fonseca, J. de Leon-Morales, and J. Leyva-Ramos,
“Observer-Based Controller for Switch-Mode DC-DC Converters,” in
Proceedings of the 44th IEEE Conference on Decision and Control,
Dec. 2005, pp. 4773–4778.

[13] J. Wu and Z. Sun, “Observer-driven switching stabilization of switched
linear systems,” Automatica, vol. 49, no. 8, pp. 2556–2560, Aug. 2013.

[14] G. S. Deaecto, J. C. Geromel, and J. L. N. Brito, “Asymptotic stability
of continuous-time switched affine systems with unknown equilibrium
points*,” in 2022 IEEE 61st Conference on Decision and Control
(CDC), Dec. 2022, pp. 679–684.

[15] A. Jaafar, A. Alawieh, R. Ortega, E. Godoy, and P. Lefranc, “PI
Stabilization of Power Converters With Partial State Measurements,”
IEEE Transactions on Control Systems Technology, vol. 21, no. 2, pp.
560–568, Mar. 2013.

[16] S. Hadjeras, C. A. Sanchez, and G. Garcia, “Hybrid adaptive control
of the boost converter,” in 2017 IEEE 56th Annual Conference on
Decision and Control (CDC), Dec. 2017, pp. 5720–5725.

[17] S. Baldi, A. Papachristodoulou, and E. B. Kosmatopoulos, “Adaptive
pulse width modulation design for power converters based on affine
switched systems,” Nonlinear Analysis: Hybrid Systems, vol. 30, pp.
306–322, Nov. 2018.

[18] G. Beneux, P. Riedinger, J. Daafouz, and L. Grimaud, “Adaptive
stabilization of switched affine systems with unknown equilibrium
points: Application to power converters,” Automatica, vol. 99, pp. 82–
91, Jan. 2019.

[19] G. Garcia and O. Lopez Santos, “A Unified Approach for the Control
of Power Electronics Converters. Part I—Stabilization and Regula-
tion,” Applied Sciences, vol. 11, no. 2, p. 631, Jan. 2021.

[20] B. Ingalls, E. D. Sontag, and Y. Wang, “An Infinite-Time Relaxation
Theorem for Differential Inclusions,” Proceedings of the American
Mathematical Society, vol. 131, no. 2, pp. 487–499, 2003.

[21] H. K. Khalil, Nonlinear systems, 3rd ed. Upper Saddle River: Prentice
Hall, 2002.


