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Abstract

This paper deals with a scheduling problem arising at the tactical
decision level in aeronautical assembly line. It has the structure of a chal-
lenging multi-mode resource-constrained project scheduling problem with
incompatibility constraints, a resource leveling objective and also a large
number of tasks. We first present a new event-based mixed-integer linear
programming formulation and a standard constraint programming formu-
lation of the problem. A large-neighborhood search approach based on the
constraint programming model and tailored to the resource leveling ob-
jective is proposed. The approaches are tested and compared using indus-
trial instances, yielding significant improvement compared to the heuristic
currently used by the company. Moreover, the large-neighborhood search
method significantly improves the method proposed in the literature on a
related multi-mode resource investment problem when short CPU times
are required.

Keywords: Aeronautical assembly line scheduling, multiple
modes, resource leveling, mixed-integer linear programming,
constraint programming, large neighborhood search.

1 Introduction

The aeronautical industry has experienced an in-depth transformation in
the last years. The demand for aircrafts has increased along with their lev-
els of complexity and customization. As a result, aircraft manufacturers
have now to produce more units of more complex aircrafts while trying to
reduce time to market, production lead times and costs [Mas et al., 2015].
In order to face these and other challenges, the aeronautical industry has
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moved towards the implementation of Industry 4.0 trends [Kagermann
and Wahlster, 2013, Bortolini et al., 2021]. In fact, the aeronautical in-
dustry has been ahead in the use of digital solutions. A wide range of
product life-cycle management tools have been deployed in the aeronauti-
cal industry and have resulted in highly digitized processes from aircraft
design to aircraft maintenance [Mas et al., 2014]. However, planning and
scheduling processes have consistently remained almost unaffected. Most
of the activities that are related to these processes continue to use manual
procedures that rely on the knowledge of experts.

To fill this gap, this work addresses an NP-hard scheduling problem
arising at the tactical decision level in the final assembly line by solv-
ing a multi-mode resource-constrained project scheduling problem (MMR-
CPSP) with incompatibility and temporal constraints, a resource leveling
objective and a large number of tasks.

A mixed-integer linear programming (MILP) formulation has been pre-
viously proposed for the considered problem by Borreguero-Sanchidrián
et al. [2014], Borreguero et al. [2015a] and Borreguero et al. [2015c], ex-
tending the event-based formulation initially proposed for the standard
resource-constrained project scheduling problem (RCPSP) [Koné et al.,
2011] to tackle the additional industrial characteristics, but was only able
to solve exactly very small instances.

In this paper, we propose a new MILP formulation and a constraint
programming (CP) model. Based on the CP model, we propose a new
large neighborhood search (LNS) heuristic with a neighborhood structure
tailored to the resource leveling objective, with the aim of improving the
performance of both exact methods and the heuristic approach currently
used by an aircraft manufacturer on large-scale industrial instances.

The structure of the article is as follows: Section 2 presents the in-
dustrial context and a literature review. Section 3 provides a detailed
problem description. Section 4 presents the new MILP formulations and
a standard CP model. In Section 5, a novel LNS heuristic is presented. In
Section 6, all approaches are compared, including a comparison with the
existing solution methods from an aircraft manufacturer and a comparison
with a method proposed in the literature for a related multi-mode resource
investment problem. The proposed LNS approach outperforms all other
approaches on the industrial instances and also the method proposed by
Gerhards [2020] on a resource investment problem. Finally, conclusions
and further research directions are presented in Section 7.

2 Industrial context and literature review

The design and operation of an aeronautical assembly line is a complex
problem that follows different decision steps, taking into account the de-
cision time horizon. Within those steps, the main decisions regarding
planning and scheduling process in aeronautical assembly lines follow the
classical three-level hierarchy: strategical, tactical and operational [Buer-
gin et al., 2018].

At the strategical level, the products to be manufactured are assigned
to the different facilities within the supply chain. Moreover, the high level
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design of each of the facilities is made. In most cases, the assembly of the
major airframes as well as the final assembly are organized as flow shops.
They are built as moving or pulse lines, where each product has to go
through all the stations following a fixed path. Some of the aeronautical
assembly tasks require complex jigs and robots. Therefore, a preliminary
line balancing is performed in this early stage in order to allocate major
tasks to stations and, as a result, be able to design each station in terms
of jigs and robots. Assembly line balancing techniques, where jobs have
to be optimally assigned to stations, have been applied to aeronautical
assembly lines in the literature. As a recent result, Biele and Mönch
[2018] proposed mixed-integer programming techniques for assigning jobs
and operators to stations in a fixed-job sequence aircraft assembly line.
A recent survey on assembly line balancing can be found in Boysen et al.
[2022].

In the mid term, tactical decisions include capacity planning and mas-
ter production scheduling. In the aeronautical industry, aircraft assembly
is a labor-intensive process that requires highly qualified operators [Mas
et al., 2016]. In consequence, the teams need to be sized early enough
to ensure their availability. To do so, the preliminary line balancing is
reviewed. Afterwards, a preliminary scheduling of the tasks within a sta-
tion is made. At this mid term stage, the line cycle time is also assessed.
Sometimes, there can be a tradeoff between different cycle times, related
to a set of delivery rates. Shorter cycle times need in most cases more
resources per station. Nevertheless, there is no linear relationship between
those dimensions and several experiments may be needed to assess the im-
pact of cycle time reduction in the team size. In consequence, the purpose
of this scheduling is to calculate the minimum number of human resources
needed to ensure the station tasks can be finished on time [Borreguero,
2020].

In the short term, an operational, more detailed, schedule is estab-
lished per station. This new scheduling process deals with a more detailed
modeling of the resource availability, including shift planning, considering
individualization of operators and precise modeling of their skills, which
was only approximated at the previous stage. On top of this, inflows and
other contingencies, such as material shortage or defects, must be taken
into account. Moreover, the objective at this stage is to minimize the
tardiness, given the available resources. Related studies for integrated
project scheduling and shift planning have been undertaken by Maenhout
and Vanhoucke [2013].

Our paper deals with the scheduling problem defined at the tactical
level where tasks have already been assigned to stations, as stated in Bor-
reguero et al. [2015b], with the objective to find a solution that optimizes
the operator usage for a fixed cycle time. In this problem, the operators
are not individualized and precise modeling of their skills is not possible.
The skills required by the tasks are aggregated in the concept of resource
profile, as explained in Section 3.1. The operational/short term schedul-
ing problem is not addressed. We refer to Kolisch [2000] for a survey of
make-to-order assembly lines, where the problem of operations scheduling
for aircraft assembly lines is described in Section 2.5.4. We are dealing
with a project scheduling problem of one station consisting of a set of
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activities of known duration and resource profile requests, that must be
executed under incompatibility and precedence constraints. Given a time
limit for the project duration, the objective is to find the schedule that
consumes the least amount of resources. This turns the problem into a
time-constrained variant of the MMRCPSP with resource leveling objec-
tive.

There have been a wide range of studies on both heuristic and meta-
heuristic methods for solving the RCPSP, as well as different MILP models
[Artigues et al., 2010, 2015, Wang et al., 2010, Hartmann and Briskorn,
2010, Brucker and Knust, 2011, Nouri et al., 2013]. The first MILP formu-
lations proposed for the RCPSP were discrete time formulations [Pritsker
et al., 1969]. Afterwards, continuous time formulations were proposed by
Alvarez-Valdés and Tamarit [1993] with a model based on the concept of
forbidden sets and Artigues et al. [2003] with a model based on a resource
flow network. Koné et al. [2011] proposed the use of event-based formu-
lations from a model introduced by Zapata et al. [2008] that, despite a
poor LP relaxation, have the advantage of efficiently solving instances with
large time horizon. They concluded that event-based formulations outper-
formed the discrete time MILP models for large scheduling horizons and
outperformed also the continuous time flow-based formulations for highly
“cumulative” instances (where many activities can be scheduled in par-
allel), as it is our case. However, the event-based formulations proposed
by Koné et al. are suitable for the standard RCPSP, which includes some
assumptions that are too restrictive for many applications [Hartmann and
Briskorn, 2010]. Therefore, it is of interest to enhance these formulations
so that they can be used within more practical RCPSP contexts. As
mentioned above, an event-based MILP formulation has been previously
proposed for the problem studied in this paper [Borreguero-Sanchidrián
et al., 2014, Borreguero et al., 2015a,c] but was only able to solve exactly
problems instances with up to 11 tasks.

Constraint Programming (CP), on the other hand, provides both a
flexible and generic modeling language and efficient solutions approaches
to a wide range of scheduling problems [Baptiste et al., 2001, Laborie
et al., 2018]. In consequence, CP is a suitable technique for solving vari-
ants of RCPSP including those with features such as general temporal
constraints, calendar constraints [Kreter et al., 2017] and multi-skill op-
erators [Polo Mej́ıa et al., 2020]. In fact, a CP model was proposed by
Arkhipov et al. [2018] for a closely related aircraft assembly line schedul-
ing problem, but with the makespan minimization objective instead of the
resource leveling one. A CP model has been also proposed for the closely
related resource investment problem by Gerhards [2020].

Large Neighborhood Search (LNS) heuristics enable dealing with large-
scale industrial instances, while benefiting from the power of MILP or CP
solvers. This technique, based on the iterative solving of a subproblem
where a part of a current solution of the global problem is fixed while
the rest is freed, was originally introduced in Shaw [1998] and turned out
to perform well on several problems, such as routing problems [Hemmel-
mayr et al., 2012] or scheduling problems [Palpant et al., 2004, Godard
et al., 2005, Laborie and Godard, 2007, Cordeau et al., 2010, Artigues
and Hébrard, 2013, Thomas and Schaus, 2018]. The LNS algorithms on
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variants of the RCPSP including multi-skill operators such as in Cordeau
et al. [2010], generally consider time-related objective functions such as
makespan, maximum lateness, sum of completion times or outsourcing
costs that tend to favor compact schedules. To our knowledge, the LNS
technique has never been applied to the MMRCPSP with resource leveling
objectives such as in our case.

In the MMRCPSP, each task has a set of execution modes. A mode
defines a duration of the task and a number of units required on each
resource. The logic is that a mode with a shorter duration requires more
resources than a mode with a longer duration.

The literature on the MMRCPSP is quite rich with regard to the min-
imization of the total duration of the schedule (makespan) [Drexl and
Gruenewald, 1993, De Reyck and Herroelen, 1999, Weglarz et al., 2011,
Coelho and Vanhoucke, 2011]. A fairly recent overview of (MM)RCPSP
models and solution approaches can be found in Schwindt and Zimmer-
mann [2015]. In relation to the industrial problem in the aeronautical
assembly considered in this paper, we are interested in the problem of
smoothing the resources given a fixed total duration. In the literature on
the MMRCPSP, this is referred to as resource leveling [Demeulemeester
and Herroelen, 2002, Schwindt and Zimmermann, 2015, Coughlan et al.,
2015]. Resource leveling consists in minimizing the maximum quantity of
each resource used at each time point (the resource peak). When acquisi-
tion costs are associated with resources, we speak of the resource invest-
ment problem [Gerhards, 2020] or the resource-availability cost problem
[Demeulemeester, 1995].

Another special feature of our problem is the scheduling of workers in
a constricted area. This had been previously studied by Brimberg et al.
[1996].

The problem considered in this paper has been for long solved in the
industry using expert knowledge, with the only aid of standard spread-
sheet files. Recently, a scheduling tool has been implemented in AIRBUS.
It uses an activity-oriented serial scheduling generation heuristic [Kolisch,
1996, Borreguero et al., 2015b]. Its priority rules are focused on the min-
imum start time per task: select the task with the smallest latest start
time and, in case of a tie, select the task with the smallest earliest start
time. This heuristic is good at providing feasible solutions fast enough,
given a station’s cycle time and a resource availability, but can lead to
significantly sub-optimal solutions.

Given this literature review and the industrial context, this paper in-
vestigates how to improve the previously proposed event-based MILP for-
mulation and how to design a constraint programming-based LNS method
tailored to the resource leveling problem, with a double objective: improv-
ing the heuristic used by AIRBUS on the industrial problem and compet-
ing with a state-of-the-art approach on the resource-investment problem.

3 Problem description

As stated above, we are dealing with the scheduling of an assembly station
belonging to the last step of the tactical decisions. It is used to size
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the teams allocated to each station. Therefore, some of the operators’
characteristics, such as skills or shifts, need not be modeled in detail. The
following are the main features of the problem we have tackled.

3.1 Operator profiles and objective function

Aeronautical assembly requires highly-qualified operators. Often, some
of the tasks need to be done by workers with a specific qualification.
These qualifications are managed creating profiles that group qualifica-
tions. Each operator is assigned to a profile depending on his qualifica-
tions. Operators work in teams where all the operators have the same
profile. Consequently, we have a set of resources R, each corresponding
to an operator profile, without a precise identification of operators.

Within a real team, there are operators of different skill levels. For
example a typical profile is “mechanic” or “electrician” while skills corre-
spond to detailed competencies such as “rivet drilling”, “sealant placing”,
etc. Skills also include levels of ability since some tasks must be performed
by an experienced riveter. The assignment of tasks to operators depend-
ing on their precise skills are managed by the team leader during the
operational scheduling, which is not addressed in this paper. Therefore,
for the intermediate tactical level, we model the operators as belonging
to a single profile, independently from their skill level.

Also, the operator teams work in a single station during the whole
cycle time. In consequence, the objective of the scheduling is to minimize
the peak demand of operators, as the sum of the peak demand per profile,
which is the minimum team size resulting decided at the tactical level.

3.2 Tasks characteristics

The set of all tasks to be performed at the considered station is denoted
V and Rj denotes the set of resources able to perform task j ∈ V , i.e.
one and only one resource must be selected in set Rj to perform task j.

For each task j ∈ V , there is a range Rj of possible demands (number
of resource units/operators). Increasing the number of resource units
assigned to a task reduces the task duration in a non-linear task-specific
manner. Hence, parameter pjqk gives the duration of task j ∈ V when
performed by q ∈ Rj units of resource k ∈ Rj . By reference to the
standard MMRCPSP, this corresponds to the restriction where a mode
consists of a single resource and a number of resource units.

Stations can be of very different sizes. However, even the smallest
stations are big enough for several tasks to be performed in parallel. Nev-
ertheless, it is usually the case that several tasks are to be done near to
each other, in a way that some subset of tasks cannot be executed at the
same time due to space constraints. As a result, stations are divided into
smaller areas, where a limited number of operators can work at a time.
In consequence, the space on each area is a scarce renewable resource for
the scheduling problem. For each task and mode, a required amount of
space per area is defined as the number of resource units q ∈ Rj used by
each task j in the considered mode. The set of areas is denoted as A, aj
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denotes the area where task j is performed and Ca the number of available
resource units in area a. Finally, task preemption is not allowed.

3.3 Time constraints between tasks

The constraints between tasks can be of different nature. All the time
constraints are independent from the mode in which a task is executed.

The most common case of time constraints is that of finish-start prece-
dence constraints: when a task cannot be started until a previous one has
been finished. For example: wire harnesses cannot be installed until the
brackets to which they are attached have been riveted to the aircraft
structure, or a functional test cannot be performed until the system it
tests has been completely installed. We denote as E the set of finish-start
precedence constraints such that (i, j) ∈ E means that task j cannot start
before the completion of task i.

Another kind of time constraints are incompatibility constraints: this
means that some activities can be done in any order as far as they are
not being performed at the same time. This is the case of some tasks
that due to health and security reasons must be done with as few persons
as possible in the hangar, e.g. corrosion inhibition application. This also
happens in tests that require a specific aircraft condition: hydraulic tests
need to have the power on, but the aircraft must have its power off for
fuel tests. We denote as D the set of incompatibility constraints, such
that {i, j} ∈ D means that tasks i and j cannot overlap.

Finally, maximum time lags also occur. For example, electrical con-
tinuity tests have to be performed just after the cleaning of the surfaces
and bonding points need to be protected with sealant almost immediately
after the test. The set of maximum time lags constraints is denoted by
L, such that (i, j) ∈ L means that j cannot start after the completion of
i plus a fixed time lag ∆.

All the tasks must be completed within the station’s cycle time. Hence
we consider a fixed time horizon (set of time points) T , which amounts to
finding a schedule of makespan lower than |T |.

3.4 Synthesis of simplifying assumptions

This problem, as it has been described in the previous subsections, cor-
responds to the tactical decision level for an aeronautical assembly line.
Therefore, it includes some simplifying assumptions that may be taken
into account before its extension to other use cases:

1. Operators are assigned to a single profile. At the tactical level, the
operators are not individualized and the precise modeling of their
skills is not taken into account. This could not be done at that
stage because the detailed information on the operators that will
be available is not known. However, at the operational level, this
assumption may be too restrictive, as operators typically have a set
of skills instead of a single one.

2. Resource capacity is modeled as constant through the cycle time. This
can be a major drawback to consider this assumption at the opera-
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tional level, where we have to deal with different capacities for the
resources, e.g., in early or late shifts or due to operator absence. As
a consequence, when the resource capacity decreases, some on-going
task may have to be interrupted and resumed at a later time when
the capacity becomes sufficient again. However, at the tactical level
we do not have the detail of the operator availabilities and, also, as
explained in Section 2, the major objective at the considered level is
to find a tradeoff between the cycle time and the maximum resource
usage, which justifies a constant availability.

3. Objective function: minimizing the total number of operators. This
objective function can indirectly define a cost function, as the aero-
nautical industry is human resource intensive. In the assembly line
problem, we assume that all the profiles have the same cost on aver-
age. This is not a real limitation as a weighted objective function can
easily be used, as for the resource investment problem in Section 6.5.

4. Only one operator type is required to perform a task. In our model,
one mode of our MMRCPSP is defined by a single operator type and
its required amount. This means that a task cannot be executed by
a set of operators from different profiles. This assumption is driven
from the fact that, in the use case we took as a reference, operators
are organized in teams driven by profiles. Each team, even if working
in a single station, has a set of tasks to be performed independently
from the other teams. Therefore, tasks are assigned to a single team
and in consequence to a profile, and mixed execution modes are not
allowed. An extension to more general modes is not an issue; for
example in Section 6.5, we solve a problem where each task requires
several resources, including non-renewable ones.

5. Space is modeled as a renewable resource. The occupied space be-
comes available again in its initial capacity as soon as freed by the
operators working on tasks that occupy it. An extension of the model
could take into account the space availability which may change once
the tasks are completed. Nevertheless, we can assume a uniform
space availability per station and incremental changes between sta-
tions.

6. Tasks are separated by a fixed time lag. This assumption has been
data-set driven. After a study of a wide range of real data sets
(other than the ones used in the experimentation), maximal time
lags used had always a zero finish-start time lag. In practice, this is
because this is used for bonding points protection, which should be
done as soon as possible, and also for other cases where they want
to ensure continuity in the scheduling of certain tasks. Nevertheless,
this assumption has little impact in the models and could be easily
generalized to a precedence-dependent time lag.

3.5 A conceptual formulation

Overall, solving the considered MMRCPSP aims at assigning a start time
Sj , a resource kj and a number of units qj to each task j ∈ V so as
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to minimize the sum of peak unit demand per resource, as stated by the
following conceptual formulation. Table 1 recalls the MMRCPSP sets and
parameters, while Table 2 describes the variables used in the conceptual
formulation.

Table 1: Sets and parameters for the MMRCPSP

Sets
V set of tasks
R set of resources
T set of time periods
Rj set of possible resources required by task j ∈ V
Rj set of possible numbers of resource units required by j ∈ V
A set of areas
E set of finish-start precedence constraints
L set of finish-start maximum time lags
D set of incompatibility constraints

Parameters
|T | length of time horizon T
pjqk duration of task j ∈ V when assigned to q ∈ Rj units of resource k ∈ Rj

∆ maximum time lag
aj area required by task j ∈ V
Ca capacity of area a ∈ A

Table 2: Decision variables used by the MMRCPSP conceptual formulation

r(k, t) number of resource k ∈ R units required by all tasks at time t ∈ T
V (t) set of tasks in process at time t ∈ T
Sj start time of task j ∈ V
kj resource assigned to task j ∈ V
qj number of resource units assigned to task j ∈ V
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min
∑
k∈R

max
t∈T

r(k, t) (1)

V (t) = {j ∈ V, t ∈ [Sj , Sj + pjqjkj − 1]} t ∈ T (2)

r(k, t) =
∑

j∈V (t),kj=k

qj ∀k ∈ R, t ∈ T (3)

Sj ≥ Si + piqiki (i, j) ∈ E (4)

Sj ≤ Si + piqiki +∆ (i, j) ∈ L (5)

Sj ≥ Si + piqiki ∨ Si ≥ Sj + pjqjkj {i, j} ∈ D (6)∑
j∈V (t),aj=a

qj ≤ Ca a ∈ A (7)

Sj ≤ |T | j ∈ V (8)

Sj + pjqjki ≤ |T | i ∈ V (9)

qj ∈ Rj i ∈ V (10)

kj ∈ Rj i ∈ V (11)

The objective function (1) minimizes the sum of maximum resource
usage over the time horizon. The set of tasks V (t) in process at time
period t is given by expression (2). The resource k total usage at time
period t is given by expression (3). Constraints (4) define the finish-start
precedence constraints while constraints (5) are the maximum time lag
constraints. Disjunctive constraints are expressed by disjunctions (6).
Area capacity constraints are given by (7). The definition domains of
start and end variables are given by (8) and (9), respectively while the
domain of variables qj and kj is given by constraints (10) and (11).

The problem is a special case of the MMRCPSP with minimum and
maximum time lags with the following restrictions: a mode is defined by
a single resource and its required amount, the minimum time lags are
standard finish-start precedence constraints and the maximum time lags
are of finish/start type with a fixed offset, ∆. Although these restrictions –
that reflect the considered industrial case – make the problem significantly
different (and simpler) than the general MMRCPSP with minimum and
maximum time lags, the problem remains NP-hard as its decision variant
admits the decision variant of the single-resource RCPSP as a special case.
Furthermore, the methods proposed in the paper can be easily extended to
the general case, as shown by the computational experiments we present
for the resource investment problem in Section 6.5.

4 Exact methods

This section presents two exact methods for the problem : one based on
a new MILP formulation and the second one based on a standard CP
formulation.

10



4.1 MILP formulation

Several MILP formulations are proposed in Koné et al. [2011]. They can
be roughly divided into two categories: the discrete time models (time-
indexed formulations) and the continuous time models (event-based and
sequencing formulations). As the target industrial instances have a very
large time horizon (see Section 6) using time-indexed models is hopeless.

Borreguero-Sanchidrián et al. [2014], Borreguero et al. [2015a] and
Borreguero et al. [2015c] have proposed an event-based formulation for
the problem, extending the start/end event-based formulation proposed
by Koné et al. [2011]. Extension of previously existing event-based models
to our problem is not immediate. The main binary decision variables have
been modified with two new sub-indices in order to deal with the multiple
modes per task. A set of events E , numbered from 0 to n = |E|−1, models
the significant time points. Two sets of binary variables, xjeqk and yjeqk,
were used to define the start and end events of each task, as xjeqk = 1
(yjeqk = 1) if task j ∈ V starts (ends) at event e ∈ E using q units of
resource k ∈ R. Furthermore a binary variable αij was needed for each
pair {i, j} ∈ D. We will refer to this formulation as SEE-M.

We propose a new event-based formulation based on the on-off for-
mulation presented in Koné et al. [2011] that needs a single set of binary
variables zjeqk, whose value is 1 if task j is active between event e and
event e + 1 using q units of resource k and 0 otherwise. Another set of
binary variables, βjqk is used to choose the mode (q, k) in which a task j
is performed. There is no need for variables αij for the disjunctive con-
straints. Continuous variable te gives the time of event e ∈ E . Continuous
variables rk and Sj model the peak usage of resource k and the start time
of task j ∈ V , respectively. As the resource profile only increases when a
task starts, we only need to define one event per task, hence n = |V | − 1.
For ease of notation, we will denoteMj the set of modes given by Rj×Rj .
We will refer to this as the OOE-M formulation. We recall that Table 3
synthesizes the additional sets and variable parameters used by the OOE-
M formulation, given as follows:

Table 3: Additional sets and decision variables for the OOE-M formulation

Sets
E set of events
Mj set of modes for task j ∈ V (Mj = Rj ×Rj)

Decision variables
Sj start time of task j ∈ V
zjeqk binary variables equal to 1 if task j ∈ V is active at event e ∈ E

using q ∈ ∪j∈V/k∈Rj
Rj unit of resource k ∈ R

βjqk binary variable equal to 1 is task j ∈ V uses q ∈ Rj units of resource k ∈ Rj

min
∑
k∈R

rk (12)
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t0 = 0 (13)∑
j∈V

∑
(q,k)∈Mj

zj0qk ≥ 1 (14)

te+1 − te ≥ 0 e ∈ E \ {n} (15)∑
e∈E

∑
(q,k)∈Mj

zjeqk ≥ 1 j ∈ V (16)

∑
(q,k)∈Mj

βjqk = 1 j ∈ V (17)

zjeqk ≤ βjqk j ∈ V, e ∈ E ,
(q, k) ∈Mj (18)

e−1∑
e′=0

∑
(q,k)∈Mj

zje′qk

−e

1−
∑

(q,k)∈Mj

(zjeqk − zje−1qk)

 ≤ 0 j ∈ V, e ∈ E

(19)

n−1∑
e′=e

∑
(q,k)∈Mj

zje′qk

−(n− e)

1 +
∑

(q,k)∈Mj

(zjeqk − zje−1qk)

 ≤ 0 j ∈ V, e ∈ E

(20)

tf − te

−
∑

(q,k)∈Mj

pjqk(zjeqk − zje−1qk − zjfqk + zjf−1qk)

≥ −
∑

(q,k)∈Mj

pjqkβjqk f, e ∈ E ,
f > e, j ∈ V

(21)

|T | − te −
∑

(q,k)∈Mj

pjqk(zjeqk − zje−1qk) ≥ 0 j ∈ V,

e ∈ E (22)∑
(q,k)∈Mi

zieqk +

e∑
e′=0

∑
(q,k)∈Mj

zje′qk

−(e− 1)(1−
∑
qk

zieqk) ≤ 1 e ∈ E , (i, j) ∈ E

(23)

Sj ≥ te − |T |(1 + zje−1qk − zjeqk) e ∈ E ,
j ∈ V (24)

Sj ≤ te + |T |(1 + zje−1qk − zjeqk)

e ∈ E ,
j ∈ V (25)

Sj − (Si +
∑

(q,k)∈Mi

piqk) ≤ ∆ (i, j) ∈ L (26)

∑
q∈Ri,k∈Ri

zieqk +
∑

(q,k)∈Mj

zjeqk ≤ 1 (i, j) ∈ D (27)

∑
j∈V

∑
q∈Rj

qzjeqk ≤ rk k ∈ R, e ∈ E (28)

∑
j∈V,aj=a

∑
(q,k)∈Mj

qzjeqk ≤ Ca a ∈ A, e ∈ E (29)

zjeqk ∈ {0, 1} e ∈ E , j ∈ V,

k ∈ Rj , q ∈ Rj (30)

zj−1qk = 0 j ∈ V, k ∈ Rj ,

q ∈ Rj (31)

βjqk ∈ {0, 1} j ∈ V, k ∈ Rj ,

q ∈ Rj (32)

te ≥ 0 e ∈ E (33)

Sj ≥ 0 j ∈ V (34)
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The objective function (12) is to minimize the total project cost. The
first event on the project starts at t = 0 as stated by Constraints (13) and
at least one task must be active after this event as per Constraint (14).
Constraints (15) sort the events.

Constraints (16) state that each task must be active at least after one
of the events in order to ensure the scheduling of all the tasks. Variables
βjqk select the mode in which each task will be performed. One and only
one of the variables βjqk can be set to 1 per task, Constraint (17), and the
tasks can only be performed on the selected mode, as per Constraint (18).

Constraints (19) to (22) are based on the three values than can take the
difference zjeqk − zje−1qk and enforce the on-off behavior of the variables:

• zjeqk − zje−1qk = 1 ; when e is the first event after which j is active,
so zjeqk = 1 and zje−1qk = 0.

• zjeqk − zje−1qk = −1 ; when e − 1 is the last event after which j is
active, so zjeqk = 0 and zje−1qk = 1.

• zjeqk − zje−1qk = 0 ; otherwise.

Constraints (19) and (20) refer to the continuous processing of each
task: by Constraint (19) if task j begins after event e, then it cannot be
processed before e−1. Similarly, by Constraint (20) if task j ends at event
e then j is no longer active ∀e′ ≥ e+ 1. The time of a task is measured
by the difference between the start event (the first event e after which j
is active) and the end event (the last event after which j is active).

The time difference between j’s start event and its end event must be
at least the task’s processing time (21) and none of the tasks can end after
the station cycle time, see (22).

Regular precedence constraints are Constraints (23), as if i must pre-
cede j, then it must start at an event after which i is no more active.
Maximum time lags are expressed by Constraints (24) to (26). Con-
straints (24) and (25) define the start time of a task. These constraints
will only be calculated for the tasks involved in maximum time lag con-
straints. Together with them, Constraints (26) limit the time between the
end of a task and its successor’s start time. Incompatibility constraints
are Constraints (27), as two incompatible tasks cannot be active at the
same time.

Resource constraints are simpler than for the SEE-M formulation. In
this case, only one set of constraints is defined per scarce resource: Con-
straints (28) for the quantity of operators per type and Constraints (29)
for the amount of operators per area, and no specific variables are defined
for these constraints.

Note that there are less binary variables than in the SEE-M formula-
tion.

Appendix A presents a detailed computational comparison of the pro-
posed MILP formulations. As it will be shown in the computational ex-
periment section, MILP formulations are however not able to compete
with the constraint programming approach described in the next section.
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4.2 Constraint programming

Constraint Programming (CP) has been proven to be an efficient method
on several combinatorial optimization problems, especially scheduling prob-
lems [Baptiste et al., 2001].

For modeling and solving, we used the CP Optimizer constraint-based
scheduling library [Laborie et al., 2018]. More precisely, we used the
basic modeling elements available in CP Optimizer, which are standard
scheduling constraints. For the solving part, we simply run the default
solver solution search procedure. We refer to Laborie et al. [2018] for a
more detailed definition of these elements. We provide a short description
of the CP Optimizer language elements we use for the readers that are
not familiar with CP and we show how these elements are used to model
our problem.

First, to model the objective function, we introduce a integer decision
variable rk for each resource k ∈ R. This decision variable represents
the maximum number of units of resource k required by the tasks. The
objective function is then directly written as follows:

min
∑
k∈R

rk (35)

The basic modeling element is the interval decision variable used to
model a task. This decision encapsulates the start time, duration and end
time decision variables. To model a task task with a release date rel, a
deadline due and a duration dur one has just to write:

dvar interval task in rel..due size dur

Thus in our case, a task j ∈ V is modeled as an interval decision vari-
able Tj with a release date 0, a due date |T | and an unspecified duration
as the tasks have multiple modes:

dvar interval Tj in 0..|T | ∀j ∈ V (36)

An interval decision variable can be declared optional, which means
that the solver will actually assign values to the start, duration and end
variables of this only if this is relevant for the optimization. An assigned
optional interval decision variable is said to be present, otherwise it
is absent. optional interval decision variables are used to model tasks
with multiple modes in the sense that a mode can be modeled as an
optional task with fixed resource requirements and duration. In the fol-
lowing declaration, optional interval variable Tjqk models the mode of
task j ∈ V when it is assigned to q units of resource k:

dvar interval optional Tjqk in 0..|T | size pjqk ∀i ∈ V,

(q, k) ∈Mj(37)

An interval decision variable can be also declared as an alternative

among different optional interval decision variables. In this case, one
and only one of the optional interval decision variables will be present
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and synchronized with the alternative interval decision variables. In
our case, we declare task Tj as an alternative between tasks Tjqk:

alternative(Tj , (Tjqk)(q,k)∈Mj
) ∀j ∈ V (38)

Precedence constraints can be declared between interval decision
variables, either in the form of classical finish-start precedence constraints
or generalized precedence constraints with time lags. We use here the
endBeforeStart(task1, task2) constraint that enforces the standard finish-
start precedence constraint between task1 and task2:

endBeforeStart(Ti, Tj) ∀(i, j) ∈ E (39)

We use also the startBeforeEnd(task1, task2,δ) that sets a minimum
(possibly negative) distance δ between the end of task2 and the start of
task1, to model the maximum time lag constraints:

startBeforeEnd(Tj , Ti,−∆) ∀(i, j) ∈ L (40)

In CP Optimizer, the task resource usage is modeled by associating a
resource usage function to an interval decision variable. The function
will be equal to 0 outside of the task execution interval and equal to the
number of resource units from the start to the end of the task. such a
function is named a pulse function and the syntax to associate such a
function to an interval decision variable task− with a number of units
q is pulse(task, q). A global resource consumption function for a given
resource can be obtained by summing all the individual task pulse func-
tions. The resource capacity is enforced by declaring that this sum must
stay lower than the capacity. We define here a sum per area and per
resource and we associate the pulse function to the optional interval

variables Tjqk that represent the modes. In case the interval variables
Tjqk is absent, the pulse function remains equal to 0.

For each resource k ∈ R, recall that decision variable rk is used to
model the maximal required number of units. It follows that the resource
constraints are written as follows:∑

j∈V

∑
q∈Rj

pulse(Tjqk, q) ≤ rk ∀k ∈ R (41)

The capacity constraints for areas are written in a similar way:∑
j∈V |aj=a

∑
(q,k)∈Mj

pulse(Tjqk, q) ≤ Ca ∀a ∈ A (42)

The noOverlap constraint is used to indicate that two interval deci-
sion variables can not overlap, which allows to directly model the incom-
patibility constraints:

noOverlap(Ti, Tj) ∀{i, j} ∈ D (43)

The obtained CP model (35–43) is similar to the one used in Gerhards
[2020]. Is serves as the core element of the LNS method proposed in the
next section.
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5 Large neighborhood search

5.1 The large neighborhood search technique

In the previous sections, we introduced MILP and CP formulations with
the aim of solving exactly our problem. The experimental results reported
in Section 6.2 will show that compared to the MILP approach, the CP
Optimizer model gives much better results and manages to solve some
instances with up to 100 tasks to optimality. These good results argue
in favor of exploiting the CP approach inside a heuristic to solve larger
problems. On that purpose, the LNS technique appears as a technique of
choice. As stated in the introduction, it benefits from the power of the
CP solver to explore a large-sized neighborhood. Furthermore, the LNS
method has not been tailored yet on the resource leveling objective, which
constitutes a methodological challenge.

In this section, we propose a heuristic method based on Large Neigh-
borhood Search (LNS) technique that we evaluate against the CP Opti-
mizer solver and the heuristic used in practice on industrial instances by
the aircraft manufacturer. The main principle of LNS techniques, inspired
by Palpant et al. [2004], is the following:

(0) Compute an initial solution S of the problem P.
(1) Fix a part of solution S such that the unfixed part is critical w.r.t.

the objective function.

(2) Compute a new solution S ′ for the problem P ′, where P ′ is a problem
issued from P with the constraints induced by Step (1).

(3) If S ′ is better than S then S ← S ′.

(4) If the stop condition is not met go to Step (1).

(5) Return S.

The LNS generic principles do not specify any type of diversification,
but rather rely on the idea that if the neighborhood of a solution is large
enough, the quality of local optima in the neighborhood tends to be better.

Clearly, one the main stake of LNS algorithms is deciding which part
of the initial solution to fix at Step (1) so that its neighborhood con-
tains better solutions; in other words, how to evaluate the criticality of a
solution part?

5.2 LNS for the aircraft assembly line scheduling
problem

As mentioned in the literature review, LNS is generally applied to schedul-
ing problems where the objective is to minimize a time-related criterion
or an outsourcing cost. A typical large neighborhood of a solution in
this context consists in selecting a time interval and fixing all activities
scheduled outside the interval and compacting as much as possible the
activities scheduled inside the interval. This is the case for the first LNS
method proposed for the RCPSP [Palpant et al., 2004]. Notably, the de-
fault search of the IBM CP Optimizer we used in the previous section
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also implements an LNS method based on this principle [Laborie and Go-
dard, 2007]. This is not what we should do for the considered problem, as
compacting a schedule as much as possible would inevitably increase the
resource usage.

In the problem considered here, we aim at minimizing the maximal
use of a given resource. We thus seek to identify the set of tasks that are
involved in the maximum resource peaks. Consider a solution S where
each task j ∈ V has start time S̄j ∈ [0, |T |], a number of assigned units
q̄j ∈ Rj for resource k̄j ∈ Rj , and a maximal usage r̄k for each resource
k ∈ R. The set of peak tasks is the set of all critical sets as defined below:

Definition 1 A critical set Ṽ is a set of overlapping tasks that reaches
the maximum number of operators for at least one resource k ∈ R. More
formally: ∃t ∈ [0, |T |], ∃k ∈ R, ∀j ∈ Ṽ , k̄j = k, S̄j ≤ t < S̄j + pjq̄j p̄j and∑

j∈Ṽ q̄j = r̄k.

In fact, the resource usage only changes at the beginning or the end
of a task. Let T denote the set of different start and end times of the
tasks. The set of all critical sets can be enumerated by a sweep algorithm
that tests the condition of Definition 1 for each set built by the task that
overlaps each time point in T . Algorithm 1 describes the sweep algorithm
that computes the union C of all peak task sets in O|V |2|R| time.

Algorithm 1 The sweep algorithm for peak task computation

Require: A problem P and a solution S = {(S̄j , q̄j , k̄j)j∈V , (n̄k)k∈R}
C ← ∅
T ← {S̄j | j ∈ V } ∪ {S̄j + pjqjkj | j ∈ V }
for k ∈ R do

for t ∈ T do
Ṽ ← ∅; cons← 0
for j ∈ V do

if k̄j = k and S̄j ≤ t < S̄j + pjq̄j k̄j
then

Ṽ ← Ṽ ∪ {j}; cons← cons+ q̄j
end if

end for
if cons = r̄k then
C ← C ∪ Ṽ

end if
end for

end for
return C

In order to generate a high quality neighborhood, we let free (Step 1 of
the general LNS scheme) all the tasks that contribute to the maximal use
of the objective resource (the ones belonging to the peak set computed by
the sweep algorithm) and the tasks that are direct predecessors of them
by a precedence constraint, and we fix the others.

We then solve this new problem (Step 2 of the LNS scheme) given the
bound provided by the value of the initial solution and the constraints
induced by the fixed tasks, within a limited time. If a solution has been
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found, it replaces the initial solution as the best solution and we start over.
However, if no solution was found, we solve a new problem, fixing fewer
tasks and setting a greater solving time, using the self-adaptive principle
originally proposed by Palpant et al. [2004]. To be more specific, each time
the solver is unable to find a solution, we fix ν% less activities and add
µ seconds to the maximum solving time. These values were determined
empirically using the benchmark instances (see Section 6).

In our implementation, we use CP Optimizer as a black box to solve
different generated subproblems using the constraint programming model
described in Section 4.2. Algorithm 2 provides the pseudo-code of our im-
plementation of the LNS method for the aircraft assembly line scheduling
problem.

Note that presenceOf(Tjqk) in the CP Optimizer language is a con-
straint that enforces the presence of the optional task Tjqk, while startAt(Tj , t)
is a constraint that fixes the start time of task Tj to value t. These two
constraints are used to fix the modes and the start times of the tasks in
V \V ′ while the tasks in V ′ are freed and form the LNS subproblem. Note
that τ ′ is a value much lower than τ giving the amount of time devoted
to the CP solver to get an initial solution. In the algorithm, πratio gives
the percentage of peak tasks and their predecessors that are taken to be
included in the subproblem. This number is bounded from below by a
limit πmin

ratio. τbase is the base time limit devoted to the LNS subproblem
solving while τinc is the additional time that is increased by the increment
µ at each iteration where no solution is found for the subproblem.

6 Computational experiments

Experiments were performed on a PC DELL Inspiron 1525 Intel Core2
Duo CPU, T5550 @ 1.83 GHz and 3.0 GB RAM. We first present the
instances used for the experiments in Section 6.1. Then, a comparison
between MILP and CP approaches is carried out in Section 6.2. The
proposed LNS method is then compared to the CP approach and the
heuristic used in the company in Section 6.3. The influence of the cycle
time in the comparison between LNS and CP is studied in Section 6.4.
Finally, a comparison between the LNS approach and a state-of-the-art
method on the multi-mode investment problem is detailed in Section 6.5.
The code and data instances are available at https://gitlab.laas.fr/
roc/christian-artigues/lns-mmrcpsp.

6.1 Assembly line instances

On the real final assembly line, the cycle time varies from 14 to 25 work-
ing days. There are between two and seven operator profiles per station.
Sample profiles are: mechanical technician, electrical technician, fluid sys-
tems technician, inspector and test specialist. As for the working areas,
there can be defined up to 5 different areas per station.

Precedence constraints are the most frequent. There are normally a
small percentage of jobs that do not have any kind of precedence relation-
ship with the others. Tasks are usually organized on several groups (1–10)
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Algorithm 2 LNS for the aircraft assembly line scheduling problem

Require: An aircraft assembly line scheduling problem P in the form of a
constraint programming model (Section 4.2) and a time limit τ
Initialize solution S∗ = {(S∗

j , q
∗
j , k

∗
j )j∈V , (r

∗
k)k∈R} by solving P with CP Op-

timizer under time limit τ ′

πratio ← 100
τbase ← 10
τinc ← 0
while elapsed time < τ do
C ← sweep(P,S∗) (get all the peak tasks)
C∗ ← C ∪ {i ∈ V | ∃j ∈ C, (i, j) ∈ E} (add the tasks that precede them)
C′ ← a subset of C∗ where we randomly select πratio% tasks
P ′ ← P
for j ∈ V \ C′ do
P ′ ← P ′ ∪ presenceOf(Tjq∗j k

∗
j
)

P ′ ← P ′ ∪ startAt(Tj , S
∗
j )

end for
P ′ ← P ′ ∪ {

∑
k∈R rk <

∑
k∈R r∗k }

Get solution S = {(S̄j , q̄j , k̄j)j∈N , (r̄k)k∈R} by solving P ′ with CP Opti-
mizer under time limit min(τbase + τinc, τ − elapsed time)

if
∑

k∈R r̄k <
∑

k∈R r∗k then
S∗ ← S
τinc ← 0
πratio ← 100

else if S is empty then
τinc ← τinc + µ
πratio ← max(πmin

ratio, πratio − ν)
end if

end while
return S∗
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that can be done in parallel. Within these groups, most of the tasks must
be done in series. Incompatibility/disjunctive constraints and maximum
time lags occur at a much lower rate than precedence constraints but, at
the same time, they cannot be omitted because they have a major impact
on product quality, reliability or health and safety issues. Given these
characteristics, the computational experiments are based on the following
instance sets.

Four sets of small 8-task randomly generated instances were first de-
fined to compare the MILP formulations (see Appendix A for the results).
Moreover, Sets 3 and 4 were extended in order to create instances of up
to 11 tasks. Their characteristics are listed in Table 4, which gives, for
each instance family, the number of tasks, the number of precedence con-
straints, the number of maximum time lag constraints, the number of
disjunctive constraints, the total number of resources, the number of ar-
eas, and the total number of different modes.

The total number of operator profiles refers to the different types of
profiles that exist in the station (e.g., electricians and pipe specialists).
For all small instances, this number is set to two. As for the number of
different modes, it is the sum of the modes of all tasks. Each mode is a
combination of a duration, a number of operators and an operator profile.
Therefore, two modes of a task can differ on the number of operators, the
operator profile or both. For example, Set 1-8 has a total of 11 modes.
For that instance, tasks 2 to 6 have a single mode. Tasks 0 can be done
by 1 or 2 operators (always of profile 2), task 1 can be done by 2 or 3
operators of profile 2 and task 7 must be done by two operators but they
can be of any of the two profiles.

Table 4: Small Instance Characteristics

Instance |V | |E| |L| |D| |R| |A|
∑

j∈V Mj

Set1-8 8 6 1 1 2 2 11
Set2-8 8 8 1 1 2 2 20
Set3-8 8 7 1 1 2 2 17
Set4-8 8 7 1 1 2 2 15
Set3-9 9 8 1 1 2 2 18
Set3-10 10 9 1 1 2 2 19
Set3-11 11 10 1 1 2 2 20
Set4-9 9 8 1 1 2 2 16
Set4-10 10 9 1 1 2 2 17
Set4-11 11 10 1 1 2 2 18

Then, we consider two moderate-sized real instances from the Aircraft
Final Assembly Line. Their characteristics are summarized in Table 5.

The small and the moderate-size real instances have been created with
a similar density of constraints (precedence, maximum time lags and num-
ber of modes per task) than the real industrial instances.

Finally we consider larger industrial instances from the aircraft manu-
facturer assembly line, denoted by letters from A to G. They have between
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Table 5: Moderate-Size Real Instance Characteristics
Instance |V | |E| |L| |D| |R| |A|

∑
j∈V Mj

Set1-70 70 64 0 11 4 2 84
Set1-100 100 90 3 14 4 2 134

Table 6: Large-Size Real Instance Characteristics
Instance |V | |E| |L| |D| |R| |A|

∑
j∈V Mj

A 90 58 4 2 2 3 101
B 159 138 4 3 2 2 239
C 455 364 200 53 7 1 495
D 455 364 200 75 7 1 495
E 721 1718 387 53 7 4 764
F 486 631 13 75 6 1 540
G 165 129 5 2 2 1 195

Table 7: Large-Size Real Instance Additional Characteristics
Instance Network Complexity Critical Path Length (CPL) CPL - |T | Is GSP

A 0.98 452 0 No
B 1.11 382 123 No
C 1.45 56 344 No
D 1.45 56 344 No
E 2.97 101 620 No
F 1.35 249 421 No
G 1.15 182 298 No
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90 to 721 tasks each. Their characteristics are shown in Table 6. They be-
long to real stations of three different final assembly lines. As an example,
instances C and D are from final test assembly stations. In those stations,
there are more incompatibility and maximum time lag constraints. In-
stance E is the largest one. It is issued from the main structural joint of
one of the final assembly lines and it requires not only a high number of
tasks but also more operator profiles. For these instances, we have also
calculated additional characteristics, which are displayed in Table 7. In
this table, the first column is the network complexity, which is defined by
the average number of arcs of each node in the activity graph. The second
column shows the length of the critical path in the activity network, con-
sidering that the mode with the largest duration is selected for each task.
The third column is the difference between the reference cycle time and
the length of the critical path, illustrating the margin available for opti-
mizing the peak resource demand. Lastly, the last column shows whether
the activity network of those instances is General Series Parallel, which
would suggest that these instances are somehow easier to solve. None of
the instances has this property.

For the instance F, Figure 1 shows the resource profiles obtained in
the software used by the company. Vertically, each slot correspond to a
24-hours interval. On the top of the figure, the used resource profiles are
listed horizontally. For each profile, the blue bar gives the usage interval
of each profile. Clicking on a profile (see Profile 4) provides the interval
of each task using the corresponding profile. In the bottom, the number
of operators per profile used along the cycle time is displayed as a stacked
bar graph, each profile having a different color. It can be seen that not
all the profiles have the same workload. That is a common characteristic:
there are some loaded profiles and some others, very specific, with few
tasks assigned.

Figure 1: Resource usage for instance F
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6.2 Comparison between CP andMILP Approaches

The instances used to compare the MILP and CP formulations are the
small instances described in Table 4 and the moderate-sized industrial
instances of Table 5. Due to the use of CP Optimizer 12.6.0 to solve
the CP formulation, the time horizon has been scaled in each instance in
order to obtain integer durations. This is not an issue for real application,
as integer durations (expressed in minutes) can be used with no loss of
generality. The default search mode of CP Optimizer was used.

All the instances have been solved up to optimality by CP. Small
instances took less than a second, whereas bigger instances were solved
in at most 20 seconds while the MILP model could not obtain feasible
solutions for the larger instances. Solution times for the MILP and CP
models are listed in Table 8. The results clearly establish the superiority of
the CP Optimizer solver compared to the MILP models on the considered
scheduling problem.

Table 8: Solution times of MILP approaches and CP Optimizer
Inst |T | SEE-M OOE-M OOE-M CP optimizer

(STD) (STD) (MIN)
t(s) t(s) t(s) t(s)

Set1-8 1150 21.09 1.93 0.67 0.01
Set2-8 3475 19.66 0.58 0.47 0.02
Set3-8 1400 121.98 8.24 0.22 0.13
Set4-8 1300 36.58 3.82 0.11 0.02
Set3-11 1700 4133 452.53 1.45 0.29
Set4-11 1300 473.54 76.32 13.07 0.05
Set1-70 120000 — — — 2.3
Set1-100 170000 — — — 20.7

6.3 Comparison of LNS with CP Optimizer and
the heuristic used in practice

Table 9: Objective values reached by CP Optimizer and LNS
Inst |V | CP optimizer LNS

1min 15min 30min 1min 15min 30min
A 90 6 6 6 6 6 6
B 159 17 17 13 20 14 13
C 455 20 19 19 19 18 18
D 455 20 20 18 22 18 18
E 721 24 21 21 25 21 21
F 486 23 20 19 23 17 17
G 165 20 16 15 24 15 13
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Table 10: LNS Improvement over CP Optimizer objective value
Inst |V | 1min 15min 30min
A 90 0% 0% 0%
B 159 -17.6% 17.6% 0%
C 455 5% 5.2% 5.2%
D 455 -10% 10% 0%
E 721 -4.2% 0% 0%
F 486 0% 15% 10.7%
G 165 -20% 6.2% 13.3%

In order to assess the LNS algorithm efficiency as a heuristic, we use
the set of industrial instances A, B, C, D, E, F and G.

In our experiment, we ran both CP-solving algorithm (with CP Opti-
mizer) and the LNS algorithm on the instances with three different time
limits: 1 minute, 15 minutes and 30 minutes. Table 9 displays the ob-
jective value of the best solutions found by both algorithm within the
time limits. In the first column, the number of tasks per instance is also
displayed, in order to provide a hint on the instance complexity. Both
methods provided feasible solutions for all the 6 instances. Also, we can
note that the LNS method performs poorly within the 1 minute time limit.
This is not really surprising, since the LNS algorithm starts by exploring
the neighborhood of the first feasible solution found by CP Optimizer us-
ing the CP model. However, we observed that the LNS algorithm often
finds better quality solutions than the CP approach within greater time
limits. Table 10, that displays the improvement as a percentage, shows
that when the time limit is 15 minutes or 30 minutes, the LNS approach
never underperforms CP Optimizer. The largest improvement is obtained
for a CPU time limit of 15 minutes with an improvement on 5 instances
out of 7.

Since instances A to G are real instances from the manufacturer, we
had also the opportunity to compare the LNS algorithm performance to
the results from the current activity-oriented serial schedule generation
scheme (SSGS) heuristic deployed at the aircraft manufacturer, described
in Section 3. This comparison is shown in Table 11. It can be seen
that LNS leads to better solutions in 4 out of the 6 instances. For the
two where it came to the same solution (C, D), LNS was able to prove
the optimality as all tasks could be freed, resorting to the CP model.
Moreover, for instance G, the heuristic is unable to find a feasible solution
while LNS provided one.

6.4 Impact of cycle time on the objective function

As stated in Section 3, during the tactical planning, another frequent
decision is to choose between a set of cycle times for the assembly line.
In consequence, in this section we evaluate the impact of cycle time on
the objective function for both CP and LNS algorithms. We run the
experiments with a duration of 15 minutes on the A-G instances with a
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Table 11: LNS - SSGS Heuristic Comparison
Inst |V | Heuristic LNS Improvement
A 90 6 6 0%
B 159 18 13 27.7%
C 455 18 18 0%
D 455 18 18 0%
E 721 22 21 4.5%
F 486 26 17 23%
G 165 13 ∞

new cycle time |T ′|, such that |T ′| = ρ|T | where |T | is the cycle time
used in the previous experiments and ρ varies in [0.2, 2]. The results are
displayed in Table 12. First, we can see that for most instances, when ρ ≤
0.8 neither of the two methods can find a feasible solution, which suggests
that the instances become infeasible. Then, unsurprisingly, the objective
value improves as the cycle time increases, and this is particularly visible
for the B and G instances, where the target value is increased by at least 50
%. If we want to compare the two algorithms, we can observe that LNS is
more interesting when the cycle time value has small variations compared
to the reference value, and the performance of both algorithms becomes
comparable when the cycle time becomes high. This can be explained in
two ways. Firstly, the problem can become very easy to solve. Secondly,
when this happens the solution may have a very flat resource utilization
profile, which makes the neighborhood of the LNS method extremely large
and deteriorates its performance. The same can happen when the cycle
time gets too “tight”.

Table 12: Objective Value with varying Cycle Time
A B C D E F G

ρ CP LNS CP LNS CP LNS CP LNS CP LNS CP LNS CP LNS
0.2 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
0.4 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
0.6 ∅ ∅ ∅ ∅ 21 21 23 22 ∅ ∅ 23 26 ∅ ∅
0.8 ∅ ∅ 20 13 21 19 22 19 24 21 20 18 ∅ ∅
1 6 6 13 9 19 19 20 18 24 21 20 17 9 9
1.2 6 6 8 8 18 19 20 18 22 21 18 17 8 8
1.4 6 6 7 7 18 20 20 20 20 19 18 17 7 8
1.6 5 5 6 6 18 19 20 20 19 19 18 17 5 5
1.8 4 4 6 6 18 18 20 19 19 19 18 18 5 5
2 4 4 6 6 18 18 20 18 19 19 18 18 4 4

6.5 Experiments on the multi-mode resource in-
vestment problem

In this section, we propose to go a step further in the experiments. In
Gerhards [2020], the author proposes a Constraint Programming model
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to solve the multi-mode resource investment Problem (MMRIP). For-
mally, this problem is very similar to the assembly line scheduling problem
at stake here. The notable differences are, firstly, the presence of non-
renewable resources, and secondly, the objective function, where we want
to minimize the weighted sum of the maximums of the resources used. In
the same way that we used our CP model as a black box for the LNS
algorithm, this time we will use the CP model that the author proposes
as a black box and compare the results obtained by LNS with the results
of his CP model. We use the same sweep algorithm as the one introduced
in the previous section. We test our algorithm on the same instances as
those used by the author, taken from the RIPlib dataset. These instances
are separated into three subsets, with 30, 50 and 100 tasks. Note that
we removed from these instances those that were solved by CP Optimizer
in less than a minute, so that the results more accurately highlight the
comparison on the difficult instances in this dataset. Both methods were
tested within 1, 15, and 30 minutes. The average improvement (in %) are
displayed in Table 13.

Table 13: LNS Improvement over CP Optimizer objective value for the Multi-
mode Resource Investment Problem

Inst. 1 min 15 min 30 min
MRIP30 5.27% 11.15% 0.82%
MRIP50 5.61% 15.47% 1.14%
MRIP100 10.58% 17.46% 3.40%

Looking at the results, we can make several remarks. For all sets of
instances, the LNS algorithm improves very little the solutions returned
by the CP model solution after 30 minutes, which is explicable by the fact
that most of the instances are closed after this time. On the other hand,
it is with a time limit of 15 minutes that the difference in the quality of
the solutions is the most noticeable: in this time the CP model is not
yet solved, whereas the LNS algorithm has been able to explore a more
interesting subset of solutions. Note that the improvement after 1 minute
is already significant. It can be noted finally that the superiority of LNS
increases with the size of the instances.

7 Conclusions & further research

In this work, we have proposed new methods for the aircraft assembly
line scheduling problem. We have first proposed a new on-off event based
formulation that extends the one proposed by Koné et al. [2011] to max-
imal time lags, multiple modes and the resource leveling objective. The
computational results from Appendix A have shown that the new model
is able to solve only small instances to optimality although it gets better
results than the start-end event-based formulation previously proposed by
Borreguero-Sanchidrián et al. [2014]. We have also shown that a standard
constraint programming model solved with CP Optimizer significantly
outperforms the MILP approaches. Remarking that the methods embed-
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ded inside the CP Optimizer solver, especially the LNS method described
in Godard et al. [2005] are time oriented and globally aim at compact-
ing the schedule, we have proposed a new LNS method more adapted to
the resource leveling objective. We have used a fast sweep algorithm to
compute the load peaks and a self-adaptive neighborhood to efficiently
reschedule the tasks involved in such peaks and their predecessors. The
method outperforms CP Optimizer on the industrial instances for medium
CPU time limits (15 and 30 minutes). Moreover, it manages to decrease
by more than 20% the resource levels reached by the heuristic currently
used by the aircraft manufacturer on the industrial instances, potentially
yielding substantial gains. Finally, the proposed LNS method substan-
tially improves the results of the CP model proposed by Gerhards [2020]
on hard instances of a related multi-mode resource investment problem
for short CPU time limits (1 and 15 minutes).

As a future research direction, the proposed method could be extended
to more complex variants to better tackle other industrial needs. As shown
by our experiments on the resource investment problem, our model ex-
tends easily and efficiently to multiple renewable and non-renewable re-
sources as well as to weighted resource leveling. However, it would be in-
teresting to include the assignment of multi-skilled resources, which would
solve both the tactical resource leveling and operational resource assign-
ment in an integrated manner. This would require significant changes to
the constraint programming model, using for instance the model proposed
by Young et al. [2017]. Ergonomic constraints and objectives for opera-
tors welfare could also be considered for the problem at hand, as recently
proposed in a related problem by Arkhipov et al. [2018].

From the methodological point of view, additional filtering techniques
could be developed to solve the problem under study. The CP solution
scheme encompasses also constraint propagation techniques that can be
used as preprocessing to calculate the relevant number of events; this issue
would lead to major performance improvements. A promising research di-
rection is to propose a hybrid MILP/CP large neighborhood search heuris-
tic, as the one proposed for the MISTA challenge 2013 on the multi-mode
RCPSP [Artigues and Hébrard, 2013].
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Eamonn T Coughlan, Marco E Lübbecke, and Jens Schulz. A branch-
price-and-cut algorithm for multi-mode resource leveling. European
Journal of Operational Research, 245(1):70–80, 2015.

Bert De Reyck and Willy Herroelen. The multi-mode resource-constrained
project scheduling problem with generalized precedence relations. Eu-
ropean Journal of Operational Research, 119(2):538–556, 1999.

Erik Demeulemeester. Minimizing resource availability costs in time-
limited project networks. Management Science, 41(10):1590–1598,
1995.

Erik Demeulemeester and Willy Herroelen. Project Scheduling: A Re-
search Handbook. International Series in Operations Research & Man-
agement Science. Springer, 01 2002.

Andreas Drexl and Juergen Gruenewald. Non-preemptive multi-mode
resource-constrained project scheduling. IIE Transactions, 25(5):74–
81, 1993.

29



Patrick Gerhards. The multi-mode resource investment problem: A
benchmark library and a computational study of lower and upper
bounds. OR Spectrum, 42(4):901–933, 2020.

Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large
neighborhood search for cumulative scheduling. In ICAPS, volume 5,
pages 81–89, 2005.

S. Hartmann and D. Briskorn. A survey of variants and extensions of the
resource-constrained project scheduling problem. European Journal of
Operational Research, 207(1):1–14, 2010. ISSN 0377-2217.

Vera C. Hemmelmayr, Jean-François Cordeau, and Teodor Gabriel
Crainic. An adaptive large neighborhood search heuristic for two-
echelon vehicle routing problems arising in city logistics. Computers
& Operations Research, 39(12):3215–3228, 2012.

H. Kagermann and W. Wahlster. Recommendations for implementing the
strategic initiative Industry 4.0: Securing the future of german man-
ufacturing industry. Final report of the Industry 4.0 Working Group,
2013.

Rainer Kolisch. Serial and parallel resource-constrained project schedul-
ing methods revisited: Theory and computation. European Journal of
Operational Research, 90(2):320–333, 1996.

Rainer Kolisch. Make-to-order assembly management. Springer, 2000.
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A Experimental comparison of MILP for-
mulations

In this appendix, the MILP models were validated and compared on the
small randomly generated instances described in Table 4 of Section 6.1
The computational results were obtained using CPLEX 12.4 solver. The
tests were carried out on an Intel Core i7 2630QM processor with 2 GHz
and 4 GB RAM, running Windows 7.

Overall, 75 different combinations of data sets, number of tasks, cycle
time and number of events were tested for each formulation.

All instances were solved up to optimality for both formulations. For
the SEE-M formulation proposed in Borreguero-Sanchidrián et al. [2014],
the instances took times from seconds to fifteen minutes, and from 0.1
second to eight minutes for the new OOE-M formulation. The harder
instance to solve was Set3-11, that took up to 4133 seconds for a time
horizon of 17 days and 11 events on the SEE-M formulation and 452 on
the OOE-M formulation.

Both formulations have similar behavior as far as the impact of vari-
ations on the number of events, number of tasks and cycle time on the
solution time. As for the evolution of the solution time throughout dif-
ferent cycle times, on average the solution time also grew as the objective
cycle time got closer to the critical path length. Table 14 shows an exam-
ple of this evolution for each of the formulations.

Table 14: Sample Solving Time for Different Cycle Times

|T | |T | |T | |T |
Instance 31.5 33 34.75 41

SEE-M Set2-8 10.2s 6.65s 1.79s 0.83s
OOE-M Set2-8 4.66s 0.83s 0.47s 0.2s

Finally, focusing on the influence of the number of tasks, most of the
instances required more solution time with the same number of events
when new tasks were added. It must be noted that some instances were
solved faster with more tasks. This shows that in some cases the combi-
natorial structure of the problem is more important than the number of
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tasks itself. We also stated that the hardening of the instances as we add
new tasks is wider on the cases where we are using more events.

However, the major impact on the model performance is related to
the number of events used to solve an instance. For each set and cycle
time, different number of events were tested. Starting from the theoretical
minimum number of events, the number of events was reduced by one unit
at a time. Then, the model was solved and we checked that the solution
was still optimal. The solution time increases exponentially with the
number of events, even when solving the same instance.

Figure 2 shows the evolution of the SEE-M solution times for some
of the instances whenever the number of events changed. On this figure,
the series data include information on the data set, the number of tasks
and the input cycle time: Set1-8-11.5 stands for the solution of data set 1,
with 8 tasks and T = 11.5 days. For example, for the SEE-M formulation
the first set (Set1-8), when solved for T = 11.5 days took from 2 to 281
seconds, depending on the number of events. The evolution of the solution
time against the number of events follows a similar pattern for the OOE-M
model.
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Figure 2: SEE-M solution time vs. number of events

Taking into account that in most of the instances the precedence graph
had at least two parallel paths, the possibility of event reduction could
have been foreseen. Nevertheless, reducing too much the number of events
could lead to infeasible or non-optimal solutions. Therefore, some addi-
tional research on the instance characteristics (network complexity, re-
source factor) that can help to predict the minimum number of events
that leads to optimal solutions would be needed.
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As for the comparison between the two formulations, the results in
terms of solution time, number of nodes and first lower bound have been
better for all the instances with the OOE-M formulation than with the
SEE-M formulation. Figure 3 shows the histogram for the time spent for
getting the optimal solution with the OOE-M formulation by the time
spent with the SEE-M formulation. The only two cases where the solving
time is longer for the OOE-M formulation are instances with solution
times within the range of 0.5 seconds, where the absolute difference is not
relevant.
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In fact, the difference between both formulations grows with the num-
ber of events. Therefore, as the complexity of the instances grows the use
of the OOE-M formulation becomes more suitable.

These comparative results are coherent with the results of Koné et al.
[2011] for the single-mode problem with only precedence constraints, who
concluded that the OOE outperformed the SEE formulation for all the
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instances.
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