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Abstract

We explore the problem of minimizing the weighted average coflow
completion time of coflows when flow sizes are unknown but unreliable
predictions on them are available. We propose to use Sincronia, a 4-
approximation algorithm when actual flow sizes are known, directly
on the predictions. For this variant of Sincronia, we obtain a finite
upper bound on the approximation ratio that combines unreliability
on predictions and the weights of the coflows. On several numerical
experiments, it is shown that this bound is too conservative, and that
in practice Sincronia with predictions has a much better performance
on average as well as in the worst-case.

1 Introduction

Cloud computing infrastructures have popularized the execution of mas-
sively parallel computing algorithms on vast amounts of data. Nowadays,
most cloud providers allow their customers to launch parallel computations
on their own data using Big Data applications such as MapReduce, Hadoop
or Spark [15, 39]. These parallel applications typically alternate between
computation stages and communication stages, during which the applica-
tion’s tasks exchange intermediate results using the datacenter’s internal
network. For some workloads, these data transfers can account for more
than 50% of job completion times [12].

Indeed, for massively parallel applications, data transfers result in thou-
sands of communication flows that operate almost concurrently within the
network. While datacenter networks are high-speed and low-latency net-
works, they were designed to optimize the performance of individual flows,
without considering the needs of the applications generating these flows.
However, the performance of a parallel application depends on when all
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data transfers have been completed, as the intermediate results from the
previous iteration are necessary to start a new iteration.

While parallel task scheduling is a well-explored topic, the scheduling of
data flows in datacenter networks has only been studied since 2012, with
the foundational work of Chowdhury and Stoica [10]. They introduced the
concept of coflow to study the scheduling of data flows from concurrent par-
allel applications sharing the resources of a datacenter network. A coflow is
defined as a collection of semantically-related data flows generated by a par-
allel application between two iterations. The coflow completion time (CCT)
is the time at which all flows of a coflow have completed. In MapReduce,
for instance, a coflow is composed of all flows sent from mapper to reducer
nodes. These flows are launched as soon as the mapper nodes finish their
computation tasks.

Chowdhury and Stoica showed that by scheduling flows from different
concurrent coflows, it was possible to significantly improve application per-
formance. Since then, efficient coflow scheduling methods aiming to mini-
mize the average CCT have been studied in the literature. Some of them
have been devised for the offline problem, in which all coflows to be scheduled
are initially present in the system (or with known release dates), whereas
others were devised for the online problem in which coflows arrive over time.

Furthermore, coflow scheduling was mainly considered in the clairvoyant
setting, where upon arrival of a coflow, the source and destination ports as
well as the precise volume of each and every of its constituent flow are also
revealed. Efficient algorithms can be devised for this setting, but they re-
quire a priori information about coflows which is hard to obtain in practice.
Therefore, some authors have also investigated the non-clairvoyant setting,
where on a coflow arrival, only the number of flows and their input and
output port are revealed, while their volumes remains unknown.

The present work goes beyond the conventional clairvoyant and non-
clairvoyant settings by exploring an alternative one in which predictions
on the flow sizes are revealed to the coflow scheduler. These predictions
could be obtained for instance from historical data on previous executions
using machine learning (ML) techniques. The issue is that the actual flow
size information remains unavailable and the ML predictions are unreliable.
In that context, the main question we investigate is how to exploit these
predictions for coflow scheduling, and whether it is even advisable to do so.

1.1 Contributions

We consider the problem of scheduling coflows with the objective of minimiz-
ing the average weighted CCT when only predictions on the actual volumes
of coflows are given. We propose using Sincronia directly on the predictions
and provide worst-case upper bound on its approximation ratio compared to
the optimal weighted CCT computed using the actual volumes. This bound
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is obtained by combining two different upper bounds: one obtained from
using the predictions and the other which is independent of the predictions.

Assuming that the predictions lie in the interval [µminx, µmaxx], with
x being the actual value, we first show that the CCT of Sincronia is at
most 4(µ−1

minµmax)2 of the optimal value. This upper bound coincides with
that of Sincronia when there is no error in the predictions, that is, when
µmin = µmax = 1. However, as the interval of predictions becomes large,
this bound can become arbitrarily big, going to infinity as µmin → 0 or
µmax →∞. In this case, the bound becomes too large to be useful.

To overcome this drawback, we obtain a second upper bound that is
independent of the quality of the predictions and that depends uniquely on
the weights of the coflows: (

∑
k wk)/(mink wk), where wk is weight of coflow

wk.
The worst-case performance of Sincronia with predictions is then just

the minimum of these two upper bounds. It can be seen that performance
of Sincronia with predictions remains bounded even when the interval of
predictions becomes large.

Finally, on several numerical examples we observe that in practice, these
bounds are too conservative and the average performance of Sincronia with
predictions remains close to that of optimal value computed with the actual
volumes.

1.2 Organization

The paper is organized as follows. Section 2 is devoted to related work. Sec-
tion 3 introduces the main notations used throughout the paper and presents
the BlindFlow and Sincronia algorithms proposed for non-clairvoyant and
clairvoyant coflow scheduling, respectively. In Section 4, we present our
main theoretical results for the setting in which only unreliable ML predic-
tions on flow sizes are available for coflow scheduling. Section 5 is devoted to
numerical results. Finally, some conclusions are drawn and future research
directions are suggested in Section 6.

2 Related Work

Since the introduction of the coflow concept by Chowdhury and Stoica [10,
14], several coflow scheduling algorithms have been proposed [35]. The prob-
lem can be viewed as a concurrent open-shop scheduling problem, but with
coupled resources as transmitting a flow requires capacity on both the input
and output ports. Most studies have focused on minimizing the average
CCT in the clairvoyant case, that is, assuming complete information on
the coflows. Even under this simplifying assumption, the problem is known
to be NP-hard [13] and inapproximable below a factor of 2 [5, 29]. The
offline minimisation of the average CCT can be formulated as an integer
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linear problem (ILP) [23], but this approach does not scale well and can-
not cope with the very large instances encountered in datacenter networks.
Research has therefore focused on approximation algorithms and heuris-
tics [1, 2, 7, 9, 24,31,32,34,36,41].

One of the first clairvoyant schedulers for minimizing the average CCT
was Varys [13], which is still a basic reference today as it introduced many
key concepts. Varys schedules coflows iteratively by considering at each
stage the bottleneck port (given the remaining coflows to be scheduled), and
choosing the coflow with the least volume on that port. The rate allocation
to the flows of the chosen coflow is calculated so that they all terminate
simultaneously. Another popular scheduler is Sincronia which was proposed
by Agarwal et al [1]. Based on the observation that an arbitrary rate al-
location is not necessarily achievable by the transport layer, they schedule
coflows by assigning priorities to them using a primal-dual algorithm for
which an approximation ratio of 4 can be proven.

Beside coflow scheduling, task placement can also be leveraged to favour
data locality and minimise network contention, thereby minimizing the av-
erage CCT. This joint problem of coflow placement and scheduling was
considered in [26] and [44] in the clairvoyant setting.

The above works focus on CCT minimization. The nature of the problem
is radically different for real-time parallel applications with strict deadline
constraints [22]. In this case, coflow admission control and scheduling must
be carried out jointly. The objective is then to maximise the number of
accepted coflows, while ensuring that they can meet their deadlines [20, 21,
33,37,38].

Although algorithms such as Varys or Sincronia provide fairly efficient
solutions to the coflow scheduling problem, they require a priori informa-
tion about the coflows, which is difficult to obtain in practice. Existing non-
clairvoyant solutions such as Aalo [11] generalize the Least Attained Service
(LAS) scheduling discipline to solve this problem (see also [17,42]). However,
they fail to identify the flows transmitted on bottleneck ports which result
in a poor rate allocation. The Fai algorithm [19] attempts to solve this prob-
lem. The CODA solution, on the other hand, assumes that the scheduler is
not even warned of the arrival of coflows, and proposes a machine-learning
scheme for identifying the flows belonging to the same coflow before schedul-
ing them [40]. Baraat [16] is another decentralized task-oriented scheduling
algorithm for datacenter networks. It performs FIFO-LM scheduling in a
decentralized manner, without any explicit coordination between network
routers. Another very relevant work is [6] in which Bhimaraju et al. pro-
pose the BlindFlow algorithm for non-clairvoyant coflow scheduling. This
algorithm, which generalizes the round robin (RR) scheduling discipline, is
shown to be 8 p-approximate, where p is the maximum number of flows that
any coflow can have.

To the extent of our knowledge, the present paper is the first one that
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goes beyond the conventional clairvoyant and non-clairvoyant settings. We
consider a setting in which the actual flow sizes are unknown, but unreliable
predictions on them are available. The improvement of online algorithms
via ML predictions is a recent line of research which has attracted a lot of
studies in the last few years, in particular for online scheduling, see e.g.
[3, 4, 8, 18, 25, 27, 43]. Though coflow scheduling significantly differs from
the more traditional scheduling problems addressed in these references, our
work is inspired by them, and in particular [18,27].

3 Background Material

As customary for coflow scheduling, we represent the datacenter network
using the big switch model [13], which abstracts out the datacenter network
fabric as one big switch interconnecting servers. The underlying assumption
is that the fabric core can sustain 100% throughput and only the ingress
and egress ports are potential congestion points. This assumption is well-
satisfied by modern datacenter networks as, due to large bisection capacity
and customary usage of load balancing, traffic congestion is typically ob-
served only at the rack access ports leading to the ToR switches. We let L
be the set of ports and denote by b` he capacity of port ` ∈ L

We consider the offline setting in which all coflows are initially present
in the system. We let C = {1, 2, . . . , n} be the set of coflows. Each coflow
k is a collection Fk = {1, 2, . . . , nk} of flows, where flow j of coflow k is
characterized by its source port sk,j , its destination port tk,j and its volume
vk,j . Each coflow k may be assigned a weight wk (default weight is 1). We

define the constant xk,j` as 1 if flow j ∈ Fk of coflow k ∈ C uses port ` (that
is, sk,j = ` or tk,j = `), and as 0 otherwise. We also define Fk,` as the set of

flows in Fk that use port `, that is, the set of flows j ∈ Fk such that xk,j` = 1.
In the following, we shall denote by Ck the completion time of coflow k ∈ C.
The objective is to schedule coflows so as to minimize the weighted CCT∑

k∈C wkCk.
In the clairvoyant setting where flow sizes vk,j are known, the problem

can be stated as follows:

min
r

∑

k∈C
wkCk (P1)

s.t.
∑

k∈C

∑

j∈Fk,`

rk,j(t) ≤ b`, ∀` ∈ L,∀t ∈ T , (1)

∫ Ck

0
rk,j(t) dt ≥ vk,j , ∀j ∈ Fk, ∀k ∈ C, (2)

where rk,j(t) ∈ R+ is the rate allocated to flow j ∈ Fk at time t and T is
the time horizon. Constraint (1) expresses that, at any instant t, the total
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rate that port ` assigns to flows cannot exceed its capacity b`. Constraint
(2) ensures that the data of flows of each coflow k should be completely
transmitted before its completion time Ck.

3.1 Non-clairvoyant Scheduling of Coflows

In [6], the authors present theoretical guarantees on approximating the sum
of coflow completion times in the non-clairvoyant setting, where on a coflow
arrival, only the number of flows and their input-output ports are revealed,
while the flow volumes are unknown.

They propose an algorithm which is called BlindFlow. It divides the
capacity of each port among all the flows that require that particular port in
proportion to flow weights, so that the maximum rate that can be allocated
to flow j ∈ Fk on port ` at time t is

rk,j` (t) =
wkx

k,j
` 1

k,j(t)

W`(t)
b`, (3)

where W`(t) =
∑

c∈C wc
∑

f∈Fc
xc,f` 1

c,f (t) and 1
k,j(t) is 1 if flow j of coflow

k is yet to finish at time t, and 0 otherwise. As each flow uses two ports, a
natural rate allocation, which is referred to as the round robin (RR) alloca-

tion in the following, is to allocate rate rk,jRR(t) = min{rk,ji (t), rk,jo (t)} to flow
j ∈ Fk at time t, where i and o are its input and output ports, respectively.
It is easy to see that it yields

rk,jRR(t) =
wk1

k,j(t)

max {Wi(t)/bi,Wo(t)/bo}
. (4)

The rate rk,jBF (t) allocated to this flow at time t by BlindFlow is slightly
different and is given by

rk,jBF (t) =
wk1

k,j(t)

Wi(t)/bi +Wo(t)/bo
. (5)

in which the max operator has been replaced by a sum. Note that (5) might
produce a schedule where the rates of some flows can be increased without
violating the feasibility on any port. Nevertheless, it should be clear that
any performance guarantee obtained for BlindFlow also holds for better rate
allocations, such as the RR allocation in (4). The main result proven in [6]
is stated in Theorem 1.

Theorem 1. The rate allocation (5) of BlindFlow is feasible and 8 × p
approximate, where p = maxk∈C |Fk| is the maximum number of flows that
any coflow can have.
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3.2 Clairvoyant Scheduling of Coflows

We now consider the clairvoyant setting. We first present an ILP formulation
of the problem, and then describe the Sincronia algorithm.

3.2.1 ILP formulation

A time-indexed mixed ILP formulation was proposed in [23] for minimizing
the average CCT in the clairvoyant seeting. Let T be a time-horizon and
assume that it is partitioned into Ts disjoint slots of duration ∆ units of
time. We let T = {1, . . . , Ts}. The model computes the fraction of the
total volume to be transferred by each flow at each time slot together with
the completion time of each coflow. Three types of decision variables are
required. Variable fk,jt ∈ [0, 1] represents the fraction of the volume vk,j of
flow j ∈ Fk sent during time slot t, whereas the binary variable ykt is defined
as 1 if t is the final time-slot used by coflow k, and 0 otherwise. Finally, the
variable γkt ∈ [0, 1] is defined as the unused percentage of the final time-slot
t for coflow k. Note that with these notations the completion time of coflow
k can be written as Ck =

∑
t∈T ∆ (tykt − γkt ). The model is as follows.

Min.
∑

k∈C

∑

t∈T
∆ (tykt − γkt ), (6)

s.t.
∑

t∈T
ykt = 1, k ∈ C, (7)

∑

t∈T
fk,jt = 1, j ∈ Fk, k ∈ C, (8)

γkt ≤ ykt , k ∈ C, t ∈ T , (9)
∑

k∈C

∑

j∈Fk,`

fk,jt vk,j ≤ b`∆, ` ∈ L, t ∈ T , (10)

∑

t′≥t
fk,jt′ ≤

∑

t′≥t
ykt′ , j ∈ Fk, k ∈ C, t ∈ T , (11)

∑

j∈Fk,`

fk,jt vk,j≤(1−γkt )b`∆, k ∈ C, ` ∈ L, t ∈ T , (12)

γkt , f
k,j
t ∈ [0, 1], j ∈ Fk, k ∈ C, t ∈ T , (13)

ykt ∈ {0, 1}, k ∈ C, t ∈ T . (14)

Constraints (7) select exactly one final time-slot for each coflow. Con-
straints (8) guarantee that all flows are served. Constraints (9) link y and
γ variables. Constraints (10) represent the port capacity constraints. Con-
straints (11) ensure that, for every coflow, all flows are sent before the final
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time-slot. Finally, Constraints (12) decreases the port capacity during the
final time-slot. This allows to compute the unused part of the final time-slot
of each coflow.

The above problem formulation can be solved with a linear programming
solver. As expected, however, this approach does not scale well and can-
not cope with the very large instances encountered in datacenter networks.
Nevertheless, formulation (6)-(14) is useful for assessing the quality of other
coflow scheduling algorithms, at least on small-scale scenarios.

3.2.2 Sincronia

Sincronia is one of the most popular clairvoyant coflow scheduling algo-
rithm [1]. It guarantees a 4−approximation, the best known approximation
ratio. We shall describe below the algorithm used by Sincronia to schedule
a set of coflows. In addition to the notations introduced previously, we also
let p`,k =

∑
j∈Fk,`

vk,j

b`
denotes the total transmission time of coflow k ∈ C

at port ` ∈ L.
Sincronia first computes a σ-order, that is, a priority order over coflows.

If σ(k) < σ(k′), then the flows of coflow k are transmitted in the datacenter
network with strict priority over the flows of coflow k′. Sincronia then uses a
greedy rate allocation which preserves the σ-order, that is, it is guaranteed
that coflow k will be completed before coflow k′ (that is Ck ≤ Ck′) if σ(k) <
σ(k′).

The method for computing the σ-order is based on the following linear-
programming problem:

Minimize
∑

k∈C
wkCk (LP-Primal)

s.t
∑

k∈S
p`,kCk ≥ f`(S), ` ∈ L and S ⊆ C, (15)

Ck ≥ 0, k ∈ C, (16)

where f`(S) is defined as

f`(S) =
1

2

∑

k∈S
(p`,k)

2 +
1

2

(∑

k∈S
p`,k

)2

, (17)

for each port ` ∈ L and each subset S ⊆ C of coflows. Inequalities (15)
correspond to the so-called parallel inequalities [28, 30]. In non-preemptive
single-machine scheduling problems, these inequalities define the convex hull
of feasible completion time vectors in the absence of precedence constraints.
Note that the formulation of problem LP-Primal does not account for the
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coupling between the resources of the fabric, that is, it ignores the fact that
a flow can be transmitted only if its input and output ports are available.
In that respect, problem LP-Primal is a relaxation of the original coflow
scheduling problem. It is proven in [1] (see Lemma 1) that the optimal value
of LP-Primal provides a lower bound for the coflow scheduling problem,
that is,

∑
k∈C wkC

∗
k ≤

∑
k∈C wkC

OPT
k , where the C∗k are the optimal values

of the completion times in problem LP-Primal whereas the COPTk are the
completion times in an optimal schedule.

Sincronia solves problem LP-Primal with a primal-dual algorithm. The
dual problem is as follows

Maximize
∑

`∈L

∑

S⊆C
f`(S) y`,S (LP-Dual)

s.t
∑

S:k∈S

∑

`∈L
p`,ky`,S ≤ wk, for all k ∈ C, (18)

y`,S ≥ 0, for all ` ∈ L and S ⊆ C. (19)

The Sincronia primal-dual algorithm is shown in Algorithm 1. The dual
variables y`,S are initialized to 0 and the set S of unscheduled coflows is
initially set to C. At each iteration, the algorithm assigns a priority to one
of the unscheduled coflows and then removes it from the set S. Note that the
ordering is from last to first. At each iteration t, the algorithm determines
the bottleneck port b, that is, the port ` for which the total completion time∑

k∈S p`,k is maximum. It then determines the coflow k∗ with the largest

weighted processing time on the bottleneck: k∗ = argmink∈S

(
wk
pb,k

)
. Coflow

k∗ is assigned priority t with σ(k∗) = t and it is removed from the set of
unscheduled coflows S. Before that, the dual variable yb,S is set to wk∗/pb,k∗

and the primal variable Ck∗ is set to the total completion time at port b:
Ck∗ =

∑
k∈S pb,k. The weights of the other coflows are also updated as

follows: wk ← wk − wk∗ pb,kpb,k∗
. Note that this does not change the weight of

a coflow k which does not use the bottleneck port.
It is easy to prove that Algorithm 1 produces a primal feasible solution

and a dual feasible solution. It can also be shown that the completion times
of coflows produced by Algorithm 1 are such that Cσ(1) ≤ Cσ(2) ≤ . . . ≤
Cσ(n). These properties are used in [1] to establish the approximation ratio
of Sincronia, which is formally stated Theorem 2 below.

Theorem 2. The cost of the schedule obtained with Algorithm 1 is at most
two times the optimal cost. As the Greedy rate allocation is also 2-optimal,
this implies that Sincronia is a 4-approximation algorithm.
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Algorithm 1 Sincronia primal-dual algorithm

1: y`,A ← 0 for all ` ∈ L and A ⊆ C.
2: S ← C
3: for t = n . . . 1 do
4: b← argmax`∈L

∑
k∈S p`,k . Bottleneck port

5: k∗ ← argmink∈S

(
wk
pb,k

)
. Coflow with largest weighted proc. time

6: Ck∗ ←
∑

k∈S pb,k . Set primal variable
7: yb,S ← wk∗

pb,k∗
. Set dual variable

8: wk ← wk − wk∗ pb,kpb,k∗
for all k ∈ S . Update coflow weights

9: σ(k∗)← t . Set priority of coflow k∗

10: S ← S \ {k∗} . Remove k∗ from the set of unscheduled coflows
11: end for

4 Coflow Scheduling with Predictions

In this section, we consider the setting in which the actual flow sizes are
unavailable and only unreliable ML predictions on them can be used for
scheduling coflows. We first establish in Section 4.1 the approximation ratio
of Sincronia when ran on predictions as a function of the prediction error.
We then propose in Section 4.3 a consistent and robust prediction-based
algorithm for coflow scheduling.

4.1 Sincronia with Predictions

In this section, we analyze the approximation ratio of Sincronia when, in-
stead of the actual flow sizes vk,j of a coflow k ∈ C, the algorithm only
knows some predictions v̂k,j on the flow sizes. These predictions can be
written as v̂k,j = vk,j + ∆vk,j , where ∆vk,j represents the prediction error
on the size of flow j ∈ Fk and lies in the interval [−vk,j ,∞). The predicted
total transmission time of coflow k ∈ C on port ` ∈ L is then

p̂`,k =
∑

j∈Fk

v̂k,jxk,j`
b`

= p`,k + η`,k,

where η`,k =
∑

j∈Fk

∆vk,jxk,j`
b`

represents the prediction error on the trans-
mission time on port `. Define

µmin = 1 + min
`,k

(
η`,k
p`,k

)
and µmax = 1 + max

`,k

(
η`,k
p`,k

)
,

We then have the following inequalities:

µmin p`,k ≤ p̂`,k ≤ µmax p`,k, (20)
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for all ports ` ∈ L and all coflows k ∈ C.
When ran on predictions, Sincronia produces a σ-order and compute

coflow completion times Ĉk which are a feasible primal solution, that is,
Ĉ is a feasible solution to problem LP-Primal in which the actual process-
ing times p`,k have been replaced by the predicted processing times p̂`,k.

Likewise, the constants f`(S) have been replaced by the constants f̂`(S)
obtained from (17) by using the predicted values p̂`,k instead of the actual
values p`,k. As a primal-dual algorithm, Sincronia also computes the dual
variables ŷ`,S which provide a feasible solution to dual problem in which
predicted processing times are used instead of the actual ones.

We shall assume for simplicity that Sincronia schedule the coflows in the
order 1, 2, . . . , n, which implies that Ĉ1 ≤ Ĉ2 ≤ . . . ≤ Ĉn. Our goal is to
obtain an upper bound on the approximation ratio obtained by scheduling
coflows in that order, as a function of µmin and µmax. Note that Ĉk is only
the estimated completion time of coflow k. In the following we denote by C̃k
the actual completion time of coflow k ∈ C obtained by scheduling coflows in
the order 1, 2, . . . , n. We first establish a bound on the predicted weighted
sum of completion times.

Lemma 1. Let Ĉk be the predicted completion time of coflow k when Algo-
rithm 1 is ran over the predictions, and COPTk be its completion time in an
optimal schedule. Then

∑

k∈C
wkĈk ≤

2µ2
max

µmin

∑

k∈C
wkC

OPT
k , (21)

Proof. See Appendix A.

We now use Lemma 1 to establish the approximation ratio of the prediction-
based Sincronia algorithm.

Theorem 3. Scheduling coflows in the order determined by Sincronia with
predictions as inputs yields a schedule whose weighted sum of completion

times is at most 4×
(
µmax

µmin

)2
the optimal one.

Proof. See Appendix B.

Note that the approximation ratio in Theorem 3 is identical to that of
Sincronia for perfect predictions, that is, when µmax = µmin = 1. More
generally, the prediction-based Sincronia algorithm computes the same σ-
order as the clairvoyant one when µmax = µmin. However, the bound in
Theorem 3 suggests that Sincronia is not robust to prediction errors, as its
approximation ratio grows unboundedly as the ratio µmax/µmin increases.
We shall see in Section 4.2 that this is not the case.
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To illustrate the above result, consider the scenario where, although
unreliable, the relative prediction error ∆vk,j

vk,j
on the flow sizes is guaranteed

to lie in the interval
[
−1

2 ,
1
2

]
uniformly for all flows j and all coflow k ∈ C.

In that case, it is easy to see µmin ≥ 1
2 and µmax ≤ 3

2 , so that Sincronia with
predictions as inputs guarantees a 36−approximation, that is, a worst-case
approximation ratio which is 9× that of Sincronia when ran over the actual
flow sizes. As we shall see in Section 5, the experimental performance of
the prediction-based Sincronia algorithm is far better than this theoretical
guarantee.

4.2 Approximation ratio independent of predictions

The bound in Theorem 3 depends upon the quality of predictions. If µmin is
close to 0, then the bound goes towards infinity. This happens because the
bound makes use of the completion times, Ĉk, computed from the predicted
processing times, p̂`,ks, which can highly different from the actual process-
ing times. For example, the predictions can be of the order of ε a small
quantity while the actual ones could be of the order of 1. The predicted
completion times will be of the order of ε which is much smaller than the
actual completion times which will be of the order of 1.

A bound that does suffer from this drawback can be obtained from the
observation that Sincronia is an order-based scheduling algorithm. Its total
weighted completion time will be upper bounded by that of the worst-case
order, that is: ∑

k

wkC̃k ≤ max
σ

∑

k

wσ(k)Cσ(k). (22)

Beside, the optimal total weighted completion time is at least that of the
last coflow in an optimal order:

∑

k

wkC
OPT
k ≥ wσ∗(n)Cσ∗(n) (23)

≥
(

min
k
wk

)
max
`

∑

k

p`,k (24)

where σ∗(n) is the index of the coflow finishing last. The second inequality
is a consequence of the fact that the latest completion time cannot be earlier
than the time required to empty the most loaded link failing which there
will be a coflow that would not have finished.

Combining the above two observations, we get the following bound on
the approximation ratio of Sincronia with predictions:

∑
k wkC̃k∑

k wkC
OPT
k

≤
maxσ

∑
k wσ(k)Cσ(k)

(mink wk) max`
∑

k p`,k
(25)

Using this inequality, we arrive at the following approximation ratio.
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Theorem 4. Sincronia with predictions is a 2 w̄
wmin

approximation algo-
rithm, where w̄ =

∑
k wk and wmin = mink wk.

Proof. See Appendix C.

Note that Theorem 4 implies that Sincronia is robust to prediction errors.
In particular, when all coflow weights are equal, as considered in Section 5,
we have w̄ = nwmin and the average CCT of Sincronia with predictions
as inputs cannot be worse than 2n the optimal one, independently of the
prediction error. Moreover, combining the upper bounds in Theorem 3 and
Theorem 4, we obtain our final upper bound on the approximation ratio of
the prediction-based algorithm.

Corollary 1. The approximation ratio of Sincronia with predictions as in-

puts is upper bounded by min

{
4×

(
µmax

µmin

)2
, 2 w̄

wmin

}
.

Proof. The proof directly follows from Theorem 3 and Theorem 4.

4.3 A consistent and robust prediction-based algorithm for
coflow scheduling

In [27], Kumar, Purohit and Svitnika study online algorithms in which pre-
dictions are used. In particular, they propose a prediction-based approach
for scheduling jobs of unknown sizes on a single machine so as to minimize
the average completion time of the jobs. The idea is to combine a clair-
voyant algorithm and a non-clairvoyant one by running them in parallel:
the clairvoyant algorithm schedules jobs a fraction λ of the time and the
non-clairvoyant one schedules jobs over the remaining (1 − λ) fraction of
time. It is shown in Lemma 3.1 of [27] that if the worst-case ratio of the
clairvoyant (resp. non-clairvoyant) algorithm cost to the offline optimum is
α (resp. β), then the resulting combination guarantees an approximation

ratio of min
(
α
λ ,

β
1−λ

)
. The hyperparamer λ controls the trust in the predic-

tions and can be set so as to obtain an algorithm which is both consistent
(that is, almost as good as the clairvoyant algorithm when the predictions
are perfect) and robust (that is, almost as good as the non-clairvoyant one
when the predictions are terrible).

In this section, we extend this approach to coflow scheduling. We com-
bine the Sincronia clairvoyant coflow scheduling algorithm with the RR non-
clairvoyant one. Sincronia uses predictions to schedule coflows in the fabric
over a fraction λ of time, while RR schedules the coflows the rest of the
time. In other words, the rate allocation to flow j ∈ Fk at time t is

rk,j(t) = λ rk,jSP (t) + (1− λ) rk,jRR(t), (26)
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where rk,jSP (t) is the rate allocated to this flow by Sincronia when ran over
predictions. We can obtain the following guarantee on the resulting algo-
rithm.

Theorem 5. Running in parallel Sincronia with predictions and RR yields
an algorithm with competitive ratio

min

(
4

λ

(
µmax
µmin

)2

,
2

λ

w̄

wmin
,

8 p

1− λ

)
(27)

In particular, this algorithm is min
{

2
λ

w̄
wmin

, 8 p
1−λ

}
-robust, that is, its ap-

proximation ratio is upper bounded by min
{

2
λ

w̄
wmin

, 8 p
1−λ

}
independently of

the prediction error. The algorithm is also 4
λ -consistent, that is, its approx-

imation ratio is 4
λ for perfect predictions.

Proof. It easy to see that Lemma 3.1 in [27] applies directly to coflow
scheduling. The proof then directly follows from Theorem 1 and Theorem
1.

The algorithm combining Sincronia with predictions and RR gives an
option to trade-off consistency and robustness. In particular, greater trust
in the predictions suggests setting λ close to 1, as this leads to a competitive
ratio which is approximately 4 when µmax ≈ µmin ≈ 1. In that case, the
algorithm performs as well as Sincronia in the worst case. On the other hand,
setting λ close to 0 is conservative and guarantees a competitive ratio of 8×p
(as the non-clairvoyant RR algorithm) even for terrible predictions. As the
prediction-based Sincronia is robust to prediction errors, this is however
relevant only if w̄ > 4pwmin.

5 Numerical results

In this section, we compare the average CCTs obtained with the prediction-
based Sincronia algorithm against that of other clairvoyant and non-clairvoyant
algorithms on random problem instances. We first describe in Section 5.1
the procedure for generating these instances. In Section 5.2, we present the
numerical results obtained on small instances for which the clairvoyant of-
fline optimum can be computed. Section 5.3 provides the results obtained
on larger problem instances.

5.1 Random instance generation

We generate random problem instances with an algorithm which works as
follows. The algorithm takes as input the number of instances to be gener-
ated, the number n of coflows and the number L of ports in each instance.
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For each instance, it is assumed the the first L/2 ports are input ports, while
the other ports are output ports. The capacity of each port is 1. For each
coflow k, the weight wk is 1 and there is a flow between input port ` and
output port `′ with probability p, where p is another input parameter of
the algorithm. The number of flows per coflow therefore follows a binomial
distribution1 and the mean number of flows per coflow is pL2/4. The size of
each flow is randomly generated from a (truncated) Gaussian distribution
with mean m and standard deviation σ, these parameters being also given
as inputs to the algorithm.

Given a problem instance, we generate a given number of random pre-
dictions as follows. For each coflow k ∈ C and each flow j ∈ Fk, we compute
the predicted volume as v̂k,j = uk,j × vk,j , where the random variable uk,j

follows a uniform distribution in the interval [1 − δ, 1 + δ]. We vary the
coefficient δ so as to evaluate the impact of the prediction quality on the
performance of the scheduling algorithm.

5.2 Comparison against the clairvoyant offline optimum

We first consider small instances for which the mixed-integer linear program
presented in Section 3.2.1 can be solved. We use Gurobi as MILP solver,
with a time limit of 15 minutes. Two types of instances are considered:

• Type-1 instances: We randomly generate 1, 000 instances with n = 6
coflows and L = 6 ports. We use the parameters m = 5, σ = 2 and p =
1
3 , so that the average number of flows per coflow is 3. The flow sizes
are randomly drawn from a normal distribution with m = 5 and σ = 2.
The parameter δ takes values in the set {0, 0.01, 0.1, . . . , 0.9, 0.99}. For
each instance and each value of δ, we generate randomly either 10, 000
or 100, 000 predictions of flow sizes.

• Type-2 instances: We randomly generate 100 instances with n = 8
coflows, L = 12 ports and p = 1

4 , so that there are on average 9 flows
per coflow. The other parameters are as above, except that we use
only 10, 000 predictions for each value of δ and each instance.

As the upper bound on the approximation ratio of Sincronia with pre-

dictions obtained in Theorem 3 is min
{

4µ
2
max

µ2min
, 2n
}

, we first evaluate how

this quantity evolves as we vary the prediction error δ. Figure 1 shows the
evolution of the empirical minimum, maximum and mean values obtained
for this quantity as the prediction error δ varies for one of the type-1 in-
stances (for which, n = 6). The results obtained with the other type-1
or type-2 instances are similar. The figure also shows with dots the theo-
retical minimum value 4 and maximum value min

{
4(1 + δ)2/(1− δ)2, 12

}

1However, it is assumed that there is at least one flow per coflow.
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Figure 1: Minimum, maximum and mean values of the approximation ratio

min
{

4µ
2
max

µ2min
, 2n
}

as a function of δ for one of the type-1 instances with

100, 000 predictions.

obtained for each value of δ. We note from Figure 1 that the empirical
maximum matches the theoretical value and that the average value is quite
close to the maximum value. For δ ≥ 0.4, the performance guarantee for
the prediction-based Sincronia corresponds to that of the worst σ-order.

We now consider the experimental performance of Sincronia when ran
over predictions. Figure 2 shows the minimum, maximum and mean values
obtained for the ratio

SINpred

OPT as δ varies for one of the type-1 instances,
where SINpred is the average CCT obtained by Sincronia using predictions
whereas OPT is the clairvoyant offline optimum computed with Gurobi. We
generated 100, 000 predictions for each value of δ. We also denote by SIN
and RR the average CCT obtained with the clairvoyant Sincronia and RR,
respectively, and show the ratios SIN

OPT and RR
OPT , which are independent of

δ, on the figure. Note that for perfect predictions, that is for δ = 0, the
experimental performance of Sincronia with predictions matches that of the
clairvoyant Sincronia. The minimum value of

SINpred

OPT is never below 1.0, as
expected, and its maximum value is at most 1.65, that is, at most a 65%
degradation with respect to the clairvoyant offline optimum. However, on
average, the performance degradation is fairly low since it is in the order of
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Figure 2: Minimum, maximum and average values of the ratio
SINpred

OPT as a
function of δ for one of the type-1 instances.

5% for this instance. We also note that the approximation ratio of RR is
significantly greater than what is obtained with Sincronia even for terrible
predictions.

Figure 3 summarizes the results obtained over 1, 000 type-1 instances,
using 10, 000 predictions. Here, the mean value of

SINpred

OPT is obtained by
averaging over the 1, 000 instances and the 10, 000 predictions. Similarly, its
maximum (resp. minimum) value corresponds to the greatest (least) ratio
obtained over the 1, 000 instances and the 10, 000 predictions. The figure
also shows the average values of the ratios SIN

OPT and RR
OPT . Note that for

δ = 0, even though there is no prediction error, the minimum, maximum,
and mean values of

SINpred

OPT do not coincide as they are obtained for different
instances. We observe that the minimum value of the ratio remains at 1,
which shows that wrong predictions do not necessarily harm Sincronia and
can even improve its performance in some cases, which is probably due to its
sub-optimality. Interestingly, we observe that on average the performance
of the prediction-based Sincronia remains remarkably close to that of the
clairvoyant Sincronia, even for terrible predictions. The maximum ratio
SINpred

OPT increases however with δ and slightly surpasses the average value of
RR
OPT for δ ≥ 0.8, indicating that the prediction-based Sincronia performs
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Figure 3: Minimum, maximum and average values of the ratio
SINpred

OPT over
1, 000 type-1 instances as a function of δ.

remarkably well in comparison to RR even with poor predictions.
Figure 4 is similar to Figure 3 and presents the ratios

SINpred

OPT obtained
over 100 type-2 instances, using 10, 000 predictions for each one and each
value of δ. We note that the minimum value occasionally falls below 1
because for some instances Gurobi was unable to reach the optimal solution
within the time limit of 15 minutes. The maximum value does not exceed 1.6.
As expected, the average decline in performance tends to rise as δ increases,
but remains relatively low, hovering around 10% for δ = 0.99. Moreover
the average performance of the prediction-based Sincronia always remains
quite close to that of the clairvoyant Sincronia. Another observation is that
the average approximation ratio of RR remains close to 2, a significantly
higher value than what is achieved by Sincronia, even with extremely poor
predictions.

In summary, the above results show that the average performance of
Sincronia with predictions is remarkably close to that it obtains in the clair-
voyant setting, even with poor predictions, and remains within 10% of the
clairvoyant offline optimum. For some bad predictions, Sincronia perfor-
mance is much worse but remains acceptable and far from the theoretical
worst case. Except in some exceptional cases, the prediction-based Sincronia
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OPT over
100 type-2 instances as a function of δ.
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algorithm outperforms RR.

5.3 Comparison against the clairvoyant Sincronia

We now consider larger problem instances for which the clairvoyant offline
optimum cannot be computed. Specifically, we consider four datasets with
n = 10, 15, 20 and 30 coflows, respectively. Each dataset contains 100
randomly generated instances with L = 10 ports and p = 0.2 (that is, 5 flows
per coflow on average). The flow sizes are randomly drawn from a normal
distribution with m = 5 and σ = 2. For each dataset and each instance in
this dataset, we vary the parameter δ from 0 to 0.99 and generate 10, 000
random predictions of flow sizes. The number of coflows and the number of
ports are kept to relatively low values as 4×100×10, 000×12 = 48, 000, 000
network simulations are required, which is of course a time-consuming affair.

As the clairvoyant offline optimum is no more available, we choose as
reference the clairvoyant Sincronia. Figure 5 plots the minimum, maximum
and average values of the ratio

SINpred

SIN as a function of δ. As before, for each
value of δ, the mean value is obtained by averaging over the 100 instances
and the 10, 000 predictions, whereas the maximum (resp. minimum) value
corresponds to the greatest (least) value obtained across all instances and
all predictions. We observe that the average performance of Sincronia with
predictions is quite close to that it obtains in the clairvoyant setting, even
with extremely poor predictions (at most a 5% degradation). The worst-
case performance increases with δ, but remains surprinsingly close to that
obtained by the clairvoyant Sincronia (at most +42% with respect to the
clairvoyant Sincronia). We also observe that on average RR performs poorly
as compared to the clairvoyant Sincronia.

Figure 6 plots the results obtained for 30 coflows. The same obser-
vations can be made as for Figure 5 . However, a comparison with the
latter figure shows that increasing the number of coflows while maintaining
the same number of links leads to enhanced worst-case performance for the
prediction-based Sincronia (at most +35% for the maximum value). The
results obtained with 10 and 20 coflows are similar.

5.4 Running Sincronia with predictions and RR in parallel

From a theoretical point of view, it follows from the analysis in Section
4.3 that running Sincronia with predictions and RR in parallel can yield
a smaller worst-case approximation ratio than that of the prediction-based

Sincronia provided that n > 4p and δ >
√

2p−1√
2p+1

. The empirical results ob-

tained above show however that Sincronia performs very well and much
better than RR even when feed with terrible predictions. In this section,
we therefore investigate the performance obtained by running the two algo-
rithms in parallel, focusing on a large value of λ. We choose λ = 0.95.
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over 100 instances with 15 coflows and 10 ports as a function of δ.
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λ = 0.95 and λ = 1.0 over 100 instances with 6 coflows and 6 ports as a
function of δ.

Figure 7 shows the maximum and average values of the ratio
λSINpred+(1−λ)RR

SIN
over 100 instances with 6 coflows and 6 ports as a function of δ for λ = 0.95
and for λ = 1.0. For the latter value, only the prediction-based Sincronia
is executed. As expected, a slight degradation of the average performance
is observed when the weight of RR is increased from 0% to 5%. In terms
of worst-case emprical performance, we do not observe any improvement,
except for δ = 0.99. We therefore conclude that, given the remarkable
performance of the prediction-based Sincronia algorithm, there is no clear
benefit of running it in parallel with RR from a practical point of view.

6 Conclusion

Whereas prior works on coflow scheduling focus on the conventional clair-
voyant or non-clairvoyant settings, we have explored an alternative one in
which the actual flow sizes are unknown, but unreliable predictions on them
are available. We have established an upper bound on the approximation
ratio of Sincronia with predictions as inputs and proposed to combine the
prediction-based Sincronia algorithm with a RR rate allocation to obtain a
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consistent and robust coflow scheduling algorithm.
Our numerical results show that Sincronia performs well even when feed

with terrible predictions, with average CCT which are quite close on average
to those obtained under the clairvoyant setting. The worst performance
degradation is limited and tends to decrease as the number of coflows is
increased. These results suggest that there is little or no benefit in combining
Sincronia with predictions and a RR rate allocation. Moreover, they suggest
that operating Sincronia with ML predictions could be an efficient solution
in practical scenarios with hundreds of coflows and ports. We emphasize
however that these conclusions have been drawn assuming a very specific
model for the prediction errors. Confirmation of these conclusions for other
models of the prediction errors will require further study and is left for future
work.
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A Proof of Lemma 1

Proof of Lemma 1. Let Ĉk and ŷ`,S be the primal and dual variables, re-
spectively, obtained after the execution of Algorithm 1 with the predictions
as inputs. We then have for each coflow k
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∑

`∈L
p̂`,k

∑

S⊆C,k∈S
ŷ`,S = wk.

Consider the dual variables y`,S defined as follows: y`,S = µmin ŷ`,S for
all ` ∈ L and all S ⊆ C. We then have

∑

`∈L
p`,k

∑

S⊆C,k∈S
y`,S =

∑

`∈L
p`,k

∑

S⊆C,k∈S
µmin ŷ`,S ,

≤
∑

`∈L
p̂`,k

∑

S⊆C,k∈S
ŷ`,S ,

= wk,

which shows that the dual variables (y`,S)`∈L,S⊆C provide a feasible solution

to problem LP-Dual. It also follows from the proof of Theorem 2 in [1] that

∑

k∈C
wkĈk ≤ 2

n∑

t=1

f̂b(t) (S(t)) ŷb(t),S(t),

≤ 2

µmin

n∑

t=1

f̂b(t) (S(t)) yb(t),S(t),

In addition,

f̂`(S) =
1

2

∑

k∈S
(p̂`,k)

2 +
1

2

(∑

k∈S
p̂`,k

)2

,

≤ 1

2

∑

k∈S
(µmax p`,k)

2 +
1

2

(∑

k∈S
µmax p`,k

)2

,

= µ2
maxf`(S),

for all ` ∈ L and all S ⊆ C, so that

∑

k∈C
wkĈk ≤

2

µmin
µ2
max

n∑

t=1

fb(t) (S(t)) yb(t),S(t),

≤ 2µ2
max

µmin

∑

`∈L

∑

S⊆C
f` (S) y∗`,S ,

≤ 2µ2
max

µmin

∑

k∈C
wkC

OPT
k ,

where the first inequality follows from the feasibility of (y`,S)`∈L,S⊆C as a
solution to problem LP-Dual, and the last one follows from the weak duality
theorem.
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B Proof of Theorem 3

Proof of Theorem 3. We assume that Ĉ1 ≤ Ĉ2 ≤ . . . ≤ Ĉn, that is, Sincronia
with predictions as inputs schedules coflows in the order 1, 2, . . . , n. Let C̃k
be the actual completion time of coflow k ∈ C when coflows are scheduled
in that order. It follows from Lemma 2 in [2] (see also the corresponding
result on the Greedy allocation in [1]) that

C̃j ≤ 2 max
`∈L

j∑

k=1

p`,k, for all j ∈ C.

When coflow j is scheduled by Algorithm 1, the set of unscheduled
coflows is {1, 2, . . . , j} and the predicted completion time of coflow j is set
to

Ĉj = max
`∈L

j∑

k=1

p̂`,k ≥ µmin ×max
`∈L

j∑

k=1

p`,k.

It thus follows that C̃j ≤ 2× Ĉj/µmin, so that

∑

j∈C
wjC̃j ≤

2

µmin

∑

j∈C
wjĈj ,

≤ 4

(
µmax
µmin

)2 ∑

j∈C
wjC

OPT
j ,

where the last inequality follows from Lemma 1.

C Proof of Theorem 4

Proof of Theorem 4. For a given order σ, we have the following inequality
bounding the completion times of coflows:

Cσ(k) ≤ 2 max
`

k∑

j=1

p`,σ(j) (28)
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from which we can bound the numerator of the RHS of (25) as

max
σ

∑

k

wσ(k)Cσ(k) ≤ 2 max
σ

∑

k

wσ(k) max
`

k∑

j=1

p`,σ(j) (29)

≤ 2 max
σ

(∑

k

wσ(k)

)
max
`

n∑

j=1

p`,σ(j) (30)

= 2

(∑

k

wk

)
max
`

n∑

j=1

p`,j (31)

For the second inequality, we have replaced k by n in
∑k

j=1 p`,σ(j) which
makes this sum independent of k. For the equality in the third line, observe
that

∑k
j=1 p`,σ(j) as well as the first sum are independent of the order since

we are now including all the n coflows and not just the first k.
The claimed ratio now follows by substituting (31) into (25).
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