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Acceleration of Classic McEliece Post-Quantum
Cryptosystem with Cache Processing

Cyrius Nugier, Vincent Migliore

Abstract—The NIST Post-Quantum Cryptography standardization process is in its fourth round, with a first KEM standard based on
LWE and three candidates based on ECCs. These primitives implementation are designed to be optimal on classical hardware
architecture targets. However, emerging architectures with Processing In Memory, made to be multi-purpose contrary to cryptographic
co-processors, have proven their efficiency in multiple use-cases and show better overall computational speed. In this paper, we show
that the Classic McEliece performance can be improved on PIM architectures. Notably, the public key generation benefits of a 12.6x
speed-up on architectures with bit-line operations. We also describe the open-source RISC-V simulator specifically developed for our
experiments, including both in-cache and vectored operations. We discuss how these architecture changes may open the possibility of
redesigning primitives or parameter sets for better efficiency.

Index Terms—Post Quantum Cryptography, RISC-V, Processing In Memory, NIST PQC Standardization

✦

1 INTRODUCTION

ONE of the major challenges in the field of cryptography
is the design of primitives not vulnerable to a quan-

tum machine. Shor’s and Grover’s quantum algorithms are
known to significantly reduce the security level of existing
schemes, especially key exchange standards (RSA, DH and
ECDH) since they rely on the hardness of factorisation and
discrete logarithm problems. The identification of alterna-
tives to the standard has recently gained momentum with
the NIST standardization process to select the best quan-
tum computer resistant primitives known as Post-Quantum
Cryptography (PQC).

The first phase of the competition focused on the security
assessment of the candidates. Next, the focus was on perfor-
mance evaluation. Candidates are ranked on their perfor-
mances on target platforms, specifically a general purpose
processor and an ARM-type micro-controller for software
evaluation, and an FPGA for hardware accelerators [1]. At
this point, a first Key Encapsulation Mechanism (KEM)
has been standardized (CRYSTALS-KYBER), and remaining
ones are pushed into an additional round of competition [2].

This standardization effort will include additional al-
gorithms in the standard for two reasons: first, quantum
computing is an emerging research field, the proposed
primitives might be broken in the upcoming years. Second,
the proposed primitives have very different characteristics,
and which is best depends on the target scenario.

The remaining candidates for KEM standardization are
code-based (Classic McEliece, BIKE, HQC) and isogeny-
based (SIKE). Out of these, Classic McEliece is considered
one of the most reliable candidates. Introduced in 1978 as
a competitor of RSA, its security has not been significantly
reduced since then. Also, it has the shortest ciphertext size,
which reduces bandwidth over time. However, it has an
overly large public key and key generation time. BIKE and
HQC are based on structured codes which improve perfor-

• CN, VM: LAAS-CNRS, INSA Toulouse, Université de Toulouse, France.
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mances, but the impact on security of the code structure is
not well known.

Classic McEliece also displays a high level of arithmetic
parallelism which would make it better on emerging parallel
architectures. Among these, Processing In Memory (PIM)
architectures redesign memory spaces such as caches or
RAM to perform computations between operands of a much
larger size than those of a processor’s ALU, for a minimal
additional die surface. An example is the technology called
”bit-line computing”. It allows to modify SRAMs by adding
vertical sensors and horizontal activators. When two rows
are activated, the bit-line sensors produce the results of a
nor and a and operation and store them in a line which
is destination-enabled. The robustness of this process is
proven with high industry standards [3].

Experiments confirm the efficiency and robustness of
this adaptation [4]. It enables computation in cache for only
8% of additional area. The cache size increases the level
of parallelism beyond vector acceleration, with operands
that can reach 8KB. The Compute Cache architecture [4]
enables all basic binary operations, including copy and
compare. This allows for smarter data management, lower
cost copying, moving and searching through big amounts of
data, and was more recently extended to machine learning
applications [5], [6].

Cryptographic acceleration is often based on custom
hardware co-processor development, however these are
specialised and represent high costs for a single task. The
architecture with general performance improvements which
best fits cryptographic acceleration seems to be processing
in cache: in many primitives, arithmetic and logic operators
are fairly varied, which means that interactions with the
processor are frequent. Additionally, caches are now fully
integrated into modern processors.

Unfortunately the current standardization does not ac-
count for these emerging architectures, leading to a lack of
oversight on the efficiency that post-quantum cryptographic
algorithms might have once in use. Considering such archi-
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tectures in the discussion is of clear interest for a fair study
of long-term performance.

In this paper, we propose the first acceleration of the
Post-Quantum primitive Classic McEliece in a Processing In
Memory architecture. For comparison purposes, we provide
results with vector operations. Experiments were performed
with a custom RISC-V simulator that we made available [7],
which incorporates a vectorization modules, a cache with
PIM capacities, and custom hardware performance counters
to analyze behavior of the processor core and cache. To the
best of our knowledge, this is the first simulator which can
evaluate both vectorization and cache operations.

Our results show that compared to a classical implemen-
tation, the computation times for public key generation can
be sped-up 12.6×, and the computation time for encryption
by 4× with the standard algorithm and up to 63× if the
public key is stored in transposed form.

The paper is structured as follows: section 2 presents
how classical architectures can be adapted for cache com-
putation. Section 3 presents the Classic McEliece algorithms
and how to accelerate them with cache computation. Section
4 presents our open-source simulator experimental results.
Section 5 draws conclusions.

2 ARCHITECTURE ADAPTATION FOR PROCESSING
IN CACHE

The memory cell adaptation that allows for computation
in SRAM elements is introduced in [3]. The main design
change is the introduction of vertical sensors over the cells.
Combined with horizontal activators, they allow to read
the results of a and and a not and write the results on
enabled cells. This approach was validated for reliability on
on multiple 28nm CMOS test chips.

By using this technology on a cache and combining
the gates into column peripherals at the extremities of the
sensors, [4] implemented a variety of operations. Vocabulary
used in this paper is similar to [4], and illustrated in figure 1.
Experimentation in this paper is based on simulations of this
architecture, which is described in the rest of this section.

One big challenge is data mapping in cache which is
addressed by modifying the address structure. Usually,
address structure is as follows: |TAG|SET|OFFSET|.
For cache operations, field SET is subdivided to regroup
cache lines sharing their bit-lines (sensors). Therefore,
address structure for cache computation is as follows:
|TAG|SETINBP|BANK|BP|OFFSET|. This way, two
bits are cache-aligned if their respective bytes addresses
share the same BANK, BP, and OFFSET fields, and they share
the same position in their byte. The length of the fields
depends on the geometry of the cache.

In [4], cache computation operations are bit-wise binary
operations over cache-aligned bits. Called bit-line opera-
tions, they are applied to full cache lines in the same block
partitions (sharing vertical sensors). The result is stored in
a destination-enabled cache line of the same block partition,
or in a register. The same bit-line operation can be under-
taken in all BPs at the same time. We consider the following
operations:
CCPY(addr_dst, addr_a, n_lines)
CCMP(ret, addr_a, addr_b, nb_lines)

Fig. 1: Architecture of the proposed solution. Elements and
notations in black are from classical RISC-V and cache
architectures. Elements in blue dotted lines are modifica-
tions made to allow bit-line computing. Cache geometry
notations in blue follow [4].

CAND(addr_dst, addr_a, addr_b, n_lines)
COR(addr_dst, addr_a, addr_b, n_lines)
CXOR(addr_dst, addr_a, addr_b, n_lines)
CNOT(addr_dst, addr_a, n_lines)
CSET(addr_dst, val, n_lines)

The CSET operation fills the lines with zeros if val = 0,
with ones. The number of lines indicates the number of
matching bits in the addresses of the operands. It only
differs from [4]’s cc_buz by a conditional not gate

Bit-Array operations are compositions of bit-line opera-
tions that allows a function to be performed in parallel on
elements of arbitrary size. This means that all bits of each
element are cache-aligned (elements are stored ”vertically”).
The number of bit-line operations is the number of binary
gates for the function computation for one element. For
example:
BA_ADD(addr_dst,addr_a,addr_b,size,n_lines)
BA_MUL(addr_dst,addr_a,addr_b,size,n_lines)

The achievable levels of parallelism yields the best
throughput in bit-array operations with small binary com-
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plexities and a large number of operands multiple of the
cache line size. On the contrary, float operations binary
representations grow exponentially with their precision, so
they are badly adapted for high-precision computation.

To benefit more from this computation method, SRAMs
with two-dimensional data access called Transpose Gateway
Units (TGU), enable the use of both bit-parallel operations
(on horizontal data) and bit-serial operations (vertical data)
at runtime with minimal efficiency loss. Chips integrating
these technologies and bit-serial operators can be found in
[8].

The core also requires changes to support cache instruc-
tions. Notably, for a RISC-V core, the modification of the
register file to support reading three registers in parallel,
i.e. two for the source addresses and one for the destina-
tion address. Note that no modifications are needed for
cores supporting floating point arithmetic since they already
implement that feature. To ease the implementation, we
reused the R4-type instructions (i.e. floating point instruc-
tions) since the three register fields are already present, and
adapted the other fields to our needs: funct3 encodes the
instruction type, and rd plus funct2 encodes the number
of cache lines processed. These changes are illustrated in
figure 1.

3 DESIGN CONSIDERATIONS FOR CLASSIC
MCELIECE ACCELERATION

3.1 Classic McEliece Cryptosystem

Classic McEliece [9] is based on Error Correcting Codes.
Their original purpose is to encode data and transmit it on a
noisy channel, allowing the receiver to remove the errors to
get the correct message. If the decoder is kept secret and
cannot be deduced from the encoder, it makes encoding
with errors a one-way trapdoor function: the sender encodes
with the public encoder and adds as many errors as the
decoder can remove. The receiver with the decoder is then
the only one who can remove the errors and read the
message. Classic McEliece was designed based on Goppa
codes for their fast decoding algorithm. Until now, this
cryptosystem remains unbroken.
KeyGen:

1) sk_gen(): The secret key is generated by picking a
polynomial g ∈ Fq[x] where q = 2m with m = 12 or
13 according to the parameter set, n elements α1 ·αn

of Fq and a string s ∈ Fn
2

2) pk_gen(): The public key is generated as follows:

a) Initialization: Sorts the elements of the se-
cret key to get the support L.

b) Roots: Applies the polynomial g to each ele-
ment of L.

c) Inversion: Finds the inverse of g(L) and
stores it in inv.

d) Zeroing: Zeroes the matrix mat.
e) Filling: Does t times the following:

• Transpose every successive 8 elements of
inv (m bits) onto m bytes in mat so the
Fq elements are vertically stored.

• Set inv to be the coefficient-wise multi-
plication of inv and L

f) Gaussian: mat is reduced to its systematic
form (the left square is the identity matrix)
via Gaussian elimination. If this is not possi-
ble, restart KeyGen.

g) Copy: copy the non-identity part of mat to
bitpack it and output it as the public key.

3) controlbits(): This changes the representation
of the α list in the secret key to improve decryption
times. It uses a Beneš network to find pairwise
swaps of Fq elements that put the α list as the first
elements.

Encrypt:

1) gen_e(): Generates a error vector filled with zeros
except in a precise number of random places.

2) syndrome(): Multiplies the public key matrix by
the error vector error and returns the result (the
syndrome) as the ciphertext.

Decrypt:

1) support_gen(): uses the control bits of the secret
key to return the support L

2) synd(): From the Goppa polynomial g of the secret
key, the support L and the ciphertext, outputs the
syndrome s

3) bm(): the Berlekamp-Massey algorithm, outputs the
minimal polynomial for s

4) root(): returns the roots of the polynomial over
the support L. The errors vector has ones on the
positions of these roots. If it has the correct weight
it is the plaintext.

The bottleneck of KeyGen and pk_gen() is the Gaus-
sian step. Comparatively, the generation of the secret key
is negligible. In our experiments, the Gaussian elimination
represented 94.4% of the public key generation (see Sec-
tion 4). Also, matrix systematization may fail. To detect
problems early, the diagonalization is first done on the left
part of the matrix to ensure that there are no zeroes in
the diagonal. Then, the right part is computed in case of
success. Gaussian elimination is the best known algorithm,
so optimisation comes from arithmetic operations. However,
these operations are fundamentally parallelizable: elimina-
tion requires to compute identical operations on each line,
which makes it excellent with tools such as the vectorization
modules of processors (Intel AVX, ARM NEON, ...).

3.2 Accelerating Classic McEliece in cache
3.2.1 Security parameters and operands size
Classic McEliece primitive provides 5 parameter sets to fit
various security levels, summarized in Table 1. Since matrix
size varies considerably from one set to another, a discussion
on how efficiently store and process it is essential. Normally,
the matrix is bit-packed, i.e. written contiguously in mem-
ory. However this representation limits bit-line operations.

The full public key matrix might be too large to fit
into a L1 cache. However, computations are performed row
by row, which requires a fraction of a typical cache. For
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instance, for a 16 Kb LD1 cache (256 lines of 64 bytes), the
largest matrix uses 6.25 % of the memory for a full row (16
cache lines).

To compute a full row in one operation (for maximum
parallelism), the number of lines computed in parallel with
PIM varies from 7 to 16 depending on the parameter set.
This is typically the range of parallelism achieved with
existing implementations [4] (one line per BP in parallel).

Therefore, some configurations underuse hardware re-
sources because parameters sets were not designed to op-
timize cache operations. However, a good balance between
performances and resource utilisation is achieved with an
8-line parallelism. This disadvantages parameter set 460896
which requires 9 lines per row, but optimizes parameter set
8192128 and is nearly optimal for all others, with some row
padding. Speed-up provided by PIM encourages revising
parameter sets to let row sizes fit the parallelism provided
by cache computations.

Parameter Matrix dimension Cache lines used PK size Secu.
Set Rows Cols Row Matrix (bits) Cat.

348864 768 3488 7 5 232 2 088 960 1
460896 1248 4608 9 11 232 4 193 280 3
6688128 1664 6688 14 21 736 8 359 936 5
6960119 1508 6960 14 20 500 8 378 552 5
8192128 1664 8192 16 26 624 10 862 736 5

TABLE 1: Parameter sets for Classic McEliece and conse-
quences on the number of cache lines used (64-byte lines).

Note: High-end multi-core processors are often equipped
with a large L3 cache (10MB and above) that can store the
entire matrix. This should improve computation time by ex-
ploiting the L3 cache prefetching to reduce the RAM access
overhead. In this paper, we target single core processors
with L1 caches, but it would be interesting to extend this
work to more complex architectures.

3.2.2 KeyGen
First, sk_gen cannot be particularly sped-up with PIM
since it is mainly composed of a seed expansion and op-
erations between Fq elements which do not require larger
operands. Fortunately, sk_gen represents negligible com-
putation times in KeyGen.

In pk_gen, we change the representation of mat to
enable computation in cache: the matrix is not bit-packed
but padded with zeroes to keep rows aligned in memory.
Initialization, Roots, and Inversion:

These steps create the first row of the matrix of Fq

elements: inv. They consist in a lot of Fq operations which
are best performed horizontally. They computationally rep-
resent a negligible part of pk_gen (confirmed in our exper-
iments, figure 2c). We do not focus on optimizing them.
Zeroing:

Zeroing is straightforward with computations in cache,
reducing the number of operations by a factor of r/(ls × n),
where ls is a cache line size, n the number of lines computed
in parallel, and r the register size.

1 f o r ( i = 0 ; i < PK NROWS; i ++)
2 f o r ( j = 0 ; j < SYS N/8; j ++)
3 mat [ i ] [ j ] = 0 ;
4 /* Can be optimised as */
5 f o r ( i = 0 ; i < PK NROWS; i ++)

6 c c s e t ( mat [ i ] , 0 , 8 ) ;

To do so, the matrix address has to be such that
a row has the same TAG and SETINBP fields. In C,
__attribute__((aligned (CACHE_SIZE))) is used
so start the row with the first set.
Filling:

As with the three first steps, we did not optimize the
computation of all α

(i−1)
j /g(αj), which requires iterative

multiplications in Fq and cannot straightforwardly benefit
from larger operands. This is not an issue since it represents
only a small fraction of the computation times.
Gaussian:

The slowest step is the computation of the systematic
form. Gaussian elimination consists in creating a mask and
then xoring each pair of rows in the matrix. The mask is
filled with ones or zeroes to compute the Gaussian elimina-
tion in constant time. Elimination is first done on the lower
triangle to check if the matrix admits a systematic form,
and once this is checked, elimination proceeds on the rest of
the the matrix. It is a bottleneck because the complexity of
the algorithm and its implementation differ of a factor n/r,
where r the memory word size. Thus, creating operands
large enough to contain a whole row removes this factor.

1 f o r ( k = row + 1 ; k < PK NROWS; k++){
2 mask = mat [ row ] [ i ] ˆ mat [ k ] [ i ] ;
3 mask >>= j ;
4 mask &= 1 ;
5 mask = −mask ;
6

7 f o r ( c = 0 ; c < SYS N/8; c ++)
8 mat [ row ] [ c ] ˆ= mat [ k ] [ c ] & mask ;
9 }

10 /* Can be optimised as */
11 f o r ( k = row + 1 ; k < PK NROWS; k++){
12 b i t = mat [ row ] [ i ] ˆ mat [ k ] [ i ] ;
13 b i t >>= j ;
14 b i t &= 1 ;
15 CSET( mask , b i t , 8 ) ; //The mask i s s tored in 8

cache l i n e s ins tead of a byte
16 CAND( aux , mask , mat [ k ] , 8 ) ; //The a u x i l i a r y value

i s a l s o s tored in 8 cache l i n e s
17 CXOR( mat [ row ] , mat [ row ] , aux , 8 ) ;
18 }

The xoring of two rows is done in one instruction. The
mask is no longer defined as an integer, but as a full row of
4096 ones or zeroes. This allows the code to remain constant-
branch and constant-index. Additionally, diagonalizing only
the left part of the matrix to check if the matrix is systematic
is no longer useful, since operations on the whole rows are
computed in the same time than the main square.

Problems arise in direct-mapping caches, in which two
or more operands of a cache operation may share the same
location in the cache. To avoid collisions, we reserve a
fixed space in the cache for the row-sized variables (aux
and mask), and change the addresses of the rows of the
matrix so that they never map to these reserved spaces. This
improves performances since in case of collision operations
would be done classically, but also increases memory re-
quirements by 2/cache_ways.
Copying:

Increasing matrix size by padding does not slow down
the computation. The final output is a byte string. To reduce
its size, the normal algorithm ignores the identity part of the
matrix, so bytes of the matrix are individually copied into
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the output. When the matrix is padded with zeroes, these
operation remains the same.

Overall, cache computation should give a net reduction
in the number of arithmetic operations, and additional gains
in data movement.

3.2.3 Encrypt
The error vector creation does not benefit from larger
operands. It consists in randomness manipulation to fill a
vector with zeroes, except in a specific number of places.

In the reference code, the public key is expanded to
add the identity matrix to its left. Then, the error vector
is multiplied the matrix to obtain the syndrome, which is
the ciphertext. The multiplication is carried the classically,
row by row, with byte by byte multiplication, accumulation,
and parity giving the corresponding bit of the syndrome.
We propose variations to improve performances:

NoId: The matrix does not need to be extended in
systematic form. Instead, we copy the first bytes of the
error vector in the result and accumulate from there. Time
should be gained because of the shorter rows. We applied
this modification to all the following variations.

With Cache Operations: Multiplications are performed
on the entire row simultaneously, leaving accumulation and
parity to be done bytewise. For this, the error vector and the
rows have to be cache-aligned. This means the matrix rows
have to be cache-aligned, which requires more space. To
ensure that the full row can have simultaneous computation,
we map the start of the row to the start of the first set (a row
takes 2 to 4 sets according to the security parameters).

1 f o r ( j = 0 ; j < SYS N/8; j ++)
2 b ˆ= row [ j ] & e [ j ] ;
3 /* i s replaced by */
4 CAND( row , row , e , PK NROWS/LINE SIZE +1) ;
5 f o r ( j = 0 ; j < SYS N/8; j ++)
6 b ˆ= row [ j ] ;

Transposed: Computing multiplications column by col-
umn instead of row by row makes the accumulation and
parity operation combine. For this, the public key has to be
in transposed form. For the ith row of the transposed matrix,
we set a byte according to the ith bit of the error vector (255
if the bit is 1 otherwise 0), multiply and accumulate directly
on the result.

Transposed with cache operations: To increase paral-
lelism, we multiply more rows of the transposed matrix at
once: in the smallest parameter set, rows are 768 bits and fit
in 2 BPs. In a 8-BP cache, we can align four rows to the start
of each BP pair, set the four multiplying elements separately
for each, and then multiply and accumulate them all at once.
In the end, the accumulators of each BP pair still need to be
aggregated into one result.

Transposition during Encrypt may outweigh the time
saved on matrix-vector multiplication. Therefore, if the ef-
ficiency gain is good enough, we could either ”prepare”
the public key in KeyGen the same way controlbits()
prepares the secret key, or, since it only has to be done once,
when the public key is received, before encryption. A Neural
Cache-like[5] Architecture adaptation includes TGUs, mak-
ing data transposition in cache faster and removing the
involvement of the core. In these architectures public key
transposition would be more desirable.

3.2.4 Decrypt
The decryption process retrieves the error code from the
ciphertext. It finds the closest code-word to the ciphertext
in the Goppa code defined by the secret key, calculates
the difference with the ciphertext, and checks if the weight
matches the expected one. TGUs would be very useful
during decryption, since in the subroutine support_gen,
uses iteratively transpositions to extract the support from
the control bits. Hardware accelerations might also have
visible results here, but bit-line computing would not be of
much use except for memory management (zeroing of big
variables).

4 EXPERIMENTATION

4.1 RISC-V workbench
For the evaluation of the proposed optimizations, a suitable
workbench implementing both the RISC-V core, the vector
extension, a cache hierarchy and operations in cache is
necessary. Finding a suitable simulator or hardware imple-
mentation is possible, even for the vector extension (now
officially supported by the RISC-V Spike simulator for in-
stance). However, for cache operations, to the best of our
knowledge, no implementation exists at the moment.

Integrating cache operations into an existing tool would
be difficult since cache operations must be integrated at the
micro-architecture level to handle the specific management
of cache geometry (cache sets, bank partitions), the manage-
ment of bit-line operation conflicts, and the accuracy of data
transfers time between the RAM and the cache.

Therefore, we designed our own simulator in C that im-
plements a mono-core RISC-V with full RV32I and RV32M
support, part of the vector extension (which covers the
needs for Classic McEliece), a cache hierarchy (direct-
mapped, fully configurable geometry) and the standard
instruction set for cache operations (listed in [4]). For a
better estimate of the number of cycles, we integrated the
handling of some micro-architectural events (RTL), such
as the management of control flow hazard, the memory
controller between cache and RAM, and the internal micro-
operations executed during cache instructions. The simula-
tor is available on Gitlab [7]. We benchmarked it against a
cycle-accurate well-known simulator Marss [10] on a AES
workload. On average, an AES block required 4791 cycles
for our simulator, and 4897 for Marss (2%). A difference was
expected because Marss is a full-system simulator, which
makes it run slowly in real time. Anyway, the results are
similar enough to be confident on the results brought by
our simulator.

To better understand the interaction between the RISC-
V, the cache, and the RAM, we integrated relevant Hard-
ware performance counters (HPCs) : Instruction based
HPCs (number and nature of instructions executed), cycle
based HPCs (global cycles, RISC-V cycles, cache cycles and
control flow hazard cycles) and memory based HPCs (num-
ber of transfers between cache and ram, heap and stack us-
age and allocation). The complete list of features is available
on the dedicated repository.

We followed a flexible approach for the hardware com-
ponents interconnection to allow quick architecture con-
figuration. For example, if the cache is not needed for
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experimentation, the RISC-V can be directly connected to
the RAM with a few lines of code. This allows to evaluate
the performance of a hardware accelerator in a complete
architecture. In fact, the cache computation controller is seen
as an hardware accelerator in the code.

4.2 Implementation Results

We implemented three versions: reference (with no accelera-
tors), vector (with vector operations), and cache (with cache
computation acceleration). We adapted the AVX2 imple-
mentation proposed to the NIST, which is an Intel vector
extension, to the RISC-V vector extension. Performances for
Classic McEliece on various architectures can be found on
[11], however to the best of our knowledge, none of them
includes computing in cache.

Our results are presented for parameter set 348864 (see
Table 1). We configured the simulator with 8 BPs to match
the number of BPs in [4]. To study the impact of the cache
size on computation times and memory, we varied the
number of ways from 16 to 1024. Notice that for 1024 ways,
the public key matrix fits entirely into the cache, which is
similar to RAM computation.

4.2.1 KeyGen
Figure 2c provides an overview of the computation times
and memory requirements across the subroutines of Key-
Gen (1024 ways cache, -O3 GCC optimisation flag) while
Figure 2a shows the number of cycles of the Gaussian step
for several number of cache ways. We plotted these as a
function of the number of ways, taking 16 ways as the
reference, for the three architectures, in Figure 2b.

The shape of the curves are very similar. In each configu-
ration, the number of cycles saved by using vectorization is
about 450 million, and another 300 million cycles are saved
with cache computing. Therefore, these numbers seem to
represent almost exclusively the change in arithmetical op-
erations. Therefore, the speedup observed when increasing
the ways count is mostly based on reduction of data transfer
between cache and memory.

In a 64-way cache, 20% of computation times is due to
data transfer, 38% for vector computing and 93% for in-
memory computing. This explains why with 1024 ways the
Gaussian step with cache computations has a 19× speedup
compared to vectorization and 46× compared to reference.
Therefore, data transfer has a similar impact across opera-
tion types, but becomes the limiting factor as arithmetical
operations are faster.

Therefore, for small caches, the bottleneck is the time
needed to move data to the cache. Also, while computing
in small caches gives noticeable time saves, PIM in larger
memories such as the RAM have a superior effect.

Figure 2c provides implementation results for arithmeti-
cal operations speed evaluation (i.e. 1024 ways, -O3 GCC
optimisation flag). These parameters allows the whole pub-
lic key matrix to fit in cache.

The Zeroing operation was sped-up 20×, and the Gaus-
sian systemization by 46.4×. The overall pk_gen computa-
tion was 12.6× faster. In pk_gen proportion of computation
times, the Gaussian step drops from 94.4% to 25.7%. In
counterpart the Filling step increases from 3% to 41.8%.

Therefore, contrary to what previous knowledge suggested,
it is no longer a negligible part of public key generation.

Its optimization would require redesigning the step to in-
crease parallelizable operations. The operations undertaken
are Fq multiplications as horizontal 12 or 13-bits elements,
and transposing of the results into a vertical form. One
could first transpose inv and the roots αj (which is faster
than transposing the whole matrix), and then do all mul-
tiplications vertically with bit-array operations. However,
experiments are needed to confirm that the slowdown from
the extra number of operations in bit-array multiplication
is offset by the time saved by a n = 2q parallelism. An
architecture like [5] allows these operations, and include
TGUs, which would make the transpositions faster.

Optimisations to Zeroing had it stay negligible, 0.04%
to 0.02% instead of 0.5%. This confirms the results of [4]
showing that Processing In Memory and in cache gives
overall multipurpose improvements. We observe low RAM
usage in the Zeroing and Gaussian steps as all computation
is performed in cache.

On the downside, controlbits() now represents
82.6% of KeyGen, it is a new bottleneck, the target of further
optimizations. The controlbits() algorithm structure
alternates between two types of operations. Ones could be
parallelized if the operands were to be written vertically
such as:

1 f o r ( x = 0 ; x < n;++ x ) B [ x ] = (A[ x]<<16) | ( B [ x]&0 x f f f f ) ;

Such operations would be very fast with cache computa-
tion. However, other operations require swapping multiple
elements (such as sorting), which cannot be done efficiently
with bit-line constraints.

Solutions are found in the literature: co-processors show
good performance for permutation operations [12], or for
more generic approaches, multi-dimensional access mem-
ory, such as TGUs. However the size of the data to transpose
may be too large for these to provide good performances.
Additionally, architectures with large multi-dimensional ac-
cess do not seem realistic in the near future.

There is an impact on memory allocation requirements:
the reference bit-packed matrix took 768×3488 bits, but our
cache-aligned matrix takes 768×8×512 bits. The theoretical
increase for row length is 17.4%. However, constraints on
the addresses of cache operands makes the compiler sepa-
rate them from other variables and the measured increase
is 79.7%. A more precise control over non-cache variables
could reduce this drawback.

4.2.2 Encrypt
Results are presented in figure 2d. Removing the multipli-
cation of the identity matrix removes 22% of computation
times, matching the 22% reduction in row length. Comput-
ing in cache removes an additional 67%, and the product
of the transposed matrix removes 64%. Computation in
transposed form with cache computation is 47.6× faster
than NoId, 64× faster than reference.

As KeyGen, the number of cycles saved by cache com-
putation is stable at around 2.25 million cycles, and 700 000
additional cycles saved with transposition. The bottleneck
remains cache fetching time, and efficiency increases with
memory size.
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Ways Reference Vector Cache
16 1 037 890 479 562 045 422 266 384 330
32 1 008 175 343 544 386 638 256 151 754
64 993 256 239 534 758 990 250 866 890
128 985 981 839 526 796 846 245 638 090
256 966 934 895 510 378 350 232 160 458
512 855 361 103 401 017 326 140 247 338
1024 793 189 167 329 896 718 17 098 761

(a) Gaussian systematization performances for various cache
sizes (in cycles). Optimisation flag -O3.
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(b) Impact of changing the arithmetical operations technology
and changing the number of lines in a set of cache.

Measure Cycles RAM Used (Bytes) RAM Allocated (Bytes)
Architecture Reference Vector Cache Reference Vector Cache Reference Vector Cache

SKgen 26 683 052 26 683 052 26 683 052 42 549 42 549 42 549 51 042 51 042 51 042
Initialization 5 053 223 5 167 998 5 053 223 64 582 64 582 64 586 424 106 424 090 1 007 782

Roots 14 089 820 14 089 820 14 089 820 14 114 14 114 14 114 14 146 14 146 14 146
Inversion 2 005 620 2 005 620 2 005 620 7 100 7 100 7 100 14 238 14 238 14 238
Zeroing 335 772 338 076 16 614 334 848 334 852 0 334 850 390 922 0
Filling 25 421 134 25 448 910 27 876 551 348 804 348 804 348 800 381 726 390 926 440 068

Gaussian 793 189 167 329 896 718 17 098 761 334 860 344 069 73 728 381 726 390 934 392 802
Copy 456 603 458 908 508 421 522 244 522 248 552 244 691 554 700 746 1 142 442

PKgen 840 551 389 377 406 084 66 463 458 667 722 676 931 667 718 691 678 700 894 1 242 574
Controlbits 449 397 559 449 397 559 449 424 663 56 948 56 948 56 948 90 854 90 854 90 854

Keygen 1 316 632 015 853 486 710 542 756 873 691 375 700 584 733 323 691 662 700 584 1 242 558

(c) Key generation performances for three architectures and instruction sets: standard RISC-V, vector operations, and bit-line cache
operations. Optimisation flag -O3.

Measure Cycles RAM Used RAM Allocated
(Bytes) (Bytes)

Reference 3 012 219 262 088 269 286
No Id 2 239 978 261 992 269 190
Cache 734 918 261 748 270 818

Transposed 796 970 349 208 350 426
Transposed + Cache 47 311 916 256 102

(d) Encryption performances for five syndrome algorithms. Optimisation
flag -O3.

Ways Reference Cache T. + Cache
16 3 195 547 872 646 212 008
32 3 169 211 845 350 211 048
64 3 156 475 832 230 210 856
128 3 150 395 825 990 210 664
256 3 144 251 819 686 210 568
512 3 120 571 818 854 182 600
1024 3 012 219 734 918 47 311

(e) Encryption performances various cache sizes
(in cycles). Optimisation flag -O3.

Fig. 2: Experimental results on custom RISC-V simulator [7]
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This indicates that if no major reduction in
controlbits() time is found by changing the
architecture, the public key should be transposed and
padded during KeyGen. Our simulation showed that even
a very naive software transposition costs only 29 542 317
cycles. Even if the gain is only 687 607 cycles in the
encryption, it is a 15.5× encrypt speedup for a 5.4%
slowdown of the KeyGen. This modification should also be
applied for classical architectures, in which bit-packing is
possible.

5 CONCLUSION

The main takeaway of this paper is that efficiency of post-
quantum cryptography will be influenced a positive side
effect of generic-purpose hardware accelerators integration
such as PIM.

This is the case for Classic McEliece, an encryption
scheme known to have small ciphertexts but limited perfor-
mances. Our results show that both KeyGen and Encryption
can be improved with PIM.

For KeyGen, cache computations allowed an overall
speedup of 12.6×. We learned that steps of the public
key generation such as the matrix filling, might have to
be reworked to accommodate these new architectures. For
Encrypt, we shown that when the public key is given in
transposed form, this type of architecture provides up to
28× speedup.

Additionally, it would be interesting to repeat the exper-
iments with a k-associative cache instead of direct mapping,
as well as with various replacement policies. Experiments
should be extended with an accurate Neural Cache sim-
ulator to study the computational speedup of bit-array
and TGUs. Also, FPGA implementation would increase the
confidence in our results.
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